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We present the effective optical potential of the interaction of an electron with an atom in
dense semiclassical plasma of noble gases. This potential takes into account the collective
screening effect and the quantum mechanical effect of diffraction. The influence of
diffraction and screening effects on the characteristics of electron–atom collisions was
investigated. Scattering phase shifts decrease with increase of the de Broglie wave. The
electron–atom momentum-transfer cross-section at λB → 0 tends to the data obtained
earlier with a neglecting of the diffraction effect.
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1. Introduction

The study of electron scattering by noble gas atoms has always been a hot topic.
Suffice it to recall that the discovery of the Ramsauer–Townsend effect (Ramsauer 1921;
Townsend & Bailey 1922) at one time caused great amazement by its unexpectedness and
incomprehensible origin, but which was later explained as a consequence of the effect of
diffraction of de Broglie waves using the theory of quantum mechanics, which was making
its first successes at that time. Currently, these studies have not lost their relevance both in
experimental research and in theoretical study. Most of the experimental measurements
of the scattering cross-sections refer to the region of intermediate scattering angles,
approximately from 10◦ to 150◦. At smaller and larger angles, the existing experimental
data are often qualitative assessments, and here their greatest deviation from theoretical
estimates is observed. In this regard, the implementation of accurate measurements in
the regions of small and large scattering angles is still a big challenge in the problem of
obtaining reliable experimental scattering cross-sections over the entire range of scattering
angles (Adibzadeh & Theodosiou 2005; Cho et al. 2008). Moreover, this problem is
especially relevant for heavier atoms of noble gases.
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Recently, in a number of experimental works devoted to the investigation of the
properties of partially ionized plasma of noble gases, unexpected effects have been
noted, associated, as it turned out later, with electron–atom interactions in the system.
For example, in Kuhlbrodt et al. (2005) it was shown that the presence of the
temperature-dependent minimum on the direct current conductivity of noble gases and
this minimum has been explained by electron–atom collisions (see Adams et al. (2007)
and Rosmej, Reinholz & Röpke (2017)). In Adams et al. (2007), on the basis of the
experimentally obtained cross-sections for isolated electron–atomic scattering and data on
the composition calculated by COMPTRA04, the electrical conductivity of the plasma of
noble gases was estimated and good agreement with the experimental data was shown.
Rosmej et al. (2017) studied the momentum-transfer cross-sections (MTCS) based on
the developed optical potential over a wide range of parameters, thus avoiding already
marked drawbacks of the scattering cross-sections obtained experimentally. Along with
the study of electron scattering by an isolated atom, in Rosmej et al. (2017) the effect of
the plasma environment was also taken into account, in particular, the screening of the
interaction potentials that contribute to the optical potential. Thus, they managed to obtain
better agreement with experimental data on electrical conductivity in the studied ranges
of temperatures and densities. It is known that screening is able to cause the significant
changes in the properties of the systems under study, such as Coulomb liquids (March
& Tosi 2002; Hansen & McDonald 2013) or dipole systems (Aldakul, Moldabekov &
Ramazanov 2020). When screening depends on the velocities of the interacting particles, it
is considered as dynamic screening. As was shown in Kremp, Ropke & Schlanges (1984),
the dynamic screening can be taken into account in the effective interaction potentials
by replacing the static Debye length with the dynamic one, which increases with the
growth in the impact energy. So, when the impact energy is significantly larger than the
thermal energy of the system the screening effect can be strongly weakened. In dense
semiclassical plasma, in addition to collective effects, the interaction of particles is also
affected by the wave properties of these particles, leading to some quantum mechanical
effects (see Deutsch (1977), Deutsch, Furutani & Gombert (1981) and Ramazanov, Amirov
& Moldabekov (2018)). The study of the properties of dense semiclassical plasma with
simultaneous consideration of the effects of screening and diffraction in the interaction of
charged particles as well as in the polarization interaction of electron with an atom has
been carried out in many works (see, for e.g. Jung (2003), Ramazanov, Dzhumagulova
& Akbarov (2006a), Ramazanov, Dzhumagulova & Gabdullin (2006b), Shalenov et al.
(2018b), Shalenov et al. (2019b), Shalenov et al. (2019a), Jumagulov et al. (2020) and
Karmakar, Das & Ghoshal (2020)). It has been shown that in dense semiclassical plasma
the diffraction effect arising out of the uncertainty principle can play a significant role.

