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Abstract

We prove that all g-natural contact metric structures on a two-point homogeneous space are homogeneous
contact. The converse is also proved for metrics of Kaluza–Klein type. We also show that if (M, g)
is an Einstein manifold and G̃ is a Riemannian g-natural metric on T1 M of Kaluza–Klein type, then
(T1 M, η̃, G̃) is H -contact if and only if (M, g) is 2-stein, so proving that the main result of Chun
et al. [‘H-contact unit tangent sphere bundles of Einstein manifolds’, Q. J. Math., to appear. DOI:
10.1093/qmath/hap025] is invariant under a two-parameter deformation of the standard contact metric
structure on T1 M . Moreover, we completely characterize Riemannian manifolds admitting two distinct
H -contact g-natural contact metric structures, with associated metric of Kaluza–Klein type.
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1. Introduction

The study of the relationships between the geometric properties of a Riemannian
manifold M and those of its unit tangent sphere bundle T1M is a well-known and
interesting research field in Riemannian geometry. Usually, the properties of T1M
influence those of the base manifold M itself, and conversely. In particular, several
authors have tried to characterize two-point homogeneous spaces via some conditions
on the unit tangent sphere bundle.

It is well known [25] that a connected, simply connected two-point homogeneous
space is either flat or isometric to a rank-one symmetric space (either RPn , Sn , CPn ,
HPn , CayP2 or one of their noncompact duals).

The geometry of the unit tangent sphere bundle T1M is strongly influenced by the
fact that the base manifold (M, g) is two-point homogeneous. The Sasaki metric gS is
the simplest and most natural Riemannian metric that can be considered on the tangent
and unit tangent sphere bundles of a Riemannian manifold. With respect to this metric,
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and to the homothetic metric (1/4)gS of the standard contact metric structure of T1M,
the following results hold.
(i) If (M, g) is two-point homogeneous, then (T1 M, gS) is locally homoge-

neous [20, 25].
(ii) If (M, g) is two-point homogeneous, then the standard contact metric structure

of T1 M is H -contact (equivalently, the geodesic flow vector field of (T1 M, gS) is
harmonic) [12].

(iii) (M, g) is globally Osserman if and only if the standard contact metric structure
of T1M is locally homogeneous [10].

To our knowledge, the questions whether the converse of result (i) holds is still open.
Some partial positive answers for the converse in (i) and (ii) were given in [12, 13].
Very recently a characterization was obtained for Einstein spaces (M, g) whose unit
tangent sphere bundle is H -contact. These spaces must be 2-stein, and this fact
allows us to find plenty of examples of Riemannian manifolds that are not two-point
homogeneous but have an H -contact T1M [17]. Because of these results, the following
problems arise naturally.

QUESTION 1.1 [11]. If T1M is homogeneous, is (M, g) necessarily two-point homo-
geneous?

QUESTION 1.2 [17]. If T1M is H -contact, is (M, g) Einstein?

Questions 1.1 and 1.2 referred in [11] to the Sasaki metric and in [17] to the standard
contact metric structure on T1M, respectively. However, they also make sense for more
general Riemannian metrics and contact metric structures.

In recent years, a very large family of metrics on the tangent bundle TM, called
g-natural metrics, has been introduced and studied [7]. This family of metrics
includes gS and, more generally, all Kaluza–Klein metrics, which are also relevant
for applications to physics. Riemannian g-natural metrics on TM depend on six
arbitrary smooth real functions. Their restrictions to the hypersurface T1M are again
called g-natural. They possess a simpler form but still depend on four arbitrary real
parameters, satisfying some inequalities [6].

In [1], the first author and Abbassi replaced the standard contact metric structure of
T1M by a family of contact metric structures (η̃, G̃), called g-natural contact metric
structures. The Riemannian metrics G̃ of these contact structures are g-natural, and the
characteristic vector field is collinear to the geodesic flow vector field. The relations
between the contact metric geometry of (T1 M, η̃, G̃) and the geometry of the base
manifold were studied in [1, 3], and several properties turned out to be related (via
the Osserman conjecture) to the base manifold being two-point homogeneous. The
harmonicity of the geodesic flow vector field of the unit tangent sphere bundle of a
two-point homogeneous space, with respect to arbitrary Riemannian g-natural metrics,
was investigated by the present authors and Abbassi [4].

Finally, Kowalski and Sekizawa [19] showed the invariance of any g-natural metric
on TM with respect to the induced map of a (local) isometry of (M, g). Using this fact,
they extended result (i) above to all g-natural metrics, proving the following theorem.
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THEOREM 1.3 [19]. The tangent sphere bundle Tr M of any radius r > 0 of a two-
point homogeneous space, equipped with any Riemannian g-natural metric, is locally
homogeneous.

