ON BINOMIAL COEFFIGIENT RESIDUES

J. B. ROBERTS

The number of binomial coefficients $\binom{u}{v}, 0 \leqslant v \leqslant u<n$, which are congruent to $j, 0 \leqslant j \leqslant p-1$, modulo the prime number p is denoted by $\theta_{j}(n)$. In this paper we give systems of simultaneous linear difference equations with constant coefficients whose solutions would yield the quantities $\theta_{j}(n)$ explicitly. In this direction we compute $\theta_{j}(n)$ in all cases for $p=2$ and $\theta_{j}\left(p^{k}\right), k \geqslant 0$, in all cases for $p=3$ or 5 . The complete explicit determination of $\theta_{j}(n)$ for arbitrary n is quite tedious for $p>2$.

We also include various special results in the case $p=2$ and prove that every prime divides "most" binomial coefficients in the sense that

$$
\lim _{\rightarrow \infty} \theta(n) / \theta_{0}(n)=0
$$

where

$$
\theta(n)=\sum_{j=1}^{m-1} \theta_{j}(n) .
$$

1. Definitions. If c, a, s, k are constants satisfying $0 \leqslant a \leqslant c \leqslant p-1$, $1 \leqslant s \leqslant p^{k}, \mathrm{k}>0$, then the collection of all $\binom{u}{v}$ satisfying

$$
c p^{k} \leqslant u<c p^{k}+s, a p^{k} \leqslant v \leqslant u+(a-c) p^{k},
$$

will be denoted by $(c, s, a)_{k}$. When we write $(c, s, a)_{k_{i}}$ we will assume that c, a, s, k satisfy the specified conditions unless stated explicitly to the contrary. For instance if we write $(0, s, a)_{k}$ this implies $0 \leqslant a \leqslant p-1,1 \leqslant s \leqslant p^{k}$, $k>0$. Any collection $(c, s, a)_{k}$ will be called a k-triangle.

The k-triangle $(c, s, a)_{k}$ can be put into 1-1 correspondence with the k triangle $(0, s, 0)_{k}$ by the mapping

$$
\binom{u}{v} \leftrightarrow\binom{u-c p^{k}}{v-a p^{k}} .
$$

Hence any two k-triangles can be put into $1-1$ correspondence. Corresponding elements will be called homologous.

If K_{1} and K_{2} are two k-triangles and α is an integer such that $k_{1} \equiv \alpha k_{2}$ $(\bmod p)$ whenever $k_{1} \in K_{1}$ and $k_{2} \in K_{2}$ are homologous we will write $K_{1} \equiv$ $\alpha K_{2}(\bmod p)$.
2. A lemma of Lucas and applications. Our first lemma is a result of Lucas (1, p. 271). A simple proof may be found in Glaisher (2). We use p for a prime throughout.

Lemma 1. If in the scale of radix p,

$$
\begin{aligned}
& m=b_{0}+b_{1} p+\ldots+b_{k} p^{k} \\
& n=a_{0}+a_{1} p+\ldots+a_{k} p^{k}
\end{aligned}
$$

then

$$
\binom{n}{m} \equiv\binom{a_{0}}{b_{0}} \cdots\binom{a_{k}}{b_{k}}
$$

(The quantity $\binom{r}{s}=0$ when $s>r$.)
Before making use of this lemma we observe that by repeated use of the identity

$$
\binom{a}{b}+\binom{a}{b+1}=\binom{a+1}{b+1}
$$

and the almost obvious fact that

$$
\binom{p^{k}}{m} \equiv 0(\bmod p) \quad\left(1 \leqslant m \leqslant p^{k}-1, \quad k>0\right)
$$

we are able to prove
Lemma 2. If $n-p^{k}+1 \leqslant m<p^{k} \leqslant n<2 p^{k}-1, k>0$, then