It has been shown, that in dense semiclassical plasma there are the bound states within
the temperature and density ranges 105–106 K and 1020–1022 cm−3 (Ramazanov et al.
2006b; Rosmej et al. 2017; Karmakar et al. 2020). In this regard, it is important to reveal
the influence of the diffraction effect on the collisional characteristics and then on the
transport properties of such plasma. We will determine the composition of both plasma
and transport properties in the next work, and in this paper we present a study of the
influence of screening and diffraction effects on electron–atom scattering in dense plasma
of noble gases. In order to investigate the scattering problems we constructed the optical
potential of electron–atom interaction on the basis of the conclusions of Rosmej et al.
(2017). This potential along with the screening effect also takes into account the diffraction
effect. The calculations were carried out on the basis of the method of phase functions.
The obtained results were compared with the theoretical data of other authors.
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Moreover, to check the reliability of the chosen method of phase functions, we
performed calculations of the scattering phase shifts on the basis of the optical potential
proposed in Rosmej et al. (2017), where calculations had been done by the Numerov
method. An agreement between results of both works is shown.

This article is organized as follows. In § 2, we describe the research method for the
scattering problems. Optical potential for electron–atom interaction in dense plasma,
highlighting the taking into account of screening and diffraction effects, is presented in
§ 3. Results, including a comparison with data of Rosmej et al. (2017), are shown in § 4.

2. Phase function method

In the method of partial waves the incident particle flux is represented as a set of partial
waves, which are scattered on a spherically symmetric force centre independently of each
other. The contribution of each partial wave to the scattering amplitude (and hence to the
differential and full scattering cross-sections) is determined by the scattering phase, the
so-called phase shift δl.

The scattering phase shifts can be determined from solving the radial Schrödinger
equation for a particle scattered by some central field V(r). In Rosmej et al. (2017), the
radial Schrödinger equation was solved with the Numerov method.

In this work we used another way to calculate scattering phase shifts of an incident
electron. In the method of phase functions, one can pass from the Schrödinger equation to
the equation directly for the scattering phases (Drukarev 1965; Babikov 1988),⎧⎨

⎩
dδl(r)

dr
= −1

k
2m
�2

V(r)
[
cos δl(r) · jl(kr) − sin δl(r) · nl(kr)

]2
,

δl (0) = 0,

(2.1)

where δl(r) is the phase function, V(r) is the interaction potential, k is the wavenumber
of the incident electron, jl(kr) and nl(kr) are regular and irregular solutions of the
Schrödinger equation. The phase shift is the asymptotical value of the phase function at
large distances,

δl = lim
r→∞

δl(r). (2.2)

Note that the equation for the scattering phases has some advantages: it is much easier
to solve this one than the Schrödinger equation; and the number of operations, and
consequently the computation time, is also noticeably reduced.

Partial cross-sections for scattering in the quantum mechanical approximation are
calculated on the basis of the phase shifts,

QP
l (k) = 4π

k2
(2l + 1) sin2δl. (2.3)

Full cross-section is defined as the sum of the partial ones, i.e.

QF (k) =
n∑

l=0

QP
l (k). (2.4)

Momentum-transfer cross-sections, used for calculation of the transport coefficients, are
also determined by the phase shifts. Thus, the transport cross-section of the first order was
calculated by the following formula:

QT(k) = 4π

k2

∞∑
l=0

(l + 1)sin2(δl+1 − δl). (2.5)

https://doi.org/10.1017/S0022377822000071 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377822000071


4 K.N. Dzhumagulova, E.O. Shalenov, Y.A. Tashkenbayev and T.S. Ramazanov

(a) (b)

(c) (d)

FIGURE 1. Effective optical potential for electron–helium (a,b) and electron–neon (c,d)
interaction at zero wavenumber (k = 0) for different screening parameters κa0 (a,c) or different
de Broglie wavelengths λBa−1

0 (b,d).