In this paper, we study Questions 1.1 and 1.2 above, equipping the unit tangent
sphere bundle T1M with some Riemannian g-natural metrics to which we shall refer as
metrics of Kaluza–Klein type (see Section 3). This class of g-natural metrics includes
the Kaluza–Klein metrics (in particular, both gS and the Cheeger–Gromoll metric)
and is defined by a clear geometrical condition: it is formed by Riemannian g-natural
metrics for which the horizontal and tangential distributions are mutually orthogonal.
Investigating metrics of Kaluza–Klein type and associated contact metric structures
on T1M, we shall obtain some new characterizations of two-point homogeneous and
H -contact spaces in terms of geometric properties of the unit tangent sphere bundle.

The paper is organized as follows. In Section 2 we recall the definition and basic
properties of g-natural metrics. We describe g-natural contact metric structures on
T1 M in Section 3, where we prove that if the base manifold is two-point homo-
geneous, then such structures are homogeneous contact (Theorem 3.1). In Section 4,
we answer Question 1.1 for metrics of Kaluza–Klein type. More precisely, we
prove that if (M, g) is a Riemannian manifold of dimension n 6= 16 and G̃ is an
arbitrary g-natural metric on T1M of Kaluza–Klein type, then (M, g) is (locally
isometric to) a two-point homogeneous space if and only if (T1 M, G̃) is (locally)
homogeneous and the geodesic flow is invariant under the (local) isometries acting
transitively on T1M (Theorems 4.2 and 4.3). Finally, in Section 5, we prove that if
(M, g) is an Einstein manifold and G̃ is a Riemannian g-natural metric on T1M of
Kaluza–Klein type, then (T1 M, η̃, G̃) is H -contact if and only if (M, g) is 2-stein
(Theorem 5.2). Consequently, the main result of [17] is invariant under a two-
parameter deformation of the standard contact metric structure on T1 M . Moreover,
with regard to Question 1.2, we completely characterize Riemannian manifolds
admitting two distinct H -contact g-natural contact metric structures, whose associated
metric is of Kaluza–Klein type (Theorem 5.3).

2. Preliminaries on g-natural metrics

Let (M, g) be an n-dimensional Riemannian manifold and ∇ be its Levi-Civita
connection. At any point (x, u) of its tangent bundle TM, the tangent space of TM
splits into the horizontal and vertical subspaces with respect to ∇:

(T M)(x,u) =H(x,u) ⊕ V(x,u).

For any vector X ∈ Mx , there exists a unique vector Xh
∈H(x,u) (the horizontal

lift of X to (x, u) ∈ T M), such that π∗Xh
= X , where π : T M→ M is the natural

projection. The vertical lift of a vector X ∈ Mx to (x, u) ∈ T M is a vector Xv ∈ V(x,u)
such that Xv(d f )= X f , for all functions f on M . Here we consider 1-forms d f
on M as functions on TM (that is, (d f )(x, u)= u f ). The map X→ Xh is an
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isomorphism between the vector spaces Mx and H(x,u). Similarly, the map X→ Xv

is an isomorphism between Mx and V(x,u). Horizontal and vertical lifts of vector fields
on M can be defined in an obvious way and are uniquely defined vector fields on TM.

Riemannian g-natural metrics form a wide family of Riemannian metrics on TM.
These metrics depend on several smooth functions from R+ = [0,+∞) to R and,
as their name suggests, they arise from a very ‘natural’ construction starting from a
Riemannian metric g over M . In fact, g-natural metrics are the image of g under first-
order natural operators D : S2

+T ∗ (S2T ∗)T , which transform Riemannian metrics
on manifolds into metrics on their tangent bundles, where S2

+T ∗ and S2T ∗ denote
the bundle functors of all Riemannian metrics and all symmetric (0, 2)-tensors over
n-manifolds, respectively.

Given an arbitrary g-natural metric G on the tangent bundle TM of a Riemannian
manifold (M, g), there exist smooth functions αi , βi : R+→ R, where i = 1, 2, 3,
such that

G(x,u)(Xh, Y h) = (α1 + α3)(r2)gx (X, Y )

+ (β1 + β3)(r2)gx (X, u)gx (Y, u),

G(x,u)(Xh, Y v) = G(x,u)(Xv, Y h)= α2(r2)gx (X, Y )

+ β2(r2)gx (X, u)gx (Y, u),

G(x,u)(Xv, Y v) = α1(r2)gx (X, Y )+ β1(r2)gx (X, u)gx (Y, u),

(2.1)

for every u, X, Y ∈ Mx , where r2
= gx (u, u). Put

φi (t)= αi (t)+ tβi (t),

α(t)= α1(t)(α1 + α3)(t)− α
2
2(t),

φ(t)= φ1(t)(φ1 + φ3)(t)− φ
2
2(t),

for all t ∈ R+. Then, a g-natural metric G on TM is Riemannian if and only if the
following inequalities hold:

