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On Orbit Closures of Symmetric Subgroups in
Flag Varieties

Michel Brion and Aloysius G. Helminck

Abstract. We study K-orbits in G/P where G is a complex connected reductive group, P C G is a parabolic
subgroup, and K C G is the fixed point subgroup of an involutive automorphism . Generalizing work of
Springer, we parametrize the (finite) orbit set K \ G/P and we determine the isotropy groups. As a conse-
quence, we describe the closed (resp. affine) orbits in terms of §-stable (resp. #-split) parabolic subgroups.
We also describe the decomposition of any (K, P)-double coset in G into (K, B)-double cosets, where B C P
is a Borel subgroup. Finally, for certain K-orbit closures X C G/B, and for any homogeneous line bundle
£ on G/B having nonzero global sections, we show that the restriction map resx: H*(G/B, L) — H°(X, L)
is surjective and that H (X, L) = 0 for i > 1. Moreover, we describe the K-module H°(X, £). This gives
information on the restriction to K of the simple G-module H°(G/B, £). Our construction is a geometric
analogue of Vogan and Sepanski’s approach to extremal K-types.

Introduction

Let G be a connected reductive group over an algebraically closed field k; let B C G be a
Borel subgroup and K C G a closed subgroup. Assume that K is a spherical subgroup of G,
that is, the number of K-orbits in the flag variety G/B is finite; equivalently, the set K\ G/B
of (K, B)-double cosets in G is finite. Then the following problems arise naturally.

1) Parametrize the set K \ G/B and, more generally, K \ G/P where P D B is a parabolic
subgroup of G.

2) Decompose any (K, P)-double coset into (K, B)-double cosets.

3) For connected K, describe the singularities of closures of double cosets or, equivalently,
of K-orbit closures in G/B. Are these closures normal?

4) For such an orbit closure X and a homogeneous line bundle £ on G/B having non-zero
global sections, describe the K-module H(X, £) and the image of the restriction map
resx: H'(G/B, L) — H°(X, L). Is resx surjective?

In the case where K = B, the answers to Problems 1 and 2 are well known: by the
Bruhat decomposition, each (B, P)-double coset intersects the Weyl group W into a unique
coset of Wp, the parabolic subgroup of W associated with P. And for w € W, the double
coset BwP is the disjoint union of the BwrB where 7 € Wp. Much is known concerning
Problems 3 and 4: the B-orbit closures in G/B are the Schubert varieties; they are normal,
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with rational singularities [12]. The spaces H°(X, L) are the Demazure modules; their
character is given by the Demazure character formula, and the maps resy are surjective.
Moreover, the higher cohomology groups H'(X, £) vanish for i > 1. Similar results hold
for the diagonal G-action on G/B x G/B[11].

For general spherical subgroups, no explicit solution of Problem 1 seems to be known;
but work of Springer [16] and Richardson-Springer [13], [14] gives detailed information
on K \ G/B in the case of a symmetric subgroup K, that is, K consists of all fixed points of
an involutive automorphism 6 of G. An example is the diagonal action of G on G/B x G/B,
since the diagonal is the fixed point subgroup of the involution of G x G exchanging both
factors. But for arbitrary symmetric subgroup K of G, the K-orbit closures in G/B need not
be normal (an example is given in [1, p. 281]), and the maps resx need not be surjective.
This is mentioned in [1]; see 4.3 below for more detailed examples. On the other hand,
positive answers to Questions 3 and 4 are obtained in [1] for some singular orbit closures.

In the present paper, we give a solution of Problem 2 for a symmetric subgroup K = G’
(1.4), and we describe the isotropy subgroups of G?-orbits in G/P (2.2). As a consequence,
we characterize the affine (resp. closed) orbits (2.3, 3.2), in relation to #-split (resp. 6-
stable) parabolic subgroups. Then we solve Problem 4 for certain G’-orbit closures X C
G/B which we call induced flag varieties. They are the pull-backs under the projection
G/B — G/P of closed G’-orbits in G/P, where B C P and both are §-stable. Of course,
each such X is smooth; we show that resy is surjective, and that the G?-module H® (X, L)
is obtained from H°(P/B, L) by parabolic induction. Furthermore, we obtain vanishing
of H'(X, L) fori > 1 (4.1). As a consequence, X is projectively normal in the embedding
given by any ample line bundle on G/B.