3. Effective electron–atom interaction potential in dense semiclassical plasma
3.1. Optical potential for isolated systems

In Rosmej et al. (2017), in order to determine the electron–atom MTCS the following
optical potential was proposed and described in detail as the interaction potential of the
isolated system:

Vopt (r) = VHF (r) + VP (r) + Vex (r) . (3.1)

The first term in this potential is called the Hartree–Fock potential VHF(r), it describes
the Coulomb interaction of the free electron with the nucleus as well as with electrons of
the atomic shells,

VHF(r) = e2

4πε0

[
−Z

r
+
∫

1
|r−r1|ρ(r1) d3r1

]
, (3.2)

where Z is the charge number of the nucleus and ρ(r) is the density of the shell electrons.
The second term VP(r) describes the interaction of the free electron with the polarized

atom, which prevails at large distances,

VP (r) = − e2αP

8πε0(r + r0)
4 , (3.3)
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Helium Neon

ka0 (1) (2) (3) ka0 (1) (2) (3)

δ0 0.10 2.994 2.993 2.993 0.20 6.072 6.104 6.097
0.25 2.776 2.770 2.770 0.30 5.965 6.004 5.994
0.50 2.436 2.412 2.410 0.40 5.857 5.899 5.885
0.75 2.139 2.093 2.092 0.50 5.748 5.789 5.773
1.00 1.890 1.835 1.835 0.90 5.321 5.349 5.327
1.50 1.522 1.473 1.474 1.00 5.219 5.243 5.220

δ1 0.50 0.043 0.045 0.048 0.50 3.040 3.052 3.044
0.75 0.110 0.101 0.106 0.70 2.933 2.949 2.936
1.00 0.183 0.159 0.165 0.80 2.873 2.890 2.875
1.50 0.284 0.247 0.253 0.90 2.812 2.828 2.813
— — — — 1.00 2.751 2.766 2.750

δ2 0.75 0.005 0.006 0.007 0.50 0.004 0.005 0.005
1.00 0.014 0.015 0.017 1.00 0.065 0.059 0.057
1.50 0.042 0.041 0.044 — — — —

TABLE 1. Electron–helium, electron–neon partial wave phase shifts δl (in rad) for calculated
without taking into consideration the polarization term in the optical potential, (3.1). (1)
Numerical results in SEA, Duxler et al. (1971) and Pindzola & Kelly (1974); (2) Rosmej et al.
(2017); and (3) present work.

where αP is the dipole polarizability, r0 is the cutoff parameter. Its values for different
atoms of noble gases are taken as the same as in Rosmej et al. (2017). The introduction
of the exchange term into the optical potential as a separate term is possible within
the framework of a local field approximation. The replacement of the exchange kernels
by an equivalent local potential makes the scattering problems much easier to solve
numerically. A large number of local exchange potentials have been proposed in the
literature. Systematic comparisons of some of them have been made by Yau, McEachran
& Stauffer (1978). In the free-electron–gas exchange approximation, Mittleman & Watson
(1960) derived the local exchange potential,

Vex (r) = VM
ex [r, K (r)] = − e2

4πε0

2
π

KF (r) F
[

K (r)
KF (r)

]
, (3.4)

with the Fermi momentum KF(r) = [3π2ρ(r)]1/3, function F(η) = 1
2 + ((1 − η2)/4η)

ln |(η + 1)/(η − 1)|, and a local-electron momentum K(r), which is here taken in the
version of Rosmej et al. (2017),

K2
RRR (r) = k2 + 2m

�2

[|VHF (r)| + |VP (r)| + ∣∣VM
ex (r, 0)