$$
\binom{n}{m} \equiv 0
$$

$(\bmod p)$.
We come now to our first application of Lemma 1.
Lemma 3. If $0 \leqslant v \leqslant u, c p^{k} \leqslant u<(c+1) p^{k}, \quad 1 \leqslant c \leqslant p-1$ and if $\binom{u}{v}$ is in none of the k-triangles $\left(c, p^{k}, a\right)_{k}, 0 \leqslant a \leqslant c$, then

$$
\binom{u}{v} \equiv 0
$$

$(\bmod p)$.
Proof. Since $\binom{u}{v}$ is not in $\left(c, p^{k}, a\right)_{k}$ for each $a, 0 \leqslant a \leqslant c, v$ must satisfy for some $a, 0 \leqslant a \leqslant c-1$, the inequality

$$
u+1+(a-c) p^{k} \leqslant v \leqslant(a+1) p^{k}-1 .
$$

Since for each $a, 0 \leqslant a \leqslant c-1$, this inequality is impossible when $u=(c+1) p^{k}-1$ we can restrict attention to $u<(c+1) p^{k}-1$. Now

$$
\begin{aligned}
& u=a_{0}+a_{1} p+\ldots+a_{k-1} p^{k-1}+c p^{k} \\
& v=b_{0}+b_{1} p+\ldots+b_{k-1} p^{k-1}+a p^{k}
\end{aligned}
$$

and therefore by Lemma 1 ,

$$
\binom{u}{v} \equiv\binom{a_{0}}{b_{0}} \ldots\binom{a_{k-1}}{b_{k-1}}\binom{c}{a} \equiv\binom{u-(c-1) p^{k}}{v-a p^{k}} \quad(\bmod p)
$$

But since

$$
\begin{aligned}
\left(u-(c-1) p^{k}\right)-p^{k}+1 & =u+1-c p^{k} \leqslant v-a p^{k} \leqslant p^{k}-1 \\
& <p^{k} \leqslant u-(c-1) p^{k}<2 p^{k}-1
\end{aligned}
$$

we know by Lemma 3 that

$$
\binom{u-(c-1) p^{k}}{v-a p^{k}} \equiv 0 \quad(\bmod p)
$$

This completes the proof.
By this lemma we see that when $u \neq(c+1) p^{k}-1$ there is always a v, $0 \leqslant v \leqslant u$, such that $\binom{u}{v}$ is divisible by p. It is interesting to note that for each u of the form $(c+1) p^{k}-1,\binom{u}{v}$ is non-divisible by p for $0 \leqslant v \leqslant u$. Thus we state the
Corollary. No $\binom{u}{v}, 0 \leqslant v \leqslant u$, is divisible by p if and only if u is of the form $(c+1) p^{k}-1$ where $0 \leqslant c \leqslant p-1$.

Proof. The necessity is by the lemma. For the sufficiency we have

$$
\begin{gathered}
(c+1) p^{k}-1=(p-1)+(p-1) p+\ldots+(p-1) p^{k-1}+c p^{k} \\
v=b_{0}+b_{1} p+\ldots+b_{k-1} p^{k-1}+b_{k} p^{k}
\end{gathered}
$$

where $b_{i} \leqslant p-1,1 \leqslant i \leqslant k-1$ and $b_{k} \leqslant c$. Hence

$$
\binom{(c+1) p^{k}-1}{v} \equiv\binom{p-1}{b_{0}} \ldots\binom{p-1}{b_{k-1}}\binom{c}{b_{k}} \quad(\bmod p)
$$

by Lemma 1. But this right-hand side is not congruent to 0 modulo p. This completes the proof.