Our proof of these results concerning Problem 4 is only valid in characteristic zero.
In positive characteristics, it would be useful to know that the G’-module H°(G/B, L)
admits a good filtration (this was conjectured by Brundan [6, Conjecture 4.4 (ii)]). Our
analysis of restriction maps gives information on the restriction to G’ of the simple G-
module H°(G/B, L): all isotypical components which are extremal in a precise sense arise
from the quotient H%(X, L) for some induced flag variety X (4.2).

This is related to work of Sepanski [15] on boundaries of K-types of a (g, K)-module
M. He considered the cohomology of u with coefficients in M, where u is the nilradical
of the Lie algebra of a §-stable parabolic subgroup P of G, and he studied a “restriction of
cohomology” map 7: H*(u, M) — H*(u’, M) [15, Section 3]. Let X be the pull-back in
G/B of the closed orbit G’ /P? C G/P; then the map resy can be seen as a geometric version
of 7.

The simplest situation for restricting G-modules to G’ is the “multiplicity-free” case,
considered in detail in [15, Section 4]. In this case, it turns out that all G?-orbit closures
in G/B are induced flag varieties; in particular, all orbit closures are smooth (4.2). In the
general case, most orbit closures are not induced flag varieties, but the latter can be used to
construct “short” desingularizations of the former; this will be developed elsewhere.
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Notation

Throughout the paper, the ground field k is algebraically closed of characteristic # 2. We
denote by G a connected reductive group, by B a Borel subgroup of G, and by T a maximal
torus of B. The unipotent part of B is denoted by U. We denote by P a parabolic subgroup
of G containing B, and by L the Levi subgroup of P which contains 7.

Let N be the normalizer of T in G, and let W = N/T be the Weyl group. Let ® (resp.
®*; &) be the set of roots of (G, T) (resp. of positive roots, that is, roots of (B, T); of
negative roots). The set of simple roots is denoted by A.

Let g, b, 1, ... be the Lie algebras of G, B, T, .... We have the decomposition g =
toe @aeé 0q; for each a € ®, we choose a non-zero root vector X, € g,.

Let 6 be an automorphism of order 2 of G; let G’ C G be the fixed point subgroup. Then
GY is reductive by [17, Section 8]; let G?* be its connected component containing 1. For
the f-action on g, the fixed point subspace g’ is the Lie algebra of G’ by [2, Corollary 9.2].
Let 7: G — G be the map g — g~ '60(g); observe that §(x) = x~! for all x € 7(G).

1 First Results on Double Cosets
1.1  Preliminaries

We begin by collecting several lemmas on involutions of reductive groups, to be used later.
Although these results are known (see [16] and [9]), we give complete proofs because they
are very short, or simpler than existing ones.

Lemmal LetI' C G be a 6-stable connected unipotent subgroup. Then:

(i)  The product map T'? x 7(I') — T is an isomorphism.

(ii) T? is connected.

(iii) 7T)={gel|0(g) =g '}

(iv) For any subgroup T'' C G containing T, the map G — G/T sends T'"% onto (I'' /T')°.

Proof (i) follows from [2, Proposition 9.3], and it implies (ii). For (iii), let g € U such
that 6(g) = ¢~ . By (i), we can write ¢ = xy~'6(y) for a unique x € I'Y and some y € T.

Then

1 1

() ly =0(y) lyx! = x_lﬁ(yx_l)_lyx_

whence x = x~! by (i) again. Because I is unipotent and connected, it follows that x = 1.
For (iv), let ¢ € T such that gT" is in (G/T")’. Then ¢~'0(g) € T'. By (iii), we can find
7 € T such that g7'6(g) = 7~ '0(y); then gy~ ' isin I'"%. [ |

Lemma 2  Any Borel subgroup B C G contains a 0-stable maximal torus of G, and any two
such tori are conjugate in U°.

Proof Because 6(B) is a Borel subgroup of G, the group B N 6(B) is connected, solvable
and contains a maximal torus of G. Thus, it contains a §-stable maximal torus, by [17, 7.6].
Let T, T’ be two such tori. There exists ¢ € U N §(U) such that T’ = gTg~!. Because T
and T’ are #-stable, g~ '6(g) normalizes T. But g~6(g) is in U; it follows that g~'6(g) = 1,
that is, g € U?. ]
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Lemma 3  The following conditions are equivalent:

(i) Bis @-stable.
(ii) B%° is a Borel subgroup of G'.