∣∣] , (3.5)

where VM
ex (r, 0) = −(e2/4πε0)(2/π)KF(r) is the momentum-free exchange term. Rosmej

et al. (2017) have shown that the calculations based on (3.1) with exchange potential, (3.4),
(3.5), are in better agreement with the results obtained on the basis of the static-exchange
approximation (SEA), using a non-local exchange term (Duxler, Poe & Labahn 1971;
Pindzola & Kelly 1974), than calculations based on other approximations for K(r) (Hara
1967; Riley & Truhlar 1975).
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(a) (b)

(c) (d)

FIGURE 2. Phase shifts of the electron scattering on the helium atom for l = 0 (a,b) and l = 1
(c,d) with two values of the screening parameter κa0 at different de Broglie wavelengths λBa−1

0 .

3.2. Screening and diffraction effects
It is well known that in dense non-ideal plasma the interaction of isolated particles is no
longer relevant. At high densities, the average distance between particles becomes less
than the Debye length,

rD =
(

kBT

/(
4π e2

∑
a

naZ2
a

)) 1/2

, (3.6)

where Za is the charge number of the particles of plasma component a = e, i. In this
case, charged particles participate in collective interaction, which leads to screening
of the field of individual particles. Rosmej et al. (2017) quite rightly have taken into
account the screening effect of the plasma on each term of the optical potential, (3.1), and
construct the screened optical potential,

Vs
opt (r) = Vs

HF (r) + Vs
P (r) + Vs

ex (r) . (3.7)

Here, the screened polarization potential has the following form:

Vs
P (r) = VP (r) e−2κr(1 + κr)2, (3.8)
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(a) (b)

(c) (d)

FIGURE 3. Phase shifts of the electron scattering on the neon atom for l = 0 (a,b) and l = 1
(c,d) with screening parameter κa0 = 0.1 at different de Broglie wavelengths (a,c) and with de
Broglie wavelength λBa−1

0 = 0.25 at different screening parameters (b,d).

where κ = r−1
D is the screening parameter. For the screened Hartree–Fock potential, the

Coulomb interaction in (3.2) for an isolated system can be replaced by the Debye potential,
and then the following expression is obtained:

Vs
HF (r) = e2

4πε0

[
−Ze−κr

r
+ I1 + I2 + I3

]
, (3.9)

where

I1 = e−κr

κr

∫ r

0
2πr1ρ (r1) eκr1 dr1, (3.10)

I2 = −e−κr

κr

∫ ∞

0
2πr1ρ (r1) e−κr1 dr1, (3.11)

I3 = eκr

κr

∫ ∞

r
2πr1ρ (r1) e−κr1 dr1. (3.12)

To obtain the screened exchange term in (3.7), polarization and the Hartree–Fock terms
in (3.5) were replaced by their screened versions, (3.8) and (3.9), respectively. On the
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(a) (b)

(c) (d)

FIGURE 4. The PCS and FCS for electron scattering on the helium atom with screening
parameter κa0 = 0.1 at different de Broglie wavelengths λBa−1

0 = 0.01 (a), λBa−1
0 = 0.25 (b),

λBa−1
0 = 0.50 (c), λBa−1

0 = 0.75 (d).

basis of optical potential, (3.7), the influence of the screening effect on the collisional
characteristics of particles in dense plasma of noble gases was investigated in Rosmej
et al. (2017). However, in a dense plasma, the average interparticle distance can be also
comparable with the de Broglie wavelength of the particles. So, it is necessary to take
into account the quantum mechanical effects, such as diffraction and symmetry, along
with screening effects, for the correct description of the properties of such plasma. But, it
is worth mentioning that the effect of symmetry can be neglected at high temperatures
and one can only consider the diffraction and screening effects. In Ramazanov &
Dzhumagulova (2002) the effective potential, describing interaction of the charge carriers
and taking into account both effects of screening and diffraction, was presented. For the
interaction of the electron and the charged particle of sort α, it can be written as