α1(t) > 0, φ1(t) > 0, α(t) > 0, φ(t) > 0, (2.2)

for all t ∈ R+.
In literature, there are some well-known Riemannian metrics on the tangent sphere

bundle, which turn out to be special cases of Riemannian g-natural metrics (satisfying
(2.2)). In particular:

(i) the Sasaki metric gS is obtained for

α1(t)= 1, α2(t)= α3(t)= β1(t)= β2(t)= β3(t)= 0; (2.3)

(ii) the Cheeger–Gromoll metric gGC [15] is obtained when

α2(t)= β2(t)= 0, α1(t)= β1(t)=−β3(t)=
1

1+ t
, α3(t)=

t

1+ t
;

(2.4)
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(iii) Kaluza–Klein metrics, as commonly defined on principal bundles [8], are
obtained for

α2(t)= β2(t)= β1(t)+ β3(t)= 0. (2.5)

Notice that all metrics above satisfy α2 = β2 = 0, so they are g-natural Riemannian
metrics on TM for which horizontal and vertical distributions are mutually orthogonal.
We use this condition to introduce the following definition.

DEFINITION 2.1. A Riemannian g-natural metric G on TM is said to be of Kaluza–
Klein type if and only if horizontal and vertical distributions are G-orthogonal, that is,
α2 = β2 = 0 in (2.1).

Next, the tangent sphere bundle of radius r > 0 over a Riemannian manifold (M, g)
is the hypersurface

Tr M = {(x, u) ∈ T M : gx (u, u)= r2
}.

The tangent space of Tr M , at a point (x, u) ∈ Tr M , is given by

(Tr M)(x,u) = {X
h
+ Y v : X ∈ Mx , Y ∈ {u}⊥ ⊂ Mx }. (2.6)

When r = 1, T1M is called the unit tangent (sphere) bundle.
By definition, g-natural metrics on T1M are the restrictions of g-natural metrics of

TM to its hypersurface T1 M . As proved in [5], every Riemannian g-natural metric G̃
on T1M is necessarily induced by a Riemannian g-natural G on TM of the special form

G(x,u)(Xh, Y h) = (a + c)gx (X, Y )+ βgx (X, u)gx (Y, u),

G(x,u)(Xh, Y v) = G(x,u)(Xv, Y h)= bgx (X, Y ),
G(x,u)(Xv, Y v) = agx (X, Y ),

(2.7)

for three real constants a, b, c and a smooth function β : [0,∞)→ R. Such a metric G̃
on T1M only depends on the value d := β(1) of β at 1. In particular, G̃ is Riemannian
if and only if

a > 0, α := a(a + c)− b2 > 0 and φ := a(a + c + d)− b2 > 0. (2.8)

Returning to an arbitrary Riemannian g-natural metric on T1M, a simple calculation,
using Schmidt’s orthonormalization process, shows that the vector field on TM
defined by

N G
(x,u) =

1
√
(a + c + d)φ

[−buh
+ (a + c + d)uv], (2.9)

for all (x, u) ∈ T M , is unit normal at any point of T1M.
We now define the tangential lift X tG —with respect to G—of a vector X ∈ Mx to

(x, u) ∈ T1 M as the tangential projection of the vertical lift of X to (x, u) with respect
to N G , that is,

X tG = Xv − G(x,u)(X
v, N G

(x,u))N
G
(x,u) = Xv −

√
φ

a + c + d
gx (X, u)N G

(x,u). (2.10)

If X ∈ Mx is orthogonal to u, then X tG = Xv .
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The tangent space (T1 M)(x,u) of T1M at (x, u) is spanned by vectors of the form
Xh and Y tG , where X, Y ∈ Mx . Using this fact, the Riemannian metric G̃ on T1M,
induced from G, is completely determined by the formulae

G̃(x,u)(Xh, Y h) = (a + c)gx (X, Y )+ dgx (X, u)gx (Y, u),

G̃(x,u)(Xh, Y tG ) = bgx (X, Y ),

G̃(x,u)(X tG , Y tG ) = agx (X, Y )−
φ

a + c + d
gx (X, u)gx (Y, u),

(2.11)

for all (x, u) ∈ T1 M and X, Y ∈ Mx . It should be noted that, by (2.11), the condition
b = 0 acquires a clear geometrical meaning. In fact, this condition is satisfied if
and only if horizontal and vertical lifts are orthogonal with respect to G̃. Moreover,
the condition b = 0 characterizes metrics on T1M induced by Riemannian g-natural
metrics on TM of Kaluza–Klein type (Definition 2.1). For this reason, a Riemannian
g-natural metric G̃ on T1M will be said to be of Kaluza–Klein type if horizontal and
tangential distributions are G̃-orthogonal, that is, b = 0 in (2.11).