Proof By Lemma 2, we can choose a 0-stable maximal torus T of B.
(1)=-(ii) Because B is §-stable, the same holds for U. Let B~ be the Borel subgroup of
G such that B~ N B = T; then B~ and its unipotent part U~ are §-stable as well. Because
g=udt®u", wehave
o =’ et e ).

It follows that b? and (b~)? are opposite Borel subalgebras of g’

(ii)=(i) Observe that # acts on ®@; if moreover B is not f-stable, then we can find
a € (@) N d~. Now X, + 0(X,) and X_,, + (X_,) are eigenvectors of T? in g° of
opposite weights. Because b? is a Borel subalgebra of the Lie algebra of the reductive group
GY, it follows that one of these vectors is in b?, in particular in b. This contradicts the
assumption that & € &~ and f(«) € P*. [ |

Lemma4  For a 0-stable maximal torus T of G, the following conditions are equivalent:

(i) T is contained in a 0-stable Borel subgroup of G.
(ii) T?0 is a regular subtorus of G.

All 0-stable maximal tori T satisfying (i) or (ii) are conjugate under G*°. If moreover G? is
connected, then T is connected as well.

Proof (i)=-(ii) We may assume that B is f-stable. If there exists & € ®* which vanishes
identically on T%0, then, for all t € T, we have a(t@(t)) = 1, because 10(¢) € T?Y. Thus,
o+ 8(a) = 0, which contradicts the fact that 8(a) € ®*.

(ii)=(i) Observe that T? is a maximal subtorus of G’. Let T be a Borel subgroup of el
containing T%°, and let B be a Borel subgroup of G containing I'. Then T = B%?, whence B
is 6-stable by Lemma 3. Furthermore, B contains T, because B contains the regular subtorus
%90,

If moreover G is connected, then B? is connected (because it is contained in the nor-
malizer in G? of the Borel subgroup I'). Because BY = U’T?, it follows that T? is connected.

Let T’ be another #-stable maximal torus of G satisfying (ii). Then T%° and T’ are
maximal subtori of G??, so that they are conjugate in this group. Taking centralizers in G,
we see that T and T' are conjugate in G%, too. ]

1.2 Parametrization of Orbits

Let B(G) be the flag variety of G. Recall that the set of G’-orbits in B(G) is in bijection
with the set of G?-conjugacy classes of pairs (B, T) where B C G is a Borel subgroup, and
T C B is a §-stable maximal torus; the inverse bijection maps the G’-conjugacy class of
(B, T) to that of B. As a consequence, B(G) contains only finitely many G’-orbits (see [14,
1.2 and 1.3] for simple proofs of these results).

We begin by generalizing this to the variety P(G) of all parabolic subgroups of G.
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Proposition 1 ~ There is a bijection from the set of G?-orbits in P(G) onto the set of G’-
conjugacy classes of triples (P, B, T) where

(i) P isa parabolic subgroup of G,
(ii) B is a Borel subgroup of P such that the product P?B is open in P, and
(iii) T is a O-stable maximal torus of B.

The inverse bijection maps the G’-conjugacy class of (P, B, T) to that of P.

Proof Let P be a parabolic subgroup of G. For a Borel subgroup B of P, the product G’ P is
a union of finitely many (G, B)-double cosets. Because the quotient G’ \ G?P is a P-orbit,
it is irreducible; thus, G?P contains a unique open (G?, B)-double coset. Replacing B by a
conjugate in P, we may assume that G’B is open in G?P. It follows that PPB = (G’B) N P
is open in P. Furthermore, B contains a #-stable maximal torus by Lemma 2. Thus, there
exists a pair (B, T) satisfying (ii) and (iii).

