BINARY AND TERNARY TRANSFORMATIONS OF SEQUENCES

by D. BORWEIN and A. V. BOYD

(Received 29th June 1958; revised MS. received 26th September 1958)

1. Introduction

Agnew (1) has defined a binary transformation $T(\alpha)$, with α real, as one which takes the sequence $\{s_i\}, i=0, 1, ..., into the sequence <math>\{s_i(1, \alpha)\}$ where

$$s_i(1, \alpha) = \begin{cases} \alpha s_0 & \text{for } i = 0, \\ \alpha s_i + (1 - \alpha) s_{i-1} & \text{for } i = 1, 2, \dots \end{cases}$$

An r-fold application of $T(\alpha)$ yields the transformation $T^{r}(\alpha)$ which takes $\{s_i\}$ into $\{s_i(r, \alpha)\}$ where, in general, if $s_n(0, \alpha) = s_n$ and $s_n(r, \alpha) = 0$ for negative integral n then, for all n and $l \ge 0$,

$$s_n(l+1, \alpha) = \alpha s_n(l, \alpha) + (1-\alpha)s_{n-1}(l, \alpha).$$

It easily follows by induction that

$$s_n(l+r,\alpha) = \sum_{k=0}^r \binom{r}{k} (1-\alpha)^{r-k} \alpha^k s_{n-r+k}(l,\alpha), \qquad (i)$$

with the convention that $0^0 = 1$.

Putting $l=0, q=1/\alpha-1, (\alpha \neq 0)$, we obtain

$$s_n(r, \alpha) = (q+1)^{-r} \sum_{k=n-r}^n \binom{r}{n-k} q^{n-k} s_k$$
(ii)

and

$$s_n(n, \alpha) = (q+1)^{-n} \sum_{k=0}^n \binom{n}{k} q^{n-k} s_k.$$
 (iii)

If $s_n(r, \alpha)$ tends to a finite limit s as n tends to infinity then $\{s_i\}$ is said to be summable $T^r(\alpha)$ to s. If $s_n(n, \alpha)$ tends to a finite limit s as n tends to infinity then $\{s_i\}$ may be said to be summable $T^{\infty}(\alpha)$ to s. From (iii) and Hardy (2), equation (8.3.4), it follows that summability $T^{\infty}(\alpha)$ is equivalent to Euler summability (E, q). It should also be noted that summability $T^0(\alpha)$ is equivalent to convergence.

We shall use the notation $P \Rightarrow Q$ to mean that any sequence summable (P) to s is necessarily summable (Q) to s, and $P \Leftrightarrow Q$ to mean that both $P \Rightarrow Q$ and $Q \Rightarrow P$.

2. Relations between $T^{r}(\alpha)$ and $T^{\infty}(\alpha)$

Knopp (5) has shown that for $0 < \alpha \leq 1$ convergence to s implies summability $(E, 1/\alpha - 1)$ to s, i.e. that $T^{0}(\alpha) \Rightarrow T^{\infty}(\alpha)$; and from a general result on compounded matrices Agnew (1) has deduced that $T^{r}(\alpha) \Rightarrow T^{\infty}(\alpha)$ for $r \ge 0$, $0 < \alpha < 1$.

The case $\alpha = \frac{1}{2}$ of this result was familiar to Hutton (3) who first considered the $T^{r}(\frac{1}{2})$ process early in the nineteenth century without giving rigorous proofs. The following proof is more direct than Agnew's.

Theorem. For $r \ge 0$,

(i) T^r(α)⇒T^{r+1}(α) for any α;
(ii) T^r(α)⇒T[∞](α) if and only if 0<α≤1.

Proof. (i) is trivial.

(ii) Sufficiency. Let $q=1/\alpha-1 \ge 0$ and suppose that $\{s_n\}$ is summable $T^r(\alpha)$ to s. Applying the (E, q) process, which is known (see e.g. (2), p. 179) to be regular for $q \ge 0$, to the sequence $s_r(r, \alpha)$, $s_{r+1}(r, \alpha)$, $s_{r+2}(r, \alpha)$, ... which converges to s, we get that

$$(q+1)^{-n}\sum_{k=0}^{n} \binom{n}{k} q^{n-k}s_{k+r}(r,\alpha) \rightarrow s \text{ as } n \rightarrow \infty.$$

In virtue of identity (i) with r, l and n replaced by n, r and n+r respectively, it follows that $\{s_n\}$ is summable $T^{\infty}(\alpha)$ to s.