It must be noted that the Sasaki metric on T1M is the Riemannian g-natural metric
of Kaluza–Klein type of the form (2.11) with a = 1 and b = c = d = 0. Moreover,
Kaluza–Klein metrics on the tangent bundle TM are g-natural metrics satisfying (2.5)
(see [26]), which induce on T1M the special subclass of Riemannian g-natural metrics
of Kaluza–Klein type for which b = d = 0.

3. g-natural contact metric structures on T1M

A contact structure over a (2n − 1)-dimensional manifold M̄ is a triplet (η, ϕ, ξ),
where η is a global 1-form on M̄ (the contact form) satisfying η ∧ (dη)n−1

6= 0 every-
where, ξ is a global vector field (the characteristic vector field) and ϕ is a global tensor
of type (1, 1), such that

η(ξ)= 1, ϕ(ξ)= 0, ηϕ = 0, ϕ2
=−I + η ⊗ ξ.

A Riemannian metric g is said to be associated with the contact structure (η, ϕ, ξ), if
it satisfies

η = g(ξ, ·), dη = g(·, ϕ·), g(·, ϕ·)=−g(ϕ·, ·).

We refer to (M̄, η, g) or to (M̄, η, g, ξ, ϕ) as a contact metric manifold.
In [1], the first author and Abbassi investigated the conditions under which a

Riemannian g-natural metric on T1M may be seen as a Riemannian metric associated
with a very ‘natural’ contact structure. In fact, let G̃ be an arbitrary Riemannian
g-natural metric over T1M. We have already remarked that N G

(x,u), given by (2.9),
is a unit vector field on TM, normal to T1M at any point. The tangent space to T1M at
(x, u) is given by

(T1 M)(x,u) = Span(ξ̃ )⊕ {Xh
: X ⊥ u} ⊕ {X tG : X ⊥ u},

where ξ̃ is a vector field collinear to the geodesic flow, that is,
ξ̃(x,u) = ruh, (3.1)
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r being a positive constant. Hence, we consider the triple (η̃, ϕ̃, ξ̃ ), where ξ̃ is defined
as in (3.5), η̃ is the 1-form dual to ξ̃ through G̃, and ϕ̃ is completely determined by
the relation

G̃(Z , ϕ̃W )= (dη̃)(Z , W ),

for all Z , W vector fields on T1M. Then, simple calculations show that

η̃(Xh) =
1
r

g(X, u),

η̃(X tG ) = brg(X, u),
(3.2)

and

ϕ̃(Xh) =
1

2rα

[
−bXh

+ (a + c)X tG +
bd

a + c + d
g(X, u)uh

]
,

ϕ̃(X tG ) =
1

2rα

[
−aXh

+ bX tG +
φ

a + c + d
g(X, u)uh

]
,

(3.3)

for all X ∈ Mx .
Since utG = (b/(a + c + d))uh , it is easy to see that η̃ is well defined if and only

if b/r2
= b(a + c + d). When this condition holds, η̃ is homothetic, with homothety

factor r , to the classical contact form on T1M (see, for example, [9] for a definition),
and consequently, η̃ is again a contact form.

To ensure that (η̃, ϕ̃, ξ̃ ) is a contact structure, we must have ϕ̃2
=−I + η̃ ⊗ ξ̃ .

Hence, by (3.1) and (3.3) we get

1

r2 = 4α = a + c + d. (3.4)

Equation (3.4) may be used to express d as a function of a, b and c, and we obtain
d = (4a − 1)(a + c)− 4b2. In this way, we construct a family of contact metric
structures (η̃, G̃, ϕ̃, ξ̃ ) over T1M, depending on real parameters a, b, c (satisfying
some inequalities), to which we shall refer as g-natural contact metric structures on
T1M.

Note that, when a = 1/4 and b = c = d = 0 (and so, by (3.4), r = 2), we get the
standard contact metric structure of T1M (see, for example, [9, Ch. 9]). We also remark
that g-natural contact metric structures associated with metrics of Kaluza–Klein type
depend on two real parameters a and c, as b = 0 and, by (3.4), d = (4a − 1)(a + c).

We recall that a contact metric manifold (M̄, η̄, ḡ) is said to be (locally)
homogeneous contact if it admits a transitive (pseudo-)group of (local) isometries
leaving invariant its contact form η̄. We shall now prove the following theorem.