To complete the proof, it suffices to check that all such pairs are conjugate under P,
the G?-isotropy group of the point P of P(G). Let (B’, T’) be another such pair. We can
write B’ = pBp~! for some p € P. Then P’B and P’pB are open (P’ B)-double cosets
in the irreducible variety P. Thus, they are equal, and p is in P’B: we may assume that
p € P?. Now T and p~!T’p are §-stable maximal subtori of B: by Lemma 2 again, there
exists b € B’ such that p~'T’p = bTb~'. Then T’ = pbT(pb)~' and B’ = pbB(pb)~"
with pb € PY. ]

From now on we assume that T is a 8-stable maximal torus of G; then its normalizer N
is B-stable, too. Set

V:={geG|g '0(g) € N}.

Then V is the set of all ¢ € G such that the maximal torus gTg ™! is §-stable. Clearly, V
is stable under left multiplication by G? and right multiplication by N. In fact, by [16]
and [9], any (G?, B)-double coset in G meets V, along a unique (G?, T)-double coset. As
an easy consequence of this result, we shall obtain a similar parametrization of the (G’, P)-
double cosets in G.

For g € G, define an involution %), of G by

g 1= Int(gfl) ofolnt(g) = Int(gflﬂ(g)) 00.
Then G¥ = ¢~'G’g. Observe also that
V = {g € G| Tis t,-stable}.

Set finally
VP = {g € V| G%Bis open in G’gP}.

Proposition 2 Any (G, P)-double coset in G meets V', along a unique (G’ T)-double coset.
Furthermore, V¥ is the set of all g € V such that P¥B is open in P.
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Proof Let O be a (G’, P)-double coset in G. Then O contains a unique open (G, B)-
double coset OF. The latter meets V along a unique (G’, T)-double coset OF. Let g € OF,
then G’¢B is open in G’¢P. This is equivalent to: G¥¢B is open in G%P, and also to: P¥:B
is open in P. Indeed, the G¥:-variety G¥P is the quotient of G¥s x P by the action of P¥s
defined as follows: x - (g, p) = (gx~', xp). Thus, a subset E of P is open if and only if G¥*E
is open in G¥P. ]

1.3 0-Stable Levi Subgroups

In this subsection, we assume that P contains a §-stable Levi subgroup. Let G? Dbe the set
of all g € G such that gPg~! contains a §-stable Levi subgroup. Clearly, G is a union of
(G?, P)-double cosets, which we will parametrize.

Recall that L denotes the Levi subgroup of P which contains T. We begin with the easy

Lemma5 L is0-stable, and any 0-stable Levi subgroup of P is conjugate to L in R, (P)".

Proof Let M be a §-stable Levi subgroup of P. Then M is a Levi subgroup of P N 6(P).
The latter contains L N §(L) as its Levi subgroup containing T. Thus, M and L N §(L) are
conjugate; in particular, dim L = dim M = dim L N §(L). It follows that L is §-stable. The
proof of the other assertion is similar to that of Lemma 2. ]

Let S = Z(L)® denote the connected center of L, and Ng(S) resp. Zg(S) the normalizer,
resp. centralizer of S in G. Then L = Z(S), Ng(L) = Ng(S), and these groups are 6-stable.
Let Vs = {g € G | g7'0(g) € Ng(S)}, a union of (G’, Ng(S))-double cosets contained in
GP. Finally, let VS* = VS 0 VP,

Proposition 3 Any (G?, P)-double coset in G* meets VS along a unique (G?, L)-double coset.
The latter meets VS* along a unique (G°, T)-double coset.

Proof Letg € G', then gPg~! contains a §-stable Levi subgroup of the form guLu~'g™!
for some u € R,(P). Then gu € VS so that G’¢P meets V°. If g and gu are in VS for u
as above, then gLg~! and guLu~'g ™! are §-stable Levi subgroups of gPg~!. By Lemma 5,
gug—' € G. Thus, gu € G’g, which proves the first assertion.

Let g € V5, then G’¢P meets V' along a unique (G?, T)-double coset. Moving g in its
(G?, L)-double coset, we may assume that there exists u € R, (P) such that gu € V', Then
gPg¢~! = guPu~'g~! contains a §-stable Levi subgroup, and contains the §-stable maximal
torus guTu~'g~!. By Lemma 5, it follows that guLu~'g~! is f-stable, that is, gu € V5. By
the first part of the proof, gu € G’g. ]

Set VS := G?\ VS/L; then we have VS = G\ G*/P = G’ \ VS /T. The action of N;(S)
on VS by right multiplication induces an action of the Weyl group W (S) := Ng(S)/Zs(S)
on V5. We interpret the orbit set VS /W (S) in terms of certain conjugacy classes of §-stable
tori, as follows.