Necessity. If $s_n = (1-2/\alpha)^n$ then the $T^{\infty}(\alpha)$ transform of $\{s_n\}$ is $\{(-1)^n\}$; and for $\alpha > 1$, $\{s_n\}$ is summable $T^0(\alpha)$ and so summable $T^r(\alpha)$, but is not summable $T^{\infty}(\alpha)$.

If $\{s_n\}$ is the sequence 1, 0, 0, ... then its $T^{\infty}(\alpha)$ transform is $\{(1-\alpha)^n\}$. For every α , $\{s_n\}$ is summable $T^0(\alpha)$, and so summable $T^r(\alpha)$, to 0; but the sequence is summable $T^{\infty}(0)$ to 1 and is not summable $T^{\infty}(\alpha)$ for any $\alpha < 0$.

The condition $0 < \alpha \leq 1$ is therefore necessary.

3. Nörlund means, etc.

The following results will be used later :

Kubota's theorem. (6). If $a_0, a_1, \ldots, a_k(a_k \neq 0)$ are fixed real or complex numbers then, in order that x_n should tend to $l/(a_0+a_1+\ldots+a_k)$ whenever $a_0x_{n-k}+a_1x_{n-k+1}+\ldots+a_kx_n$ tends to l, it is necessary and sufficient that all roots of the equation $a_0+a_1x+\ldots+a_kx^k=0$ should lie within the unit circle.

Nörlund means. Suppose that $p_0 \neq 0$, $P_n = p_0 + p_1 + \ldots + p_n$ where p_n is real, and that $P_n \neq 0$ for $n \ge M$.

For
$$n \leq M$$
 let $t_n = \sum_{k=0}^n p_{n-k}s_k/P_M$
and for $n \geq M$ let $t_n = \sum_{k=0}^n p_{n-k}s_k/P_n$.

We shall say that sequence $\{s_n\}$ is summable by the Nörlund method (N, p_n) to s if t_n tends to s as n tends to infinity. In (2), Hardy imposes the further condition $p_n \ge 0$ (and takes M = 0), but this is too restrictive for our purposes.

176

BINARY AND TERNARY TRANSFORMATIONS OF SEQUENCES 177

It follows from formula (ii) that for $\alpha \neq 0$ the $T^r(\alpha)$ transformation is a Nörlund transformation with

$$M = r, \quad p_n = \begin{pmatrix} \binom{r}{n} p^n, \ p = 1/\alpha - 1, \text{ for } 0 \leq n \leq r, \\ 0 \text{ for } n > r, \\ P_n = (1+p)^r \text{ if } n \geq r, \\ \sum_{n=0}^{\infty} p_n x^n = (1+px)^r. \end{cases}$$

and

It is also known (2, p. 109) that the Cesàro mean (C, r) with $r \ge 0$ can be expressed as a Nörlund mean (N, p_n) with

$$\begin{split} M = 0, \, p_n = \binom{n+r-1}{r-1} &\sim \frac{n^{r-1}}{\Gamma(r)} \text{ if } r > 0, \\ p_0 = 1, \, p_n = 0 (n = 1, \, 2, \, \dots) \text{ if } r = 0. \end{split}$$

and

 $\label{eq:Formula} \text{For} \quad r \! \geqslant \! 0, \; \sum_{n=0}^{\infty} \; p_n x^n \! = \! (1\!-\!x)^{-r} \; \text{and} \; \boldsymbol{P}_n \! \sim \frac{n^r}{\Gamma(r\!+\!1)}.$

The following simple extensions of Hardy's theorems 16, 17, 19 and 21 can be established by using the methods of his proofs and (in the case of theorem 17) a result due to Jurkat and Peyerimhoff (4, lemma 1).

