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Abstract

This note describes a simple numerical method for solution of the lifting surface
integral equation of aerodynamics, and provides benchmark computations of up to
7 figure accuracy for flat rectangular wings of arbitrary aspect ratio. The nature
of the large aspect ratio limit is also investigated numerically and asymptotically.
This enables determination of the limiting behaviour near the wing tips, which is
compared to the predictions of lifting line theory. Generalisations to non-rectangular
wings are discussed.

1. Introduction

The lifting surface equation is

f [ yE MW — £,y — )dedn = —4nUf(x,y)  (L1)
B

where
WX,Y)=Y"2(1+ X/R) (1.2)

with R = +/X? + Y2. This equation is derived in standard aerodynamic texts,
e.g., Ashley and Landahl ([1], page 132), Thwaites ([10], page 301).

Equation (1.1) is an integral equation over a finite region B of the (x, y)
plane, namely the projection on that plane of the planform of a thin wing. The
unknown y (x, y) of the integral equation is the “bound vorticity”, which is equal
to the jump in the streamwise component of velocity across the wing, and hence
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is proportional to the jump in pressure across the wing. The quantity y (x, y) is
therefore an output of prime aerodynamic interest, and for example the net lift
is proportional to its integral over B, the lift coefficient being

2
CL = —ﬁ//;y(x,y)dxdy (13)

where we have also used the symbol B for the actual area of the planform.

The right-hand side of (1.1) is in general a given function of x and y on B,
proportional to the forward speed U of the wing and to the local angle of attack
— f+(x, y) of the mean surface z = f(x, y) of the wing. In this paper we shall
generally assume a flat plate at uniform angle of attack «; thus f, = —a, and
the whole right-hand side of (1.1) is a constant over all of B.

The kernel W (X, Y) of the integral equation is a unit horseshoe vortex. It
is the value on z = O of a singular solution of the three-dimensional Laplace
equation. There is a strong (formally non-integrable) singularity at Y = 0 (i.e.,
atn = y)forall X > 0, i.e,, x > &, which represents physically the vortex
sheet trailing aft of the wing. Formally we need a Hadamard interpretation of
the divergent integral, but this is by-passable whenever we can write down a
formal anti-derivative.

And indeed we can, several times, noting that

W = Kxxy (1.4)
where

K(X,Y)=Xlog(Y + R) + (1/2)Ylog(X + R) — XY " (X + R)/2 (1.5)

with
Ky=log/ + R)—Y ' (X +R)+1 (1.6)
Kyx =-X""Y'X+R+Xx! (1.7)

and
Kyy =Y 2(X +R). (1.8)

There is no unique solution to (1.1), and its general solution depends on
one arbitrary function of y. To render the solution unique, we must apply a
subsidiary condition at each value of y. This requires us to specify the boundary
curve of B in several segments, including leading edges, tips, and trailing edges.
Although there are various complicated possibilities for non-convex planforms,
we shall here assume a simple convex B as in Figure 1, bounded on the left by
a single leading edge curve x = x,.(y), 0 < y < s and on the right by a single
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FIGURE 1. A general planform B.

trailing edge curve x = xr(y),0 < y < s, where s is the span of the wing.
The Kutta condition then states that the bound vorticity vanishes on the trailing
edge, i.e.,

yr(y),y) =0, O0<y<s. (1.9)

Note that there is no necessity to have x; = xr ateithertipy =0ory =s. If
the leading and trailing edges, uniquely defined for convex B, do not meet, there
must be a tip portion of the boundary of B, where y = O for x,(0) < x < x7(0),
ory = s for x,(s) < x < xr(s). These tips consist of straight ends parallel to
the stream direction, and are not often present on actual wings, which (for good
aerodynamic reasons) tend to have rounded ends, where the leading and trailing
edges meet at a point. However, they are essentially present and of non-zero
length ¢ for the idealised rectangular ¢ x s planforms to be used as an example
here, which have x; = 0 and x; = ¢ (for all y between 0 and s), where c is
the chord. In principle, such a finite-length tip segment parallel to the stream
direction need be neither leading or trailing; however, we shall see that it is

https://doi.org/10.1017/50334270000009097 Published online by Cambridge University Press


https://doi.org/10.1017/S0334270000009097

130 E. O. Tuck [4]

effectively a trailing edge for the rectangular wing, since (1.9) happens to be
satisfied on it.