THEOREM 3.1. Let (M, g) be a two-point homogeneous space. Then, any g-natural
contact metric structure (η̃, G̃, ϕ̃, ξ̃ ) on T1 M is homogeneous contact.

PROOF. Theorem 1.3 ensures that (T1 M, G̃) is a homogeneous Riemannian manifold,
for any Riemannian g-natural metric G̃. More precisely, it was proved in [19] that
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any (local) isometry ψ of (M, g) can be lifted to a (local) isometry 9 of (T1 M, G̃),
defined by

9(z)=9(x, u)= (ψ(x), ψ∗u),

for any unit tangent vector z = (x, u) ∈ T1 M .
Consider now an arbitrary g-natural contact metric structure (η̃, G̃, ϕ̃, ξ̃ ) on T1 M .

Let z = (x, u) be a point of T1M and γ be the unique geodesic of (M, g) such that
γ (0)= x and γ̇ (0)= u. We know from (3.1) that the characteristic vector field ξ̃ is
defined through the geodesic flow, as

ξ̃z = ruh
= r ˙̃γ (0),

where we put γ̃ (t) := (γ (t), γ̇ (t)). Hence,

9∗z ξ̃z = r9∗z ˙̃γ (0)= r(9 ◦ γ̃ )̇(0). (3.5)

Since γ and ψ respectively are a geodesic and a local isometry of (M, g), the curve
α(t) := ψ(γ (t)) is again a geodesic of (M, g) and, by (3.5), the curve

α̃(t) := (9 ◦ γ̃ )(t)= (ψ(γ (t)), ψ∗γ̇ (t))

satisfies

α̃(0)=9(z), ˙̃α(0)=
1
r
9∗z ξ̃z .

Hence,
ξ̃ψ(z) =9∗z ξ̃z,

and so ξ̃ is invariant under the isometries of the form 9, which act transitively on
(T1 M, G̃). Since 9 leaves both G̃ and ξ̃ invariant, it follows at once from (3.2) that 9
leaves η̃ invariant, that is, (η̃, G̃) is a homogeneous contact metric structure. 2

REMARK 3.2. A local version of Theorem 3.1 holds as well: if (M, g) is locally
isometric to a two-point homogeneous space, then any g-natural contact metric
structure (η̃, G̃, ϕ̃, ξ̃ ) is locally homogeneous contact.

It is worth emphasizing the fact that Theorem 3.1 provides a large class of examples
of homogeneous contact metric structures in any odd dimension. In fact, starting
from any two-point homogeneous space, g-natural contact metric structures on its unit
tangent sphere bundle provide such a family of examples, depending on three arbitrary
parameters.

4. Characterizations of two-point homogeneous spaces

In general, a very important role in describing the geometry of a contact metric
manifold (M̄, η, g) is played by the tensor

h = 1
2 Lξϕ,
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where L denotes the Lie derivative. It was proved in [1] that at any point (x, u) of
the contact metric manifold (T1 M, η̃, G̃), the tensor h̃ = (1/2)Lξ̃ ϕ̃ is described as
follows:

h̃(Xh)=
1

4α
[−(a + c)(X − g(X, u)u)h + a(Ru X)h − 2b(Ru X)tG ],

h̃(X tG )=
1

4α

[
−2bXh

+ b

(
1+

d

a + c + d

)
× g(X, u)uh

+ (a + c)X tG − a(Ru X)tG
]
,

(4.1)

for all X ∈ Mx , where R is the curvature tensor of (M, g), taken with the sign
convention R(X, Y )= [∇X , ∇Y ] − ∇[X,Y ], and Ru X = R(X, u)u denotes the Jacobi
operator associated with u. In particular, (4.1) easily implies the following
proposition.

PROPOSITION 4.1. Let (η̃, G̃) be an arbitrary g-natural contact metric structure on
T1M. Then the following properties are equivalent.
(i) The horizontal distribution of T1M is h̃-invariant.
(ii) The tangential distribution of T1M is h̃-invariant.
(iii) G̃ is of Kaluza–Klein type.

It is worth briefly recalling the relationship between two-point homogeneous and
Osserman spaces. A Riemannian manifold (M, g) is called globally Osserman if the
eigenvalues of the Jacobi operator Ru are independent of both the unit tangent vector
u ∈ Mx and the point x ∈ M . The well-known Osserman conjecture states that any
globally Osserman manifold is locally isometric to a two-point homogeneous space.
Chi [16] and Nikolayevsky [21, 22] proved the Osserman conjecture in any dimension
n 6= 16.

We are now ready to prove the converse of Theorem 3.1 for g-natural contact metric
structures of Kaluza–Klein type. In this way, we generalize [10, Theorem 11], proving
the following theorem.