Theorem 16. The Nörlund method (N, p_n) is regular, i.e. the convergence of a sequence to a finite limit implies its summability (N, p_n) to the same limit, if and only if there is a constant H independent of n such that

$$\sum_{r=0}^{n} |p_r| < H |P_n| \text{ for } n \ge M$$

and $p_n/P_n \rightarrow 0$ as $n \rightarrow \infty$.

Theorem 17. Any two regular Nörlund methods (N, p_n) , (N, q_n) are consistent; i.e. if a sequence is summable (N, p_n) to s and (N, q_n) to t then s=t.

Theorem 19. If (N, p_n) and (N, q_n) are regular and $p(x) = \Sigma p_n x^n$, $q(x) = \Sigma q_n x^n$, $q(x)/p(x) = \Sigma k_n x^n$, then in order that summability (N, p_n) of a sequence should imply its summability (N, q_n) it is necessary and sufficient that

$$\sum_{r=0}^{n} |k_{n-r}P_{r}| < H |Q_{n}| \text{ for } n \ge M,$$

where H is independent of n, and that $k_n/Q_n \rightarrow 0$.

Theorem 21. A necessary condition that two regular Nörlund methods (N, p_n) and (N, q_n) be equivalent is that $\Sigma \mid k_n \mid$ and $\Sigma \mid l_n \mid$ be finite, where $\sum l_n x^n = p(x)/q(x)$.

Corollary. Regular Nörlund methods (N, p_n) and (N, q_n) cannot be equivalent if p(x) and q(x) are rational and one of them has a zero, inside or on the unit circle, which is not a zero of the other.

In the case of the $T^{r}(\alpha)$ process p(x) has a zero at $x = -1/p = \alpha/(\alpha-1)$ if $\alpha \neq 0$; while $T^{r}(0) \Leftrightarrow T^{r}(1)$, and for $T^{r}(1) p(x)$ has no zero. It follows from the corollary that if $\alpha \leq \frac{1}{2}$, $\beta \leq \frac{1}{2}$ and $\alpha \neq \beta$ then $T^{r}(\alpha)$ and $T^{s}(\beta)$ cannot be equivalent for any α , β , r, s.

4. Relation of $T'(\alpha)$ to the Cesàro and Abel processes

If (N, p_n) is taken as the (C, s) process with s > 0, and (N, q_n) as $T^r(\alpha)$, then

$$k(x) = (1 + px)^r (1 - x)^s$$
, $|k_0| P_n \sim n^s / \Gamma(s+1)$

and $Q_n = \alpha^{-r}$ for $n \ge r$.

By theorem 19 it follows that, for s > 0, summability (C, s) cannot imply summability $T^{r}(\alpha)$. In the reverse direction we have the following results:

 $\alpha > \frac{1}{2}$. By Kubota's theorem a sequence which is $T(\alpha)$ summable to s converges to s if and only if $|(\alpha-1)/\alpha| < 1$, i.e. if and only if $\alpha > \frac{1}{2}$. Since the $T^{r}(\alpha)$ transform is the $T(\alpha)$ transform of the $T^{r-1}(\alpha)$ transform it follows that $(C, 0) \Leftrightarrow T^{r}(\alpha)$ for $\alpha > \frac{1}{2}$.

 $\alpha = \frac{1}{2}$. Taking (N, p_n) and (N, q_n) as $T^r(\frac{1}{2})$ and (C, r) respectively we get $k(x) = (1-x^2)^{-r}$ so that

$$k_n = \begin{pmatrix} \binom{n/2+r-1}{r-1} & \text{when } n \text{ is even,} \\ 0 & \text{when } n \text{ is odd.} \end{pmatrix}$$

For large n, $k_n = O(n^{r-1})$, $k_n/Q_n = O(1/n) = o(1)$, and

 $\{ \mid k_0 \mid P_n + \ldots + \mid k_n \mid P_0 \} / Q_n = O(n^r / n^r) = O(1),$ so that $T^r(\frac{1}{2}) \Rightarrow (C, r).$

The result is "best possible" in the sense that, for any integer r there is a sequence which is summable $T^{r}(\frac{1}{2})$ but which is not summable $(C, r-\delta)$ for any $\delta > 0$. This is shown by considering the example $s_n = (-1)^n n^r / \log n$, the case r=1 of which is due to Silverman and Szasz (7). Since $s_n \neq o(n^{r-\delta}), \delta > 0$, the sequence $\{s_n\}$ is not summable $(C, r-\delta)$.