Another important application of Lemma 1 is the following
Lemma 4.

$$
(c, s, a)_{k} \equiv\binom{c}{a}(0, s, 0)_{k} \quad(\bmod \mathrm{p})
$$

Proof. Let $\binom{u}{v}$ be in $(c, s, a)_{k}$. Then $c p^{k} \leqslant u<c p^{k}+s, a p^{k} \leqslant v \leqslant u$ $+(a-c) p^{k}$ and we can write in radix p,

$$
\begin{aligned}
& u=a_{0}+a_{1} p+\ldots+a_{k-1} p^{k-1}+c p^{k} \\
& v=b_{0}+b_{1} p+\ldots+b_{k-1} p^{k-1}+a p^{k} .
\end{aligned}
$$

Hence by Lemma 1,

$$
\binom{u}{v} \equiv\binom{u-c p^{k}}{v-a p^{k}}\binom{c}{a} \quad(\bmod p)
$$

Since $\binom{u-c p^{k}}{v-a p^{k}}$ runs over $(0, s, 0)_{k}$ as $\binom{u}{v}$ runs over $(c, s, a)_{k}$: the proof is complete.

Corollary. The number of numbers in $(c, s, a)_{k}$ which are congruent to $j(\bmod p), 1 \leqslant j \leqslant p-1$, is

$$
\theta_{j_{a}}(s)
$$

where j_{a} is that number satisfying

$$
1 \leqslant j_{a} \leqslant p-1, j_{a}\binom{c}{a} \equiv j \quad(\bmod p)
$$

Proof. By the lemma a number in $(c, s, a)_{k}$ is congruent to j modulo p if and only if $\binom{c}{a}$ times its homologous element in $(0, s, 0)_{k}$ is congruent to j modulo p. Since

$$
j_{a}\binom{c}{a} \equiv j(\bmod \mathrm{p})
$$

the number of possibilities is the number of j_{a} in $(0, s, 0)_{k}$ and this is just

$$
\theta_{j_{n}}(s) .
$$

3. The main recursion relation. Utilizing Lemma 3 we see that for $0 \leqslant c \leqslant p-1,1 \leqslant s \leqslant p^{k}$ all of those $\binom{u}{v}, 0 \leqslant v \leqslant u, c p^{k} \leqslant u<c p^{k}+s$, which are not congruent to zero modulo p are in one of the $c+1 k$-triangles $(c, s, a)_{k}, 0 \leqslant a \leqslant c$. Therefore $\theta_{j}\left(c p^{k}+s\right)-\theta_{j}\left(c p^{k}\right)$ is just the number of elements congruent to j modulo p contained in these k-triangles. By Lemma 4 this number is

$$
\sum_{a=0}^{c} \theta_{j_{a}}(s)
$$

Defining $e_{q j}(c), 1 \leqslant q \leqslant p-1$, to be the number of $j_{a}, 0 \leqslant a \leqslant c$, which are equal to q, the above sum becomes

$$
\sum_{q=1}^{n-1} e_{q j}(c) \theta_{q}(s)
$$

But $e_{q j}(c)$ is just the number of solutions of the congruence

$$
\binom{c}{x}_{q \equiv j} \quad(\bmod p)
$$

which number is, by definition,

$$
\theta_{j \bar{q}}(c+1)-\theta_{j \bar{q}}(c)
$$

where \bar{q} is the reciprocal of q modulo p. Hence we have the following theorem setting forth our main recursion relation.

Theorem 1. If $0 \leqslant c \leqslant p-1,1 \leqslant s \leqslant p^{k}, k>0, q \bar{q} \equiv 1(\bmod p)$ then

$$
\theta_{j}\left(c p^{k}+s\right)=\theta_{j}\left(c p^{k}\right)+\sum_{q=1}^{p-1}\left(\theta_{j \bar{q}}(c+1)-\theta_{j \bar{q}}(c)\right) \theta_{q}(s) .
$$

Remembering the definition of $\theta(n)$ we have under the hypotheses of the theorem the following