THEOREM 4.2. Let (M, g) be a Riemannian manifold of dimension n 6= 16 and
(η̃, G̃) an arbitrary g-natural contact metric structure on T1M, whose associated
metric G̃ is of Kaluza–Klein type. Then (T1 M, η̃, G̃) is a (locally) homogeneous
contact metric manifold if and only if (M, g) is (locally isometric to) a two-point
homogeneous space.

PROOF. The ‘if’ part follows at once from Theorem 3.1. To prove the ‘only if’ part,
consider a point (x, u) ∈ T1 M . Because of the symmetries of the curvature tensor, the
Jacobi operator Ru is self-adjoint and therefore diagonalizable. Let λ1, . . . , λn−1 be
the eigenvalues of the Jacobi operator Ru on the orthogonal subspace u⊥ of u in Tx M ,
and e1, . . . , en−1 be the corresponding unit eigenvectors.
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Consider now the contact metric manifold (T1 M, η̃, G̃). By (4.1), taking into
account the equality b = 0 and the orthogonality of u and ei , we easily get

h̃(eh
i )=

aλi − (a + c)

4α
eh

i , h̃(etG
i )=−

aλi − (a + c)

4α
etG

i , (4.2)

for all indices i = 1, . . . , n − 1. Thus, {ξ̃ , eh
i , etG

i } is a basis of eigenvectors for h̃.
Since (T1 M, η̃, G̃) is (locally) homogeneous contact, the eigenvalues of h̃ on ξ⊥ are
constant [10, Lemma 10]. Hence, (4.2) implies at once that λi is constant for all
i = 1, . . . , n − 1. So, (M, g) is globally Osserman and this implies that (M, g) is
two-point homogeneous in any dimension n 6= 16. 2

As we showed in the proof of Theorem 3.1, if (M, g) is two-point homogeneous,
then a g-natural contact metric structure (η̃, G̃) on its unit tangent sphere bundle T1M
is homogeneous, because its characteristic vector field ξ̃ (equivalently, by (3.1), the
geodesic flow uh) is invariant. This allows us to restate Theorem 4.2 in the following
way, which does not involve contact geometry.

THEOREM 4.3. Let (M, g) be a Riemannian manifold of dimension n 6= 16 and G̃ be
an arbitrary g-natural metric on T1M of Kaluza–Klein type. Then, (M, g) is (locally
isometric to) a two-point homogeneous space if and only if (T1 M, G̃) is (locally)
homogeneous and the geodesic flow is invariant under the (local) isometries acting
transitively on T1M.

5. g-natural H-contact metric structures

A contact metric manifold (M̄, η, g) is said to be H -contact if its characteristic
vector field ξ is harmonic, that is, is a critical point for the energy functional restricted
to the set of all unit tangent vector fields. The definition above was given by the second
author in [24], where he also proved that a contact metric manifold is H -contact if and
only if ξ is a Ricci eigenvector. This basic characterization implies that the class
of H -contact metric manifolds is very large and includes several interesting classes
of contact metric manifolds, such as Sasakian, K -contact, strongly ϕ-symmetric and
(κ, µ)-spaces (see [24]). Three-dimensional H -contact manifolds were further studied
in [18, 23].

If (M, g) is two-point homogeneous, then the standard contact metric structure
on T1M is H -contact [12]. The converse holds in several classes of Riemannian
manifolds [12, 13]. However, if (M, g) is an Einstein manifold, then the standard
contact metric structure on T1M is H -contact if and only if (M, g) is 2-stein, that is,

n∑
i, j=1

(Ruiu j )
2
= µ(x)|u|4,

for all x ∈ M and u ∈ Tx M , where {ei } is an orthonormal basis of Tx M . Consequently,
there exist Riemannian manifolds that are not two-point homogeneous, although
the standard contact metric structure on their unit tangent sphere bundles is
H -contact [17].
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Now let (M, g) be an arbitrary Riemannian manifold and consider any g-natural
contact metric structure (η̃, G̃) on T1 M , such that the associated metric G̃ is of
Kaluza–Klein type. The curvature tensor R̃ of an arbitrary Riemannian g-natural
metric G̃ on T1 M was calculated in [2]. In particular, if G̃ is of Kaluza–Klein type,
then b = 0 and so:

R̃(Xh, Y h)Zh

=

{
R(X, Y )Z +

a2

4α
[R(R(Y, Z)u, u)X

− R(R(X, Z)u, u)Y − 2R(R(X, Y )u, u)Z ]

+
ad

4α
[g(Z , u)R(X, Y )u + g(Y, u)R(X, u)Z − g(X, u)R(Y, u)Z ]