If, however, $s_n = (-1)^n f(n)$ where f(n) is a polynomial of degree *m* then $s_n(1, \frac{1}{2}) = (-1)^n \frac{1}{2} \{f(n) - f(n-1)\} = (-1)^n g(n)$, where g(n) is a polynomial of degree m-1. Hence

$$s_n(r, \frac{1}{2}) = O(n^{m-r}).$$

Putting $f(n) = n^{r+s}$ (s a non-negative integer) gives

$$\sum_{k=0}^{r} (-1)^k \binom{r}{k} (n-k)^{r+s} = O(n^s);$$

from which it easily follows, on using the identity k=n-(n-k), that

$$\sum_{k=0}^{r} (-1)^{k} \binom{r}{k} k^{s} (n-k)^{r} = O(n^{s}).$$

BINARY AND TERNARY TRANSFORMATIONS OF SEQUENCES 179

Further, for $n-2 \ge r \ge 1$, $r \ge k \ge 0$, we have

$$\frac{\log n}{\log (n-k)} = \left\{ 1 + \frac{\log (1-k/n)}{\log n} \right\}^{-1}$$
$$= \sum_{s=0}^{r} (-1)^{s} \left\{ \frac{\log(1-k/n)}{\log n} \right\}^{s} + O\{(n \log n)^{-r}\}$$
$$= 1 + A_{1} \frac{k}{n} + A_{2} \left(\frac{k}{n}\right)^{2} + \ldots + A_{r} \left(\frac{k}{n}\right)^{r} + O(n^{-r})$$

where the A's are bounded functions of n independent of k. It follows that if

$$I_n = (-1)^{n2^{-r}} \sum_{k=0}^r (-1)^k \binom{r}{k} (n-k)^r / \log (n-k)$$

then $I_n \log n = O(1)$, so that $I_n \to 0$. But I_n is $s_n(r, \frac{1}{2})$ for the sequence $\{(-1)^n n^r / \log n\}$; hence this sequence is summable $T^r(\frac{1}{2})$ to 0.

 $\alpha < \frac{1}{2}$. If $\alpha = 0$ then summability $T^{r}(\alpha)$ is trivially equivalent to convergence. Otherwise consider, as does Agnew (1), the sequence $\{s_n\}$ where $s_n = (1-1/\alpha)^n$. It is summable $T(\alpha)$ to 0 and so is also summable $T^{r}(\alpha)$ to 0, but $\sum s_n z^n$ has radius of convergence $|\alpha/(\alpha-1)| < 1$ so that $\{s_n\}$ is not Abel summable. Hence for $\alpha < \frac{1}{2}, \alpha \neq 0$, summability $T^{r}(\alpha)$ does not imply Abel summability.

5. Ternary transformations

We may define $T(\alpha, \beta)$ to be the ternary transformation which takes $\{s_n\}$ into the sequence $\{s'_n\}$ where

$$s'_0 = \alpha s_0, s'_1 = \alpha s_1 + \beta s_0$$
 and
 $s'_n = \alpha s_n + \beta s_{n-1} + (1 - \alpha - \beta) s_{n-2}$ $(n = 2, 3, ...).$

It follows immediately that $T(\alpha, 1-\alpha)$ is equivalent to $T(\alpha)$, and that the $T(\alpha, \beta)$ transformation is a Nörlund transformation (N, p_n) with $M=2, p_0=\alpha, p_1=\beta, p_2=1-\alpha-\beta, p_n=0 (n \ge 3), P_n=1 (n \ge 2), p(x)=\alpha+\beta x+(1-\alpha-\beta)x^2$.

6. Relation of $T(\alpha, \beta)$ to the (C, 0) and Abel processes

Let $f(x) = \alpha x^2 + \beta x + 1 - \alpha - \beta$, and divide the (α, β) plane into three disjoint sets as follows. Let S_1, S_2, S_2 be respectively the sets of points (α, β) for which

- (1) f(x) has no zeros in the region $|x| \ge 1$,
- (2) f(x) has at least one zero in the region |x| > 1,
- (3) f(x) has two zeros, one lying on the circle |x|=1 and the other in the region $|x| \leq 1$.