Let S be the set of all conjugates of S by elements of G. This is an affine variety, isomor-
phic to G/Ng(S), on which 6 acts. Let 87 be the fixed point set of 6, then 8/ is the set of
conjugates of S by elements of VS. It is an affine variety, on which G acts by conjugation.
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The bijective map VS /Ng(S) — 87: gNG(S) > gSg~! is G’-equivariant; thus, the induced
map VS/W(S) — 8/G is bijective. In the case that P = B this was observed in [13,
Proposition 2.7].

For S a maximal k¢-split torus of G, where kg C k is a subfield of k and G, 6 are de-
fined over ko, the sets VS and 87 / G? are discussed in more detail in [8]. This includes a
characterization of 8¢ / GY; the case where S is a maximal torus is treated in [7].

1.4 Fixed Points in Parabolic Subgroups

For a parabolic subgroup P D B, we describe the subgroup P?, and its image in the quotient
of P by its unipotent radical R, (P). Recall that P is the semidirect product of R, (P) with its
Levi subgroup L O T; we shall identify P/R,,(P) with L.

Theorem 1 ~ With notation as above, R,(P)? is a connected unipotent normal subgroup of
PY. Furthermore, the quotient P? /R, (P)? (the image of P’ in L) is the semidirect product of
LNo (RM(P)) (the unipotent radical of LNO(P), a parabolic subgroup of L) with L? (a reductive

group).

Proof Set Q := 6(P), a parabolic subgroup of G containing T, and set M := 6(L), the
Levi subgroup of Q containing T. Then P N Q is -stable and contains P’ as its fixed point
subgroup.

We claim that PN Q is the semidirect product of its unipotent radical R, (PN Q) with the
#-stable connected reductive subgroup L N M. Furthermore, R,(P N Q) contains R,(P) N
R,(Q) as a #-stable connected normal subgroup, and the quotient

R,(PNQ)/Ru(P) NR,(Q)
is the direct product of LN R, (Q) with R, (P) N M, where 6 acts by exchanging both factors
(this analysis of P N Q is implicit in [3, pp. 86-88].)
Indeed, both R, (P)NQ and PNR,(Q) are unipotent normal subgroups of PN Q; because
they are normalized by T, they are connected. Furthermore, we have isomorphisms

(PNQ)/(R(P)NQ)(PNRUQ) = (LNQ)/(LNR,(Q) XLNM

and the latter is a connected reductive group. Thus, the unipotent radical of PN Q is

(Ru(P)N Q) (PN R,(Q)) = (Ru(P) NR,(Q)) (Ru(P) N M) (LN R,(Q)),

a product of three subgroups with trivial pairwise intersections. And R,(P) N R,(Q) is a
normal subgroup of R, (P N Q), and contains all commutators [g, h] where g € LN R,(Q)
and h € R,(P) N M. This proves the claim.

By that claim and Lemma 1(iv), R, (P)Y = (RM(P) N RM(Q))Q is connected, and the
quotient

0
P'/R,(P)’ = (PN Q)/(Ru(P) NRu(Q)
is the semidirect product of the group of all pairs (g, 9(g)) where ¢ € LN R,(Q), with
(LN M)? = L. Tt follows that the image of P? in L is the semidirect product of L N R,(Q)

with L. Furthermore, LN Q is a parabolic subgroup of L, with unipotent radical LN R, (Q)
and Levi subgroup L N M. ]
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1.5 Decomposition of Double Cosets

With notation as in 1.2, let ¢ € V. We shall decompose G?¢P into (G?, B)-double cosets.
Set L, := L Npy(L), then L, is a 1), -stable Levi subgroup of the parabolic subgroup L N
1)g(P) of L, and T is a ), -stable maximal torus of L, with normalizer N N L,. Furthermore,
LV = L}, Set
Vg i={x € Lg | x "4ho(x) € NN Lg}.

By the results recalled in 1.2, the map L% \ V, /T — LV \ L, /BN L, is bijective.
Finally, denote by N, the set of all n € NN L such that BN L, is contained in n(BNL)n™".
Then, by the Bruhat decomposition, the map N, /T — L N ),(P) \ L/B N L is bijective.