VSD
eα (r) = − Zαe2

4πε0C

(
e−B r

r
− e−A r

r

)
, (3.13)

where C2 = 1 − 4λ2
Bκ

2; A2 = 1/2λ2
B(1 + C); B2 = 1/2λ2

B(1 − C); and where λB =
�/

√
2πmekBT is the thermal de Broglie wavelength of electrons. We substituted this

potential into (3.2) instead of the Coulomb interaction and obtained the effective
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(a) (b)

(c) (d)

FIGURE 5. The PCS and FCS for electron scattering on the neon atom with screening
parameter κa0 = 0.1 at different de Broglie wavelengths λBa−1

0 = 0.01 (figure 4a), λBa−1
0 =

0.25 (figure 4b), λBa−1
0 = 0.50 (figure 4c), λBa−1

0 = 0.75 (figure 4d).

Hartree–Fock potential,

VSD
HF (r) = e2

4πε0 C

[
−Z

(
e−Ar − e−Br

)
r

+ ξ1 + ξ2 + ξ3

]
, (3.14)

where

ξ1 = e−Ar

Ar

∫ r

0
2πr1ρ (r1) eAr1 dr1 − e−Br

Br

∫ r

0
2πr1ρ (r1) eBr1 dr1, (3.15)

ξ2 = −e−Ar

Ar

∫ ∞

0
2πr1ρ (r1) e−Ar1 dr1 + e−Br

Br

∫ ∞

0
2πr1ρ (r1) e−Br1 dr1, (3.16)

ξ3 = e−Ar

Ar

∫ ∞

r
2πr1ρ (r1) e−Ar1 dr1 − e−Br

Br

∫ ∞

r
2πr1ρ (r1) e−Br1 dr. (3.17)

The polarization potential of the interaction between an electron and an atom, taking into
account the static Debye screening and the diffraction effect, was obtained in Ramazanov,
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Dzhumagulova & Omarbakiyeva (2005), Shalenov et al. (2018a) and Dzhumagulova et al.
(2022) as

VSD
P (r) = − e2αp

8πε0(r + r0)
4C2

(
e−Br(1 + Br) − e−Ar(1 + Ar)

)2
, (3.18)

where A, B and C are the same quantities as in (3.13). The effective term of the exchange
interaction was obtained by the already described method, when in (3.5) the Hartree–Fock
and polarization contributions change to their versions, taking into account the effect
of diffraction and screening, (3.14) and (3.18), respectively. Thus, after substituting all
effective contributions, we have the following effective optical potential, which takes into
account, along with the screening effect, the quantum mechanical effect of diffraction:

VSD
opt (r) = VSD

HF (r) + VSD
P (r) + VSD

ex (r) . (3.19)

It should be noted that optical potential, (3.19), transforms into potential, (3.7), at
λB → 0. Furthermore, if one neglects the effects of both screening and diffraction (κ → 0
and λB → 0), the optical potential (3.19) reduces to the potential of the isolated system,
(3.1). Figure 1 shows the effective optical potentials, (3.19), for electron–helium (figures 1a
and 1b) and electron–neon (figures 1c and 1d) interactions. The role of the screening effect
in the appearance of repulsion at large distances (figures 1a and 1c) was already noted in
Rosmej et al. (2017). At short range, screening effects are not relevant, while the diffraction
effect leads to the weakening of the attraction between electron and atom (figures 1b
and 1d).

4. Results

First of all, we tested the method of phase functions using the optical potential, (3.1), for
agreement with the results of Rosmej et al. (2017). For this purpose, the phase shifts for
partial waves were calculated and presented in table 1. Here, the phase shifts obtained in
Rosmej et al. (2017), in this work and the data calculated on the basis of a SEA (see Duxler
et al. (1971) and Pindzola & Kelly (1974)) were obtained using a non-local exchange term
without taking into consideration the polarization potential. High agreement with the data
of Rosmej et al. (2017) made it possible to conclude that the use of the chosen method of
phase functions has a minimal effect on the final results.