(a) It is trivially evident that $T(0, 0) \Leftrightarrow (C, 0)$. Hence, by Kubota's theorem, $T(\alpha, \beta) \Leftrightarrow (C, 0)$ if and only if $(\alpha, \beta) \epsilon S_1$.

(b) If $(\alpha, \beta) \in S_2$, there is a number s such that |s| > 1 and f(s) = 0. Hence $\Sigma s^n z^n$ has radius of convergence |1/s| < 1, and so the sequence $\{s^n\}$ is not Abel summable. On the other hand if $s_n = s^n$ then $s'_n = s^{n-2}f(s) = 0$ so that $\{s^n\}$ is summable $T(\alpha, \beta)$ to 0. Thus summability $T(\alpha, \beta)$ does not imply summability by Abel's method for $(\alpha, \beta) \in S_2$.

Before investigating the behaviour of $T(\alpha, \beta)$ for $(\alpha, \beta) \in S_3$, we delimit the sets S_1 , S_2 and S_3 . Since S_2 is the complement of $S_1 \cup S_3$ it is sufficient to consider only S_1 and S_3 .

The set S_1 . We show that S_1 consists of the point (0, 0), the part $\beta > \frac{1}{2}$ of the line $\alpha = 0$ and the region $2\alpha + \beta > 1$, $\beta < \frac{1}{2}$.

It is easily seen that $(0, \beta) \epsilon S_1$ if and only if $\beta = 0$ or $\beta > \frac{1}{2}$. It remains to prove that when $\alpha \neq 0$, $(\alpha, \beta) \epsilon S_1$ if and only if $2\alpha + \beta > 1$, $\beta < \frac{1}{2}$.

(i) Suppose that both zeros x_1 , x_2 of f(x) lie in |x| < 1. Since $f(-1) \neq 0$ and f(1)=1, $f(-1)=1-2\beta$ must be positive, for otherwise f(x) would have one real zero in the range -1 < x < 1 and another outside this range. Hence $\beta < \frac{1}{2}$.

Further, $-1 < x_1 x_2 = -1 + (1-\beta)/\alpha < 1$, so that $0 < (1-\beta)/\alpha < 2$. Since $\beta < \frac{1}{2}$, α must be positive and so $2\alpha + \beta > 1$.

(ii) Suppose $2\alpha + \beta > 1$, $\beta < \frac{1}{2}$. Then $\alpha > 0$ and, as above, $-1 < x_1 x_2 < 1$. Hence, if the zeros of f(x) are not real, both must lie in |x| < 1. If both zeros are real, one must lie in the range -1 < x < 1 and, since f(-1) > 0, f(1) > 0, so must the other.

The set S_3 .

(i) $(\alpha, \beta) \in S_3$ and f(x) has non-real zeros x_1 and x_2 if and only if

$$x_1x_2 = 1 = -1 + (1-\beta)/\alpha, 4\alpha > (\beta + 2\alpha)^2,$$

which is equivalent to $2\alpha + \beta = 1$, $\alpha > \frac{1}{4}$.

(ii) Since f(1)=1, $(\alpha, \beta) \in S_3$ and f(x) has real zeros if and only if

 $f(-1) = 1 - 2\beta = 0, |(1 - \beta)/\alpha - 1| \leq 1,$

which is equivalent to $\beta = \frac{1}{2}, \alpha \ge \frac{1}{4}$.

Hence S_3 consists of the part $\alpha > \frac{1}{4}$ of the line $2\alpha + \beta = 1$ and the part $\alpha \ge \frac{1}{4}$ of the line $\beta = \frac{1}{2}$.