Proposition 4  With notation as above, we have

Ggp= | J GlginB.
1€V,,n€N;

Eurthermore, G?¢gInB = G%gl'n'B if and only if: LY<IT = LYI'T and nT = n'T. This defines
a bijection
LY\ Vy/T x N /T — G’ \ G’gP/B.

Proof Observe that
G\ GP¢P/B =g 'G%’%\ ¢ 'G’¢P/B = G¥ \ G¥P/B.

Now any (GYs, B)-double coset in G¥sP meets P, along a unique (P¥s, B)-double coset.
Thus, we have
G%\ G%P/B = P% \ P/B=1Im(P%)\ L/BNL

where Im(P%) is the image of PY% in L. But Im(P%) = L N e (Ru(P))L“/’g by Theorem 1.
For simplicity, set Q := v, (P), Q; := QN L (a parabolic subgroup of L, with Levi subgroup
L;) and By := BN L (a Borel subgroup of L); then L N v, (Ru(P)) = R,(Qr). Each
(Ru(QL)LwK,BL)—double coset in L is contained in a unique (Qp, B)-double coset. The
latter meets N, along a unique T-coset. This defines a surjective map

Im(P%)\ L/BNL = R,(Qu)LY \ L/B; — Q. \ L/Br = N,/T.
For n € N, the fiber of this map over nT is
R(Qp)LY \ QunBy /By, = Ry(Qu)L% \ Q1/QNnByn~" = L%\ Ly/BN L.

Indeed, as nB;n~" contains BN L, the image of Q. NnByn~ ' in Ly = Q;/R,(Qy) is BN L.
Finally, each (LY, BN Lg)-double coset in L, meets V, into a unique (LY:, T)-double coset.
Tracing through all identifications completes the proof. ]
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2 Combinatorics and Geometry of Orbits
2.1 Parabolic Subgroups Associated with Double Cosets

Any double coset G’¢B defines two parabolic subgroups containing B: its right stabilizer,
that is, the set of all x € G such that G’¢gBx = G’¢B, and the right stabilizer of its closure
G¢B. We shall describe both parabolic subgroups in terms of the combinatorics of root
systems and involutions, which we recall below; as an application, we shall characterize the
set V' introduced in 1.2.

For each a € ®, let U, C G be the corresponding root subgroup. Each simple root
o € A defines a parabolic subgroup P, of semisimple rank one, generated by Band U_,,.
We denote by L, the Levi subgroup of P, which contains T, and by G, the quotient of L,
by its center; then G, is isomorphic to PSL(2). We shall identify U, and U_, with their
images in G,, and we denote by T, the image of T; we set B, = U, T,.

Recall that any parabolic subgroup P O B is generated by the P,’s that it contains. We
write P = Pr where II is the set of all @ € A such that P, C P. We denote by ®1; the
sub-root system of ® generated by II, and by Wy its Weyl group; we also denote V* by VL,

Because T is 0-stable, 8 acts on ® by an involution, still denoted by 6. Recall from [16]
that o € ® is called real if 0(a)) = —a, imaginary if 0(a) = « and complex if 6(a) # +a.
For real or imaginary a, the group L, is 6-stable, and 6 acts on G,; recall that « is compact if
0 fixes G, pointwise (then « is imaginary). Observe that « is compact (resp. non-compact
imaginary) if and only if 6(X,) = X, (resp. 0(X,) = —Xa)-

The following result is an easy consequence of [13, Section 4] or of Theorem 1.

Lemma 6 Theimage of P20 in G, is

G, if a is compact,

T,, if a is non-compact imaginary,

a copy of the multiplicative group, distinct from T,, if « is real,
B, if ais complex and in 6(D*),

B_, if ais complex and in (P ™).

As a consequence, o is compact (resp. o € 0(®7); a € §(®")) if and only if P B is equal to
P, (resp. is a proper open subset of Py; is closed in P,).

For g € 'V, the involution 9, = Int (g_le(g)) o 0 acts on @ as well; if w, denotes the
image in W of g716(g) € N, then Pe(a) = wyf(a) for all o € @. Thus, we can distinguish
between ), -real, imaginary, complex, . . . roots. Let A be the set of all 1),-compact simple
roots.

Proposition5 Letg € V.