All further presented results were obtained on the basis of the optical potential, (3.19), in
order to study the simultaneous influence of the effects of screening and diffraction on the
collisional characteristics in dense plasma of noble gases using the example of helium and
neon. We consider the influence of the de Broglie wavelength on the results obtained; an
increase in the latter is equivalent to an increase in the influence of the diffraction effect.

Figure 2 shows the phase shifts for the partial waves l = 0 (figures 2a and 2b) and l = 1
(figures 2c and 2d) arising from the collision of the electron with a helium atom. As well
known, an increase in screening leads to a decrease in phase shifts. This trend can be
especially seen in figure 2. The influence of the diffraction effect can be observed on all
figures 2(a–d): with increasing λB phase shifts decrease. A similar picture of the behaviour
of phase shifts in the collision of the electron with a neon atom can be observed in figure 3
with the only difference that figures 3(b) and 3(d) show phase shifts, calculated at a fixed
value of the de Broglie wavelength λBa−1

0 = 0.25 and different values of the screening
parameter. They illustrate the fact that rising screening leads to the fall in the number of
bound states following from Levinson’s theorem (Wellner 1964; Sassoli De Bianchi 1994;
Shalenov, Dzhumagulova & Ramazanov 2017).
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(a) (b)

(c) (d)

FIGURE 6. The MTCS for electron scattering on the helium atom for four values of screening
parameters κa0 = 0 (figure 4a), κa0 = 0.05 (figure 4b), κa0 = 0.1 (figure 4c), κa0 = 0.2
(figure 4d) at different de Broglie wavelengths.

Full and partial collision cross-sections (FCS and PCS) for electron–helium and
electron–neon scattering as a function of incident energy for different values of de Broglie
wavelength are presented in figures 4 and 5, respectively. For electron–helium scattering,
we notice that FCS is peaked when ka0 → 0 for a given screening parameter, the height
of the peak increases with rise of λB. With increasing incident energy, FCS and PCS fall.
Furthermore, FCS decreases more rapidly with growing λB. In the case of electron–helium
scattering, besides mentioned the above feature we can notice that in PCS for l = 0 the
minimum’s position is gradually shifted to lower energies.

In figures 6 and 7 another important scattering quantity of interest, the MTCS, is
presented for helium and neon cases, respectively. It can be seen that an increase in the
screening parameter, as well as in the de Broglie length, leads to an increase in MTCS at
low energies. For such behaviour the diffraction effect is responsible. It is also shown that
with a decrease in de Broglie wavelength, the results tend to the data obtained in Rosmej
et al. (2017), which do not take into account the influence of the diffraction effect.

5. Conclusion

Based on the optical potential, which takes into account the screening effect of the
plasma environment in dense plasma of noble gases, we have constructed a new version
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(a) (b)

(c) (d)

FIGURE 7. The MTCS for electron scattering on the neon atom for four values of screening
parameters κa0 = 0 (figure 4a), κa0 = 0.05 (figure 4b), κa0 = 0.1 (figure 4c), κa0 = 0.2
(figure 4d) at different de Broglie wavelengths.

that also takes into account the quantum mechanical effect of diffraction. For this purpose,
as the polarization potential of the electron–atom interaction, as well as to calculate the
Hartree–Fock potential, we used the potentials obtained by us earlier, and took into account
both of these effects. The exchange potential was presented in the approximation of an
effective local field. Within the framework of the presented model of the optical potential,
the problems of electron–atom collisions were investigated using the example of helium
and neon atoms. It is shown that with an increase in the de Broglie wavelength, a decrease
in the phase shifts of scattering is observed at any values of the screening parameter. On
the contrary, the MTCS increases with increasing de Broglie wavelength at low velocities.
As the velocity increases, the screening and the quantum mechanical effect of diffraction
cease to affect the MTCS. The results are shown to be in good agreement with the data of
S. Rosmej in the limit when the de Broglie wavelength tends to zero.
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