+
d2

4α
g(Z , u)[g(Y, u)X − g(X, u)Y ]

+
d

4α(a + c + d)
{a2
[g(R(Y, Z)u, R(X, u)u)

− g(R(X, Z)u, R(Y, u)u)− 2g(R(X, Y )u, R(Z , u)u)]

+ ad[g(X, u)g(R(Y, u)Z , u)− g(Y, u)g(R(X, u)Z , u)]

− 3a(a + c)g(R(X, Y )Z , u)

+ (a + c)d[g(X, u)g(Y, Z)− g(Y, u)g(X, Z)]}u

}h

+
1
2
{(∇Z R)(X, Y )u}tG ;

(5.1)

R̃(Xh, Y tG )Zh

=

{
−

a2

2α
(∇X R)(Y, u)Z +

a2d

2α(a + c + d)
g((∇X R)(Y, u)Z , u)u

}h

+

{
a2

4α
R(X, R(Y, u)Z)u +

1
2

R(X, Z)Y +
ad

4α

× [g(X, u)R(Y, u)Z − g(Z , u)R(X, Y )u] −
d

4α(a + c + d)
× [a2g(R(Y, u)Z , u)+ αg(Y, Z)]Ru X

+
d

4a(a + c + d)
[ag(R(Y, u)Z , u)+ (2(a + c)+ d)g(Y, Z)]X

−
d(4(a + c)+ d)

4α
g(X, u)g(Z , u)Y +

(a + c)d

2α
g(X, Y )Z

}tG
;

(5.2)

R̃(X tG , Y tG )Z tG = {g(Y, Z)X − g(X, Z)Y }tG , (5.3)

for all x ∈ M , (x, u) ∈ T1 M and X, Y, Z ∈ Mx . The operation of tangential lift from
Mx to (x, u) ∈ T1 M is applied only to vectors of Mx which are orthogonal to u.
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Consider again a point x ∈ M , a unit tangent vector (x, u) ∈ T1 M and G̃ a
Riemannian g-natural metric of Kaluza–Klein type. If {e0 = u, e1, . . . , en−1} is an
orthonormal basis of Tx M , then by (2.11) it easily follows that{

1
√

a + c + d
eh

0 ,
1

√
a + c

eh
1 , . . . ,

1
√

a + c
eh

n−1,
1
√

a
etG

1 , . . . ,
1
√

a
etG

n−1

}
is an orthonormal basis of the tangent space Tu T1 M . Using such a basis, from
Equations (5.1), (5.2) and (5.3) above, one easily obtains (see also [6])

%̃(Xh, Y h)= %(X, Y )−
a

2(a + c)

n−1∑
i=1

g(R(u, ei )X, R(u, ei )Y )

+
ad

2(a + c)(a + c + d)
g(R(X, u)u, R(Y, u)u)

+
d(d − 2(a + c + d))

2a(a + c + d)
g(X, Y )

+
d

a

(
n +

d

2

(
n − 1
a + c

−
1

a + c + d

))
g(X, u)g(Y, u),

%̃(Xh, Y tG )=
a

2(a + c)
[(∇u%)(X, Y )− (∇Y%)(u, X)]

+
ad

(a + c)(a + c + d)
g((∇u R)(X, u)Y, u).

(5.4)

By (3.1), the characteristic vector field of (η̃, G̃) is ξ̃ = ruh . Moreover, by (3.2), the
contact distribution Ker η̃ is spanned by horizontal and tangential lifts of vectors Y
orthogonal to u. Hence, from (5.4) we easily get

%̃(ξ̃ , Y h) = r

(
%(u, Y )−

a

2(a + c)

n−1∑
i=1

g(R(u, ei )u, R(u, ei )Y )

)
,

%̃(ξ̃ , Y tG ) =
ra

2(a + c)
[(∇u%)(u, Y )− (∇Y%)(u, u)],

for all Y h, Y tG in the contact distribution, that is, lifts of a tangent vector Y orthogonal
to u.

Thus, (T1 M, η̃, G̃) is H -contact (equivalently, ξ̃ is a Ricci eigenvector) if and
only if

%(u, Y ) =
a

2(a + c)

n−1∑
i=1

g(R(u, ei )u, R(u, ei )Y ),

(∇u%)(u, Y ) = (∇Y%)(u, u),

(5.5)

for all Y orthogonal to u. In the special case of the standard contact metric structure
of T1M, that is, the g-natural contact metric structure determined by a = 1/4 and
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b = c = d = 0, we get the well-known characterization

2%(u, Y ) =
n−1∑
i=1

g(R(u, ei )u, R(u, ei )Y ),

(∇u%)(u, Y ) = (∇Y%)(u, u),

(5.6)

(see [12, 13]). As proved in [12], the second equation in (5.6) (and so in (5.5)) is
equivalent to requiring that the Ricci tensor % of (M, g) is Codazzi, that is, satisfies

(∇X%)(Y, Z)= (∇Y%)(X, Z),

for all tangent vectors X, Y, Z . Thus, we have proved the following characterization.