The lifting surface equation (1.1) cannot be solved analytically for arbitrary
B. However, an explicit solution has been obtained for elliptic B by Hauptmann
and Miloh [5]. When B is a circle, this solution for y (x, y) is expressed in the
form of a series of associated Legendre functions, and the lift coefficient (1.3)
is found to be

Cr/a =32/(8 + m?) = 1.7907503. (1.10)

Otherwise, we must resort to numerical methods. The heroic attempts of the
aerodynamicists to solve this equation numerically date back to well before the
computer age. This history is well surveyed in Thwaites [10]. A somewhat
more recent survey is given by Wang [14], and a typical recent paper is that by
Frink [3]). Examples of applications where numerical solution of (1.1) is used
are in Kerwin and Lee [6] and Xii [15].

The last references use what is perhaps the most successful numerical method
for solution of the lifting surface equation, namely the so-called “vortex-lattice”
method. In that method, the wing is represented by a collection of isolated
point horseshoe vortices. In effect, the smooth bound vorticity function y (x, y)
in (1.1) is replaced by a sum of Dirac delta functions. The location of these
delta functions and the choice of collocation points for satisfaction of (1.1) is of
crucial importance for the success of this method.

In the following, we describe an alternative numerical method which provides
(in principle) a somewhat smoother and less sensitive numerical method, by
representing the vorticity distribution by a step function rather than a delta
function. Even-smoother approximations to y(x, y) could be also be used.
However, even the vortex lattice method is capable of yielding results of high
accuracy, and in particular (J.E. Kerwin, private communication) confirms the
7-figure accurate computations of the lift coefficient of the rectangular wing to
be presented below, with a comparable computational effort.

2. Numerical method

Before discretisation, it is convenient to integrate (1.1) once with respect to
x, obtaining

f / y(E MKy (x — &, y— ndedn = ~4nUf(x,y) + CG)  (2.1)
B
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for some arbitrary function of integration C(y). This function C(y) must
eventually be determined by use of the Kutta condition (1.9), but we can postpone
that determination, temporarily assuming that the right-hand side of (2.1) is
known. Then (2.1) is an integral equation with a kernel Kyy given by (1.8), and
has a unique solution that is straightforward to find by elementary numerical
methods.

Namely, suppose we discretise B into a finite number N of rectangular panels
B;. On each panel, we assume that the bound vorticity is a constant ;. This
step function approximation is the only approximation that has to be made;
everything else is done exactly.

Thus the left hand side of (2.1) becomes

3 3°K
i d&d 2.2
;y]//z; T @2

and the integral in (2.2) can be evaluated explicitly for rectangular B;, in terms
of values of the kernel K given by (1.5) at the four comners of B;. If we then
force (2.1) to hold at some point (x;, y;) € B, inside the i-th panel, we obtain a
system of N linear algebraic equations in N unknowns, of the form

N
> Agy=b 2.3)
ji=1

where b; is the value of the right-hand side of (2.1) at (x;, y;) and

Ay =K =&,y =)+ K =&,y —n7)
KO =&, =) =K =& =0, 24

Here (¢, n*) is the top right corner of B;, (£}, ;™) the bottom right corner,
etc.

In principle, all we have to do is to invert the matrix [A;;] to solve the problem,
and indeed this can be made into a satisfactory numerical method, in spite of
the fact that the function C(y) is still unknown, and hence the right hand side
vector b; is (in part) unknown. Suppose there are n < N such unknown values
of C(y). Then we must solve (2.3) n 4+ 1 times, with n artificial right hand
sides. The required final solution is a linear combination with n coefficients,
that are found at the last step by forcing satisfaction of the Kutta condition n
times. This method has been used with success on equivalent one-dimensional
airfoil equations (Tuck [11, 12]), where n = 1, since there is no y-dependence.
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FIGURE 2. Panelisation for rectangular B.