7. Relation of $T(\alpha, \beta)$ to the Cesàro process in S_3

(i) The segment $\alpha \ge \frac{1}{4}$ of the line $\beta = \frac{1}{2}$. Here

$$\alpha + \beta x + (1 - \alpha - \beta)x^2 = \alpha(1 + x) \left(1 + \frac{1 - 2\alpha}{2\alpha}x\right).$$

In theorem 19 take (N, p_n) to be the $T(\alpha, \beta)$ process and (N, q_n) the Cesàro (C, s) process. Then

$$k(x) = 1 / \left\{ \alpha (1-x)^{s-1} (1-x^2) \left(1 - \frac{2\alpha - 1}{2\alpha} x \right) \right\}$$

= $\frac{1}{\alpha} \{ 1 + (s-1)x + \dots \} (1 + x^2 + x^4 + \dots) \left\{ 1 + \frac{2\alpha - 1}{2\alpha} x + \left(\frac{2\alpha - 1}{2\alpha} x \right)^2 + \dots \right\}.$
If $s = 1$, then
 $k_n = \frac{1}{\alpha} \left\{ \left(\frac{2\alpha - 1}{2\alpha} \right)^n + \left(\frac{2\alpha - 1}{2\alpha} \right)^{n-2} + \dots + \left(\frac{2\alpha - 1}{2\alpha} \right)^{1 \text{ or } 0} \right\}.$

180

Hence $k_n = O(1)$ if $\alpha > \frac{1}{4}$ and $|k_n| \sim 2n$ if $\alpha = \frac{1}{4}$. Also, $Q_n = n + 1$. All the conditions of theorem 19 are satisfied if $\alpha > \frac{1}{4}$. Hence for $\alpha > \frac{1}{4}, T(\alpha, \frac{1}{2}) \Rightarrow (C, 1)$, but there exists a sequence summable $T(\frac{1}{4}, \frac{1}{2})$ which is not summable (C, 1).

If s=2 and $\alpha = \frac{1}{4}$ then $k(x) = 4(1-x^2)^{-2}$ and the conditions of theorem 19 are easily seen to hold, so that $T(\frac{1}{4}, \frac{1}{2}) \Rightarrow (C, 2)$.

(ii) The segment $\alpha > \frac{1}{4}$ of the line $2\alpha + \beta = 1$.

With (N, p_n) and (N, q_n) as the $T(\alpha, \beta)$ and (C, s) processes respectively,

$$k(x) = 1 / \left\{ \alpha (1-x)^{s} \left(1 + \frac{1-2\alpha}{\alpha} x + x^{2} \right) \right\}$$

= $\frac{1}{\alpha} (1-x)^{-s} (1-\gamma x)^{-1} \left(1 - \frac{x}{\gamma} \right)^{-1}$
= $(1-x)^{-s} \sum_{n=0}^{\infty} (a\gamma^{n} + b\gamma^{-n}) x^{n}$

where $\gamma = \{2\alpha - 1 + i\sqrt{(4\alpha - 1)}\}/2\alpha$ and a, b are constants. If s = 1, then

$$k_n = \sum_{r=0}^n (a\gamma^r + b\gamma^{-r}) = O(1)$$

since $\gamma \neq 1$ or -1 and $|\gamma| = 1$. It follows that $T(\alpha, \beta) \Rightarrow (C, 1)$ when $\alpha > \frac{1}{4}$, $2\alpha + \beta = 1$.

REFERENCES

(1) R. P. Agnew, Inclusion relations among methods of summability, Arkiv for Matematik, 2, (1952) 361-374.

(2) G. H. Hardy, Divergent Series, Oxford, 1949.

(3) C. Hutton, Tracts Mathematical and Philosophical, London, 1812.

See also T. A. A. Broadbent : An early method for summation of series, *Mathematical Gazette*, **15** (1930), 5-11.

(4) W. Jurkat and A. Peyerimhoff, The consistency of Nörlund and Hausdorff methods, University of Cincinnatti Report No. 11 (1954).

(5) K. Knopp, Über das Eulersche Summierungsverfahren, Mathematische Zeitschrift, 15 (1922), 226-253.

(6) T. Kubota, Ein Satz über den Grenzwert, Tôhoku Mathematical Journal, 12 (1917), 222-224.

(7) L. L. Silverman and O. Szasz, On a class of Nörlund matrices, Annals of Mathematics, 45 (1944), 347-357.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF ST ANDREWS DEPARTMENT OF MATHEMATICS University of the Witswatersrand