Corollary 1. $\theta\left(c p^{k}+s\right)=\theta\left(c p^{k}\right)+(c+1) \theta(\mathrm{s})$.
Proof. For each $q, 1 \leqslant q \leqslant p-1$, the residues modulo p of the numbers $\bar{q}, 2 \bar{q}, \ldots,(p-1) \bar{q}$ are the numbers $1,2, \ldots, p-1$ in some order. Using this fact and the theorem we obtain

$$
\begin{aligned}
\theta\left(c p^{k}+s\right) & =\sum_{j=1}^{p-1} \theta_{j}\left(c p^{k}+s\right) \\
& =\sum_{j=1}^{p-1} \theta_{j}\left(c p^{k}\right)+\sum_{q=1}^{p-1} \sum_{j=1}^{p-1}\left(\theta_{j \bar{q}}(c+1)-\theta_{j \bar{q}}(a)\right) \theta_{q}(s) \\
& =\theta\left(c p^{k}\right)+(\theta(c+1)-\theta(c)) \theta(s) .
\end{aligned}
$$

Since $\theta(c+1)-\theta(c)=c+1$, because c is smaller than p, the proof is complete.

Corollary 2. If $0 \leqslant c \leqslant p, k \geqslant 0$ then
(a)

$$
\theta_{j}\left(c p^{k}\right)=\sum_{\psi=1}^{p-1} \theta_{j \bar{q}}(c) \theta_{q}\left(p^{k}\right)
$$

$$
\begin{equation*}
\theta\left(c p^{k}\right)=\frac{1}{2} c(c+1) \theta\left(p^{k}\right) . \tag{b}
\end{equation*}
$$

Proof. (a) This is true for $c=0$ or $k=0$ so we suppose $c>0, k>0$. Now taking $s=p^{k}$ the theorem gives, for $1 \leqslant c \leqslant p$,

$$
\begin{aligned}
\theta_{j}\left(c p^{k}\right) & =\sum_{i=1}^{c}\left(\theta_{j}\left(i p^{k}\right)-\theta_{j}\left((i-1) p^{k}\right)\right) \\
& =\sum_{i=1}^{c} \sum_{q=1}^{p-1}\left(\theta_{j \bar{q}}(i)-\theta_{j \bar{q}}(i-1)\right) \theta_{q}\left(p^{k}\right) \\
& =\sum_{q=1}^{p-1} \sum_{i=1}^{c}\left(\theta_{j \bar{q}}(i)-\theta_{j \bar{q}}(i-1)\right) \theta_{q}\left(p^{k}\right) \\
& =\sum_{q=1}^{p-1} \theta_{j \bar{q}}(c) \theta_{q}\left(p^{k}\right) .
\end{aligned}
$$

(b)

$$
\begin{aligned}
\theta\left(c p^{k}\right) & =\sum_{j=1}^{p-1} \theta_{j}\left(c p^{k}\right) \\
& =\sum_{q=1}^{p-1}\left(\sum_{j=1}^{p-1} \theta_{j \bar{q}}(c)\right) \theta_{q}\left(p^{k}\right) \\
& =\theta(c) \theta\left(p^{k}\right)=\frac{1}{2} c(c+1) \theta\left(p^{k}\right) .
\end{aligned}
$$

Corollary 3. (a) If $k>0,1 \leqslant j \leqslant p-1$ then

$$
\theta_{j}\left(p^{k}\right)=\sum_{q=1}^{p-1} \theta_{j \bar{q}}(p) \theta_{q}\left(p^{k-1}\right) ;
$$

(b) If $k \geqslant 0$ then

$$
\theta\left(p^{k}\right)=\left(\frac{1}{2} p(p+1)\right)^{k} .
$$

Proof. (a) Taking $c=p$ in Cor. 2 (a) gives

$$
\theta_{j}\left(p^{k+1}\right)=\sum_{q=1}^{p-1} \theta_{j \bar{q}}(p) \theta_{q}\left(p^{k}\right), k \geqslant 0
$$

and this is equivalent with (a).
(b) This is obvious for $k=0$. If true up to some $k \geqslant 0$ then by Cor. 2(b),

$$
\theta\left(p^{k+1}\right)=\frac{1}{2} p(p+1) \theta\left(p^{k}\right)=\left(\frac{1}{2} p(p+1)\right)^{k+1}
$$

This completes the proof.
By repeated application of these corollaries we are able to give an explicit expression for $\theta(n)$. This we do in the next corollary.