A somewhat more efficient method when n > 1, as is necessarily the case for
the present two-dimensional integral equation, is to build the satisfaction of the
Kutta condition into the solution process at an earlier stage. A relatively crude
satisfaction of (1.9) is achieved by setting y; = 0 on n panels adjacent to the
trailing edge. Then, having dispensed with these n unknowns, we replace them
by n values of the unknown function C(y), re-defining y; = C(y;) for those
panels. This idea was used by Oertel [6] for a hydrodynamic planing problem

A slightly more accurate method of satisfaction of (1.9) builds in the expected
“square root” rate at which the bound vorticity tends to zero as we approach the
trailing edge, and is described later, but the resulting modification is a minor
one. Essentially, the present numerical method is as described above, and can
be used for any planform that can be satisfactorily discretised into rectangular
panels. Since a planform that is itself a rectangle is clearly in that category, let
us first describe the detail of the method for that case.

3. Discretisation of rectangular planforms

We divide the rectangle into N = m x n panels, as in Figure 2. That is,
suppose x = X, fork =0, 1,2, ..., m is a discretisation of the chord length
x=c,withXg=0,X,=c,andy =Y, forl =0,1,...,nis adiscretisation
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of the span s, with ¥y = 0, ¥,, = s. If the pair of integers (k, /) defines the panel
that is the k-th from the leading edge and the /-th from the port wingtip, this
must be the j-th panel over all, where j = k + (I — 1)m. Thus the coordinates
of the corners of the j-th panel, needed for evaluation of the matrix elements
A;; by (2.4), are given by

=T =X, & ==X (3.1)

and
ntr=nt=Y, 0T =n"=Y.. (3.2)

The collocation point (x;, y;) is similarly defined in terms of values x = X, of
x lying in the k-th chordwise segment, and values y = Y, of y lying in the /-th
spanwise segment.

In principle, any mesh and any set of collocation points will work, including
the obvious choices of uniform meshes, and of mid-points as collocation points.
But Chebyshev meshes and collocation points work better. Namely, we set

X, = %[1 — cos(kr/m)], (3.3)
— 1
X, = 5[1 = cos((k — )m/m)), (3.4)
Y, = %[1 — cos(in/n)], (3.5)
— 1
Y, = 2[1 = cos(( — ~)r/m)]. (3.6)
2 2
This puts fine meshes near the borders of the planform, at exactly the rate they
are needed.
Now the simplest method, as discussed in the previous section, for satisfaction
of the Kutta condition is simply toset y; =0 for j =Im,l =1,2,...,n. Then

we have no further use for A;; when j = Im. So we now re-define y; = C )
for those j, and transfer these new unknowns to the left of (2.1). The net

effect is that when j = Im, there are replacement matrix elements A;; = —1 if
i=k+(—-1m,k=1,2,...,m,(.e. if the collocation point lies on the /-th
chordwise strip), and A;; = 0 otherwise. The right-hand side vector b; is now
simply

b =—4nUf (x;, y), (3.7

and the solution is completed by solution of the system (2.3), using any con-
venient matrix inversion package.
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This method works well enough, but can be improved by noting that when
the bound vorticity tends to zero at the trailing edge, as required by the Kutta
condition, it does so like the square root of distance from that edge. Hence,
instead of forcing y; = 0 when j = Im, we can extrapolate y; from y;_, in such
a way as to model vanishing of the vorticity at the trailing edge itself, rather
than (less accurately) at a collocation point inside a panel adjacent to that edge.

When we are using the Chebyshev chordwise collocation points (3.4), it is
particularly easy to accomplish this, since the local effect is precisely such
as to make y tend to zero linearly with a stretched coordinate proportional to
m—k+1/2. Since this quantity takes the value 1/2 at the collocation point of the
m-th segment, and 3/2 at the corresponding point of the (m — 1)-st segment, we
must have y; = y;_,/3 when j = Im. This correction can then be implemented
very easily; instead of simply discarding the original matrix element A;; when
J = Im, we add one-third of its value to A; ;_;, and then discard it, replacing it
as before by either —1 or 0.

4. Computational experience

An important measure of the efficiency of this sort of program is the rate at
which the final answer, in this case the lift coefficient defined by (1.3) (evaluated
by summation of the computed vorticity y; times the area of its panel B;),
converges to a constant limiting value as the number N of panels is increased.
For example, a uniform grid with collocation at mid-points and the simplest
Kutta procedure gives only an O(N~"/2) rate. Actually, this convergence rate
is O(m~1)+O(n™"), when both m and n are large, with N = mn, and it is
preferable to consider the separate influences of the chordwise (m) and spanwise
(n) discretisations.