(i)  The right stabilizer of G’¢B is generated by the P, where o € A,..

(i) The right stabilizer of G’¢B is generated by the Po, where cv is in A or in A N 1)y (P7).
(iii) G’gBis open in GOgP (thatis, g € V1) if and only if IL is contained in A, U 1)g(®7).
(iv) GY¢Bis closed in G’gP if and only if I1 is contained in 1)g(®").
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Proof Asin 1.5, we may reduce to the case where g = 1; then ¢, = 0.

(i) The right stabilizer of G?B is generated by the P, (av € A) such that G’B = GP,,.
This amounts to: P/ B = P,,, that is, « is §-compact by Lemma 6.

(i) Similarly, the right stabilizer of G?B is generated by the P, (@ € A) such that
G’B = GYBP, = GP,, that is, G’B is open in G’P,,. This amounts to: P B is open in Py,
or to: « is either #-compact or in 6(® 7).

(i) is a direct consequence of (ii).

(iv) Observe that GB is closed in G’P if and only if P/B is closed in P. If this holds,
then, intersecting with P, for a € II, we have that PZB is closed in P,. By the Lemma, we
then have « € 6(®™).

Conversely, if IT C §(®*), we claim that BN6(B) is a Borel subgroup of PNE(P). Indeed,
the assumption implies that BN 8(B) = BN §(P) = P N #(B). Thus, BN 6(B) contains
both R,(P) N #(P) and P N G(RM(P)). By the structure of P N §(P) given in the proof of
Theorem 1, it follows that BN#(B) contains the unipotent radical of PN#(P). Furthermore,
BN O(B) contains BN LN O(L); the latter is a Borel subgroup of the Levi subgroup L N §(L)
of PN O(P). This proves the claim.

This claim and Lemma 3 imply that B’ is a Borel subgroup of P’. This implies in turn
that P? /B’ is complete, hence closed in P/B. It follows that PB is closed in P. [ |

In the case where P = G, we obtain the following result, which is also a consequence of
[9, Proposition 9.2 and Lemma 1.7].

Corollary 1 ~ With notation as above, G’gB is open (resp. closed) in G if and only if each
simple root is either 1y-compact or in 1, (®7) (resp. each simple root is in 1g(®*), that is, B
is Yg-stable).

2.2 Isotropy Groups
Let g € V. The G’-isotropy group of the point gP of G/Pis G’ N gPg~! = gP¥g~!. To
describe this group, or, equivalently, PY:, we need more notation. Set

I, == {a € I | ¢)g(r) € 1}

Then I, contains II. (the set of all ¥,-compact roots of II); we denote by @1, Py, the
corresponding sub-root systems of ®. Let ®. (resp. ®¢) be the set of all ),-compact (resp.
complex) roots.

Finally, recall that a parabolic subgroup Q of G is split with respect to an involution % if
the parabolic subgroup 1 (Q) is opposite to Q, that is, if Q N ¥ (Q) is a Levi subgroup of Q
and of ¥(Q).

Proposition 6

(i) Thegroup Ly := LN ,(L) is equal to Ly ; in particular, @y, is 1g-stable. Furthermore,
Pe(@ry, — Ppp,) = Py — Py -

Thus, P, is the set of all 1g-compact roots of Pn,, and P, N Ly is a minimal 1)g-split
parabolic subgroup of L,.
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(i) The group PYs is the semi-direct product of a connected unipotent normal subgroup of
dimension

1
D¢ — Spp |+ S18C Ne(27)] + |2 — Ppy |
with the reductive subgroup Lg)g .

Proof (i) By Proposition 5(iii), we have IT C 1,(®~ U II) whence
Pf; C (P U Ppp).

It follows that B N L is contained in ¢, (P~) N L. The latter is a parabolic subgroup of L,
with L N 1),(L) as its Levi subgroup containing T. Thus, there exists a subset II" C II such
that L N 9g(L) = Lir/. Then we must have IT" = II,.

Let o € I, — II.. Then ¢, () € @ﬁg — &, by Proposition 5(iii) again. Thus, the coef-
ficients of ¢, (c) on all elements of I, — II. are non-positive, one of them being negative.
It follows that zbg(@ﬁg — @} ) consists of negative roots.