Corollary 4. If $n=a_{0}+a_{1} p+\ldots+a_{k} p^{k}, 0 \leqslant a_{i} \leqslant p-1$ then

$$
\theta(n)=\frac{1}{2} \sum_{i=0}^{k} a_{i}\left(\left(a_{i}+1\right) \ldots\left(a_{k}+1\right)\right)\left(\frac{1}{2} p(p+1)\right)^{i}
$$

Theorem 1 and its corollaries determine the $\theta_{j}(n), 1 \leqslant j \leqslant n$, as solutions of a system of linear difference equations with constant coefficients. The quantity

$$
\theta_{0}(n)=\frac{1}{2} n(n+1)-\theta(n) .
$$

In general the calculations needed to compute explicitly the $\theta_{j}(n)$ are prohibitive. However we perform some calculations in this direction in the next section.
4. $\theta_{j}\left(p^{k}\right)$ for $p=3,5$. The simplest case to deal with is $p=2$. In this case we can compute $\theta_{j}(n)$ for arbitrary n. The details will be given in the next section where some other aspects of our results for $p=2$ are discussed.

When $p=3$, since $(j \bar{q}) q \equiv j(\bmod 3)$, we have

$$
1 \overline{1} \equiv 2 \overline{2} \equiv 1,1 \overline{2} \equiv 2 \overline{1} \equiv 2
$$

By direct examination we find $\theta_{1}(3)=5, \theta_{2}(3)=1$. We now obtain from Cor. 3(a) of Theorem 1 the following pair of simultaneous difference equations

$$
\begin{aligned}
& \theta_{1}\left(3^{k}\right)-5 \theta_{1}\left(3^{k-1}\right)-\theta_{2}\left(3^{k-1}\right)=0 \\
& \theta_{2}\left(3^{k}\right)-\theta_{1}\left(3^{k-1}\right)-5 \theta_{2}\left(3^{k-1}\right)=0
\end{aligned}
$$

Solving these equations using the empirical initial conditions

$$
\theta_{1}(1)=\theta_{2}(3)=1, \theta_{1}(3)=5, \theta_{2}(1)=0
$$

we obtain

$$
\theta_{1}\left(3^{k}\right)=\frac{1}{2}\left(6^{k}+4^{k}\right), \theta_{2}\left(3^{k}\right)=\frac{1}{2}\left(6^{k}-4^{k}\right) .
$$

From these it follows that

$$
\theta_{0}\left(3^{k}\right)=\frac{1}{2} 3^{k}\left(3^{k}+1\right)-6^{k}
$$

In a similar way with $p=5$ we find a system of four linear difference equations in four unknowns. Using the suitable initial conditions we obtain:

$$
\begin{aligned}
& \theta_{1}\left(5^{k}\right)=\frac{1}{4}\left(15^{k}+9^{k}+(8-i)^{k}+(8+i)^{k}\right), \\
& \theta_{2}\left(5^{k}\right)=\frac{1}{4}\left(15^{k}-9^{k}-i(8-i)^{k}+i(8+i)^{k}\right), \\
& \theta_{3}\left(5^{k}\right)=\frac{1}{4}\left(15^{k}-9^{k}+i(8-i)^{k}-i(8+i)^{k}\right), \\
& \theta_{4}\left(5^{k}\right)=\frac{1}{4}\left(15^{k}+9^{k}-(8-i)^{k}-(8+i)^{k}\right)
\end{aligned}
$$

From these it follows that

$$
\theta_{0}\left(5^{k}\right)=\frac{1}{2} 5^{k}\left(5^{k}+1\right)-15^{k} .
$$