Moving to a Chebyshev grid (3.3) in the chordwise direction gives a consid-
erable improvement in the rate of convergence with respect to m, which is now
O(m™?2), even if collocation still takes place at actual mid-points of segments,
and this rate does not improve further if collocation takes place at Chebyshev
“mid-points” (3.4). However, somewhat surprisingly, the reverse is true for
spanwise discretisation. There is no improvement in the rate of convergence
with respect to n by moving to a Chebyshev discretisation (3.5), so long as col-
location still takes place at actual mid-points of segments. However, a dramatic
improvement is achieved when collocation then takes place at Chebyshev points
(3.6). This improvement seems to make the convergence occur even faster than
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FIGURE 3. Convergence rate with number n of spanwise segments.

an inverse square rate, up to a rate close to O(n=?).

The final improvement in convergence rate is obtained by using higher ac-
curacy satisfaction of the Kutta condition, as described above. Note that when
using this technique, one must remember to include a contribution to the lift
coefficient from the trailing segments, corresponding to a vorticity equal to one
third of that on the next upstream segment. Obviously this change has a greater
effect on the chordwise discretisation (3.3), (3.4) than the spanwise discretisa-
tion (3.5), (3.6), though it does make the latter appear to produce even closer to
an O(n~3) rate. The effect on the chordwise discretisation is to increase the rate
to slightly better than O (m~3%).

Figures 3 and 4 (for a flat square wing) illustrate the accuracy of the final
method. The horizontal axis of Figure 3 is proportional to the inverse cube
of n, and the results at fixed m fall very close to straight lines. Similarly, the
horizontal axis of Figure 4 is proportional to the inverse 3.5-th power of m, and
again results at fixed n are close to straight lines.

The final accuracy is well represented by these figures, which suggest the
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FIGURE 4. Convergence rate with number m of chordwise segments.

formula
C./a =1.460227 + 0.00022(10/m)3'5 — 0.00007(10/}1)3. “.1)

We thus predict that the correct lift coefficient slope for the square wing is
C,/a = 1.460227, with confidence about all 7 figures (6 decimal places). A
typical actual computation with 400 panels, namely at (m, n) = (20, 20), gives
C./a = 1.460238. To a certain extent, the nearly 6-figure accuracy of this
computed example is a fluke, since (4.1) indicates that there are compensating
errors from the chordwise and spanwise discretisation. Finite m over-predicts
the lift, whereas finite » underpredicts it, and it is always possible to adjust m
and n (e.g., (m, n) = (15, 10) or (25, 20)) so that the lift is apparently computed
exactly, while other output measures still have non-zero errors. However, at least
6-figure (5 decimal place) accuracy (on every criterion) is always obtainable by
extrapolation from about 400 panels.

Even a more modest 100-panel computation with (m, n) = (10, 10) gives the
nearly 5-figure accurate result 1.460368. Extrapolation from coarser (10, 8) and
(8, 10) computations then gives the nearly 6-figure accurate estimate 1.460217.
Again, these results are perhaps unreasonably good, due to cancellation. One
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sfc| Cola

0.5 | 0.77352
1 | 1.46023
2 | 2.47446
4 | 3.61205
8 | 4.58606
10 | 4.83848
15 | 5.21907
20 | 5.43349

TABLE 1. Lift coefficient slope for various aspect ratios.

way to estimate the true expected error with any (m, n) grid (as if cancellation
had not occurred) is to add the separate extrapolation terms in (4.1), ignoring
their sign. For example, with (m,n) = (10, 10), this suggests an inherent
error of the order of about twice the actual computed error, still about 4-figure
accuracy.

In practice, only half of the above panels were used, by exploiting span-wise
symmetry. This cuts the matrix inversion time, though not the matrix set-up time,
which tends to dominate the present program. A double precision FORTRAN
version of this program determined the above (m, n) = (20, 20) result in about
12 seconds on a Sun SPARC IPX workstation. Only 4 of the 12 seconds were
used for inversion of the 200 x 200 matrix. Results with (m, n) = (10, 10) take
less than a second to compute.