PROPOSITION 5.1. Let (η̃, G̃) be a g-natural contact metric structure on T1M of
Kaluza–Klein type. Then (T1 M, η̃, G̃) is H-contact if and only if:
(i) the Ricci tensor % of (M, g) is Codazzi; and
(ii) %(u, Y )= a/(2(a + c))

∑n−1
i=1 g(R(u, ei )u, R(u, ei )Y ), for any orthogonal

tangent vectors u and Y .

In particular, if (M, g) is Einstein, (T1 M, η̃, G̃) is H -contact if and only if

n−1∑
i=1

g(R(u, ei )u, R(u, ei )Y )= 0,

for any orthogonal tangent vectors u and Y .
The main result of [17] states that if (M, g) is an Einstein manifold, then the

standard contact metric structure on T1 M is H-contact if and only if (M, g) is
2-stein. Using Proposition 5.1, we now easily extend this result to the two-parameter
family of contact metric structures defined by metrics of Kaluza–Klein type.

THEOREM 5.2. If (M, g) is an Einstein manifold and G̃ is a Riemannian g-natural
metric on T1M of Kaluza–Klein type, then (T1 M, η̃, G̃) is H-contact if and only if
(M, g) is 2-stein.

We now prove a result related to Question 1.2. Specifically, we completely
characterize 2-stein spaces in terms of H -contact metric structures on T1M defined
by metrics of Kaluza–Klein type.

THEOREM 5.3. A Riemannian manifold (M, g) is 2-stein if and only if there exist
two Riemannian g-natural metrics of Kaluza–Klein type G̃ and G̃ ′ on T1M, satisfying
ac′ 6= a′c, such that the corresponding g-natural contact metric structures are
H-contact.

In this case, all g-natural contact metric structures on T1 M, determined by
g-natural metrics of Kaluza–Klein type, are H-contact.

PROOF. If (M, g) is 2-stein, then it is Einstein, and so its Ricci tensor is parallel (in
particular, is a Codazzi tensor). Moreover, condition (ii) in Proposition 5.1 is satisfied
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for any values of the parameters a, c. In fact, if u, Y are orthogonal tangent vectors,
then %(u, Y )= 0 because (M, g) is Einstein, and

∑n−1
i=1 g(R(u, ei )u, R(u, ei )Y )= 0

as proved in [17]. Hence, when (M, g) is 2-stein, by Proposition 5.1 all g-natural
contact metrics on T1M, determined by a g-natural metric G̃ with b = 0, are
H -contact.

Conversely, suppose now that there exist two g-natural H -contact metric structures
on T1M, determined by two Riemannian g-natural metrics G̃ and G̃ ′ with b = b′ = 0.
Fix two orthogonal tangent vectors u and Y . Applying condition (ii) of Proposition 5.1,
we obtain the system

a

(
2%(u, Y )−

n−1∑
i=1

g(R(u, ei )u, R(u, ei )Y )

)
+ 2c%(u, Y )= 0,

a′
(

2%(u, Y )−
n−1∑
i=1

g(R(u, ei )u, R(u, ei )Y )

)
+ 2c′%(u, Y )= 0,

which, since ac′ 6= a′c, necessarily implies that
%(u, Y ) = 0,

2%(u, Y ) =
n−1∑
i=1

g(R(u, ei )u, R(u, ei )Y ).
(5.7)

The first equation in (5.7) easily yields that (M, g) is Einstein. In fact, for any real
number θ , tangent vectors cos θu + sin θY,−sin θu + cos θY are orthogonal. Hence,

0= %(cos θu + sin θY,−sin θu + cos θY )= sin θ cos θ(%(u, u)− %(Y, Y )),

for any value of θ , that is, %(u, u)= %(Y, Y ) for all orthogonal vectors u, Y . Moreover,
%(u, Y )= 0. So (M, g) is Einstein. The second equation in (5.7) then reduces to

n−1∑
i=1

g(R(u, ei )u, R(u, ei )Y )= 0,

which, as shown in [17], implies that the Einstein manifold (M, g) is 2-stein. This
completes the proof. 2

We remark that Theorem 5.3 ensures the existence of a large class of nonisometric
H -contact metric structures on the unit tangent sphere bundle of any 2-stein space. For
the list of 2-stein symmetric spaces, we refer to [14, 17].
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