5. The case $p=2$. In the case $p=2$, Cor. 4 of Theorem 1 reads as follows:
(1) If $n=2^{\alpha_{1}}+\ldots+2^{\alpha_{r}}, \alpha_{1}>\ldots>\alpha_{r}$, then

$$
\theta(n)=\sum_{i=1}^{r} 2^{i-1} \cdot 3^{\alpha_{i}}
$$

Since every n is of one of the three forms:
(i) $2^{\alpha_{1}}+\ldots+2^{\alpha_{r}}$ with $\alpha_{1}>\ldots>\alpha_{r}>0$;
(ii) $2^{\alpha_{1}}+\ldots+2^{\alpha_{r}}+2^{s}+2^{s-1}+\ldots+2+1$ with $\alpha_{1}>\ldots>\alpha_{r}>s+1$;
(iii) $2^{s}+2^{s-1}+\ldots+2+1$
we can use (1) to compute $\theta(n+1)-\theta(n)$ finding its values in the three cases to be $2^{r}, 2^{s+r}, 2^{s+1}$ respectively. Hence we have the result:
(2) the number of odd $\binom{n}{m}$ for fixed n and $0 \leqslant m \leqslant n$ is equal to 2^{s} where s is the number of non-zero digits in the binary expansion of n.

This result was proved by Glaisher (2) from our Lemma 1. From this we have the special result, which can be proved in a very nice way directly (3, p. 15 problem 12 and the solution pp. 97-98), that the nth row of Pascal's triangle consists of odd numbers exclusively if and only if n is a power of 2. This special case is also an immediate consequence of the corollary to Lemma 3.

If we let $\theta_{n}=\theta_{1}(n+1)-\theta_{1}(n)$ and $E_{n}=\theta_{0}(n+1)-\theta_{0}(n)$ we have the result:
(3) $E_{n}<\theta_{n}$ if and only if $n+1<2^{1+s}$ where s is the number of non-zero digits in the binary expansion of n. In all other cases $E_{n}>\theta_{n}$.

The first statement in (3) follows from (2) since $E_{n}-\theta_{n}=n+1-2^{n}$. In order to prove the second part of (3) suppose the contrary. That is, suppose $E_{n}=\theta_{n}$ for some n. Then by (2), $n+1=2^{1+s}$ or $n=2^{s}+\ldots+1$. But then the number of non-zero digits in the binary expansion of n is $s+1$. This is a contradiction and therafore $E_{n} \neq \theta_{n}$ for all n.

We include one other result whose proof we omit.
(4) $\theta_{1}(n)>\theta_{0}(n)$ if and only if $1 \leqslant n \leqslant 18$.
6. "Most binomial coefficients are divisible by a given prime". In this section we prove the

Theorem 2.

$$
\lim _{n \rightarrow \infty} \theta(n) / \theta_{0}(n)=0
$$

Proof. Clearly $\theta(n)$ and $\theta_{0}(n)$ are non-decreasing functions of n. Hence if $p^{k} \leqslant n<p^{k+1}$ then, using Cor. 3(b) of Theorem 1,

$$
\begin{aligned}
& \theta(n) / \theta_{0}(n) \leqslant \theta\left(p^{k+1}\right) / \theta_{0}\left(p^{k}\right) \\
& \quad=\binom{p+1}{2}^{k+1}\left\{\binom{p^{k}+1}{2}-\binom{p+1}{2}^{k}\right\}^{-1}=p(p+1)\left\{\left(\frac{2 p}{p+1}\right)^{k}+\left(\frac{2}{p+1}\right)^{k}-2\right\}^{-1},
\end{aligned}
$$

and this tends to 0 as $n \rightarrow \infty$.

References

1. L. E. Dickson, History of the Theory of Numbers, vol. 1 (Chelsea, New York, 1952).
2. J. W. L. Glaisher, On the residue of a binomial theorem coeffcient with respect to a prime modulus, Quart. J. Math., 30 (1899), 150-156.
3. 4. M. Vinogradoff, An Introduction to the Theory of Numbers, (London and New York, Pergamon Press, 1955).

Wesleyan University, Middletown, Conn.

and
Reed College
Portland, Oregon.