There is some loss of arithmetic precision, e.g., due to the double differencing
involved with setting up the matrix in (2.4). For example, comparing the
same computation in single and double precision arithmetic indicates that the
former can yield at best S5-figure accuracy, so double precision is mandatory
(and satisfactory) if 6-7 figures are required. This extreme accuracy is not in
fact usually required for the engineering applications of interest, and about 4-
figure results can be achieved in single precision easily, with a grid as coarse as
(10, 10), and even without extrapolation.

Table 1 shows results of 6-figure accuracy for the lift coefficient slope C, /o
for rectangular planforms of varying span/chord (aspect) ratio s/c, and these
results are also graphed in Figure 5. Aside from serving as a benchmark for
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FIGURE 5. Lift coefficient slope versus aspect ratio for rectangular wings.

other solution procedures (e.g., showing that the result C, /o = 2.4732 of Frink
[3] ats/c = 2 is of 3-figure accuracy), the present high-accuracy computations
are useful for detailed investigation of special features, such as behaviour in the
wing-tip domain, as in the following section.

5. Large aspect ratio rectangular wings

The lift coefficient slope tends to the two-dimensional value 27 as the aspect
ratio tends to infinity. But at what rate?

Asymptotic analysis of a lifting-line nature (Koerniawan [7]; see also Guer-
mond [4]) suggests that

rc12
C,‘/oz=27t—zr£[logi +q]+0( E] logi) S.D
s c s c

for some constant g. The empirical formula

2
Cja =27 —ns [log Iy 2.5620] +1.404 [- [log 4 3.645] (5.2)
) C S J C

(which also estimates the error term in (5.1)) fits our numerical results as in
Table 1 to within all 6 figures of accuracy for s/c > 15 and to within 5 figure
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FIGURE 6. Circulation as a function of spanwise co-ordinate.

accuracy for s/c > 8. Hence we confirm (5.1), and predict ¢ = 2.5620. Note
that it is necessary to do the original computations to nearly 7 figure accuracy
in order to estimate g to 5 figures, and the coefficients of the next terms in (5.2)
are only known to 4 figures, even so.

Figure 5 shows (dashed) the behaviour of the asymptotic estimate (5.2) in
comparison with the exact computations. The formula (5.2) retains reasonable
(less than 1% error) accuracy down to aspect ratios of the order of 3. The chain-
dotted curve is that given by Prandtl’s lifting line equation ([1, page 142]).

The asymptotic analysis also suggests that the bound vorticity y (x, y) itself
has an asymptotic form near the tip y = 0, scaling with x/c and y/c when
y = O(c) << O(s). For example, the total section-wise circulation

L) = fo y(x, y) dx (5.3)

approaches a limiting form as s/c — oo which is a unique function of y/c.
The range of this function is then semi-infinite, and it must approach the two-
dimensional value I'y = —nUca for large y/c, i.e., far from the wing tip.
Figure 6 shows I'(y)/ 'y, as computed by integration of our computed results,
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FIGURE 7. Chordwise loading distribution near wing tip.

for various aspect ratios. These results have almost become independent of
aspect ratio over the range of this figure for s/c > 20, and the curve shown for
s/c = 20 is the required limiting spanwise lift distribution near the wing tips.

Figure 6 also shows (dashed) for comparison the estimate provided by
Prandtl’s lifting line equation for this circulation function. Stewartson {9] was
able to solve the semi-infinite-range lifting line equation exactly in terms of
quadratures, and Varley and Walker [13] have recently re-derived and general-
ised that solution. However, (see Van Dyke [2]), the lifting line theory is not
a consistent large aspect ratio asymptotic expansion and cannot be expected to
retain accurate validity near the wing tips.

For example, as y — 0, the circulation I" tends to zero as the square root of
the distance y from the wing tip, i.e.

