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1. In the case of two-dimensional liquid motion, knowing one irrotational
flow, we can at once deduce any number of others by conformal transformations.
But in the case of axially symmetric motion, there is no corresponding device.
Accordingly, it is useful to examine other methods, by which one axially sym-
metric motion can be deduced from another.

First of all, any change of variables on the co-ordinates and the Stokes'
stream function, or on the co-ordinates and the velocity potential, which leaves
unchanged the appropriate partial differential equation, provides such a
transformation from one flow to another. I have recently shown (1) that these
transformations are of three kinds only, namely the following: (i) trivial
transformations, consisting of multiplications of the co-ordinates by a constant
scale factor, change of origin on the axis of symmetry, reversal of the positive
direction of the axis of symmetry, multiplication of the velocity potential or of
the Stokes' stream function by a constant, addition to the velocity potential of
a particular integral of the equation satisfied by the velocity potential, addition
to the Stokes' stream function of a particular integral of the equation satisfied
by Stokes' stream function; (ii) Kelvin's transformation, that is, if <j> be the
velocity potential, and r, 0 be spherical polar co-ordinates, then the transforma-
tion

Rr = k2, O = 0, O = (Alk)r<t>,

where A, k are non-zero constants, leads to a new velocity potential 5> in terms
of the spherical polar co-ordinates R, 0 ; (iii) if \j> be the Stokes' stream function
of an irrotational flow, the transformation

Rr = k2, 0 = 0, ¥ = -Bkifijr,

B and k being non-zero constants, leads to a new Stokes' stream function *F,
in terms of R, 0 . This transformation, like Kelvin's, involves geometrical
i nversion with respect to a point on the axis.

2. We now examine a device of a different character. Let cp and ij/ be the
velocity potential and Stokes' stream function respectively, of an axially
symmetric motion which we suppose known. Let us use cylindrical polar
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co-ordinates z, co, so that the equations governing the motion are

±W = o,
3+ +

dz1 dco2 co 3co

dz2 dco2 co 3co

dco

co
Set) dz

the first two being consequences of the last two. Consider the function

(1)

/ being a non-zero constant, having the dimensions of a length. Then we have,
identically,

dz2 8(o2 co dco

1 d<f>
d z 2 dco2 codco] [ d z 1 dco2 co dco

— < — CO —

co [dco dz

and therefore, by (1),

182j d2j

dz2 dco2 co dco
- ^ = 0.

Hence <̂, given by (2), is the velocity potential of a new axially symmetric
motion.

Again, consider the function

n = (a>2<Hz<«/m, (3)

m again being a non-zero constant, having the dimensions of a length. Then
we have, identically

d2t] d2r\ 1 dr\

dz2 dco2 co dco

m
co H ^ +

1

dco2 co dco +
1 #

+ 2 ^

dco2 co i

dco
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and therefore, by (1),
d2l + &R _ I *» = o.
dz2 dco2 co dco

Hence q, given by (3), is the Stokes' stream function of a new axially symmetric,
irrotational motion.

3. There is an interesting link between these transformations, (2) and (3),
and the transformations (ii) and (iii) of § 1. But before going further we observe
the following curious feature of the functions t; and tj.

From the velocity potential (f>, and Stokes' stream function ijj, of a known
irrotational flow, we deduce two new irrotational flows, one whose velocity
potential is £ as in (2), and another whose Stokes' stream function is r\ as in (3).
These flows are in general distinct. For it follows directly from (2) and (3) that,
after taking account of (1),

dz dco Im i \ dz dcoj

dn dS, co ) / , -. / dd> dd>\ ._. ,| . .
— —co — = — <(/ — m) z — +co — I +(2i — m)<p> (5)
dco dz Im [ \ dz dcoj J

Now, if / = m # 0, it is evident that the right hand sides of (4) and (5) are
never identically zero, so that £ and r\ cannot correspond to the same flow.
If / # m, it can be shown quite easily, changing to spherical polar co-ordinates
(i.e., writing z = r cos 0, co = r sin 6), that the right hand sides of (4) and (5)
can only be identically zero in the trivial case when

where p = (2l—m)/(m — l), fi = cos 6,
and u satisfies Legendre's equation

)u = 0 .

Thus, except in the above trivial case, it is impossible to choose / and m so that
the functions { and r\ correspond to the same flow.

Again, it is easily verified that, except in exactly the same trivial case men-
tioned above, the transformations (ii) and (iii), § 1, applied to the functions
4>{r, 6) and \j/(r, 6) corresponding to a known flow, can never lead to functions
O(7?, 0) and ¥(/?, 0) corresponding to the same flow, whatever the choice of
the constants A and B.

But we shall now show that if to a known flow,/say (in the space of r, 6), we
apply, firstly the transformations (2) and (3), with I = m = k, and then, to the
resulting (non-corresponding) velocity potential t, and Stokes' stream function r\,
apply respectively the transformations (ii) and (iii), § 1, with B = A, we obtain
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two functions <& and *P which are indeed the corresponding velocity potential
and Stokes' stream function of a new flow in the R, 0 space.

Writing z = r cos 9, a> = r sin 0, I = m = k in (2) and (3), and applying
(ii) and (iii), § 1, with B = A, to the resulting functions £, and r\, we have

O = (A/k2){(r2 cos 8)4-rip}, ]
W = -A{(r sin2 0)0 + (cos 0)^}, (6)

r = A:2/*, 0 = 0 . J

Now, in spherical polar co-ordinates r, 6, the equations corresponding to the
last two equations (1) are

dt/f/dr+(sin O)d<pldd = 0, 1 ( 7 )

d\j//60-(r2 sin 6)d<t>/dr = 0. j

But from (6), taking account of (7), we obtain directly

d¥/dR+(sin 0)3O/50 = 0,

d*¥/dQ-(R2 sin 0)54>/3i? = 0,
showing that <I> and *F are respectively velocity potential and Stokes' stream
function of a new flow, F say, in the R, 0 space.

4. Further, we may remark that the relationship between the flows / and F
above is symmetric. For if we apply to the functions O and *P in (6), the
transformations respectively corresponding to (2) and (3), still with I = m = k,
namely (in spherical polar co-ordinates)

S = {(R cos 0)<X>-¥}/£,

H = {(R2 sin2 &)<S> + (R cos 0)*F}/fc,

we obtain (noticing that R = k2/r, & = 6), after a little reduction,

E = {Ajk)r<t>,

H = -Ahp/r.

If, now, we apply respectively the transformations (ii) and (iii), § 1, in reverse,
still with B = A, i.e.

O, r = -(l/Ak)rH,
we have at once

so that we retreive the original flow/
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