F(»)/To~ki(y/c)'? as y—0 (5.4

for some dimensionless constant k,. Stewartson’s [9] lifting line solution has
ki = 4/m =~ 1.2732. Our numerical results for actual rectangular wing tips
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suggest ky &~ 0.91. Similarly, the Stewartson solution predicts a value 1.816 for
the parameter g in (5.1), compared to our result g = 2.562. Figure 7 shows
the actual chordwise distribution of the bound vorticity (scaled with the local
circulation I"(y)); lifting line theory gives no information about the chordwise
distribution. The solid curve is our result for small y and large aspect ratio
s/c, whereas the dashed curve is the two-dimensional result, i.e. the limit as
y/c — oo for large s/c, namely

cC—X

2
yCen/Te)=— (5.4)

The area under both curves is unity even though the solid curve seems to lie
entirely below the dashed curve. The wing tip loading has a very much bigger
contribution from the leading comer x = 0,y = 0, where it appears that
y & x73/4y1/2_ but this increased leading edge singularity with respect to x is
not apparent until x is so small that the graph is off the scale of Figure 7.

6. Rectangular panels for non-rectangular wings

The simplicity and accuracy of the present numerical method depends es-
sentially on explicit closed form integration of the kernel as in (2.2), and this
demands rectangular panels, or at least panels which are right-angled polygons.
If the wing planform of interest is not rectangular, there are two ways to go.

One way is to abandon rectangular panels, at least for a band of panels adjacent
to the wing edges. For example, a reasonable fit to most curved edges could
be achieved if the equivalent of (2.4) was available for triangular panels. But it
is not. Any attempt to use non-rectangulzir panels implies that approximations
must be used in evaluating the integral (2.2) of the kernel function over the panel.
Of course, one way to do this approximate evaluation for a small triangular panel
is to split it up into many even smaller rectangles, on each of which the integral
is evaluated exactly. This and other options for high-accuracy panelisation are
left for further work.

A second way to approach the problem is to accept the coarseness of a
rectangular panelisation, and to examine how well the aerodynamics is modelled
nevertheless. If, for example, we use a (10 x 20) rectangular panelisation of
a circular wing, as in Figure 8, the present program solves for flow over the
actual jagged-edge planform so created, with the same ease and accuracy as if
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FIGURE 8. Rectangular panelisation of a circle.

the planform were rectangular. Are the results for such a jagged-edge planform
close to those for a circular planform?

The only change needed for rectangular panelisation of an arbitrary convex
planform is to stretch the chord-wise Chebyshev grid, namely to replace (3.3)
by
xr(Y) — x . (Y))

2

Xe=x.(Y) + [1 — cos(km/m)] 6.1)
with a similar expression for X,. Note that X, X, now also vary with the
span-wise index /, since the local chord is assumed to be that corresponding to
the (Chebyshev) midpoint Y, at the present span-wise position. For simplicity,
we assume here that the same number m of chord-wise panels is used at each
such position, although there is no reason in principle why m could not be also
allowed to vary with /, and that might lead to a more economical distribution of
panels in some cases.

The end panels k = 1, m clearly do not fit closely to curved edges. For
example, the leftedge at k = lisat x = Xy = xL(Y,), the (Chebyshev) mean
position of a locally slanted leading edge. In general, this slanted edge cuts
across the left side of the panel, the rectangular panel excluding a triangular
piece that should be present, and including a triangular piece that should not.
We hope that the aerodynamic effects of these inclusions and exclusions cancel
out in the average for that panel, but cannot be sure that they will.

In view of the fact that we are using a Chebyshev grid where the edge
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rectangles are deliberately made smaller than others, it is also possible for the fit
to slanted edges to be worse than this, in that a slanted edge could impact not just
the end panels ¥ = 1, m, but also adjacent panels ¥k = 2, m — 1, etc. To avoid
this, we must panelise more finely in the span-wise direction than the chord-
wise direction, i.e., in principle have n > m. Otherwise, solution for arbitrary
convex planforms proceeds essentially as if the planform was rectangular.

Typical results for the lift coefficient slope of a “circular” wing are 1.793536
from (m,n) = (10, 20) and 1.792474 from (m,n) = (10, 30). The compu-
tations suggest that the convergence with respect to n is like n~!, so that the
extrapolated estimate for (m, n) = (10, co) from the above results is 1.790350.
This is better than 4-figure agreement with the exact value 1.790750 of Haupt-
mann and Miloh [5], but this agreement is again perhaps a fluke, and less
satisfactory extrapolation occurs at other n values. The nearly 3-figure accuracy
obtained by the actual computation for the (10, 20) panelisation of Figure 8 is
perhaps representative of what is achievable by this naive procedure, and more
work is needed if this method is to be competitive for general non-rectangular
planforms.
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