(ii) By Theorem 1, the group L¥s = L;fg is a maximal reductive subgroup of P, and
R, (PY¢) is an extension of L N e (RU(P)) by R, (P)¥:. Furthermore, L N g (RM(P)) is the
unipotent radical of L N 1), (P), a parabolic subgroup of L with Levi subgroup L,. Thus, we
have

dim L N4 (R (P)) = |®f; — fy |-

To compute the dimension of R, (P)¥, we use the notation of the proof of Lemma 3. The
X, (@ € @ — Pyy) are a basis of the Lie algebra of R, (P). Thus, a basis of the Lie algebra
of R,(P)¥: consists of the X, (where o € @ — @) together with the X, + v, (X,) (where
a is complex and both a, ¥, () are in & — ®py).

Observe that

(I):.r — & = (I):.r — (@H N ’g[)g(@H)) = CI);r — CI)Hg = (I):.r - @H[.

Finally, we check that the set of all complex roots o € ®* — ®yy such that 1), (o) € " — Py
is £ N1, (®"). Indeed, there is no complex o € ®f; such that ¢,(a) € ®* (otherwise,
Ye(a) € @7 by the proof of (i), whence a € ®py,; but any complex root a € Py, satisfies
Yy(a) € &7, by (i)). And for v € ®* — Pyy, the condition: ¢, (o) € &* — Ppy is equivalent
to: Y, (a) € ®*. [ ]

As an application, we describe the isotropy groups for the G?-action on G/B; this sharp-
ens [16, Proposition 4.8]. Let g € V, then the G’-isotropy group of gB/B is

1

= gBlg .

(gBg~

By Proposition 5(i), the parabolic subgroup Pa, is the right stabilizer of G¢B, and more-
over g € V<. Clearly, La, is 1),-stable, and its derived subgroup consists of 1,-fixed points.
It then follows from Theorem 1 that

Py = Ru(Pa )" LY.

Intersecting with B, we obtain the following
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Corollary 2 With notation as above, BV is the semi-direct product of the connected unipo-
tent normal subgroup
Ry(Pa)"(UNLa,)

with the diagonalizable subgroup TV, and we have

. , 1
dim R, (Pa,)% = 5\@; N ahe(@1)].

2.3 Affine Orbits

Let g € VP. We give a criterion for the orbit G?gP/P C G/P to be affine. As G is reductive
and the isotropy group G’ NgPg~! is equal to gP¥sg !, this is equivalent to: P¥ is reductive.

This condition holds if P is 1),-split: then P% = (P N wg(P)) Y — L% Another example
of an affine orbit occurs when the symmetric space G/G? is Hermitian, that is, there exists
a parabolic subgroup Q C G and a Levi subgroup M C Q such that G** = M. Then
Q’ = M is reductive; the corresponding orbit G’Q/Q = G’/G"? is finite. In the general
case, we shall see that affine orbits arise from a combination of both examples.

Let A, be the set of all non-compact imaginary simple roots for v,. Write P = Py and
consider the Dynkin diagram of IIU A,,. Let A, be the union of all connected components
of this diagram which meet A, — II, and let II° be the union of the other components.
Then @1y, is the disjoint union of @10 and 3 .

Proposition 7 With notation as above, P¥s is reductive if and only if g satisfies the following
three conditions:

a) ®ry is g-stable and contains all 1),-compact roots of .
b) Prua, is g-split.
¢) A, is contained in A, UTL,.

Then P¥«0 = Lﬁ{fm, both Lo and Lx are 1g-stable, and the symmetric space Lz /L%g is
Hermitian with Levi subgroup Ly x .

Proof We use the notation of 2.2. If P¥¢ is reductive, then |®}; — ®j; | = 0 whence ®py is

tg-stable. Furthermore, [® — ®f; | = 0 whence @y contains all ¥,-compact roots, and a)
holds. Finally, |®¢ N 1), (®*)| = 0 whence

Ye(P" — Bj) =~ — P,

where ®; C ® denotes the subset of t,-imaginary roots. It follows that ®; = ®,, where
A; = AN ®;. Indeed, let § € ®f. Write 3 = > . o, then 3 — ZaeA, nqo is fixed
by v, and belongs to the convex cone generated by ®* — ®;. Thus, it also belongs to the
convex cone generated by @~ — @;. It follows that 3 — > A o = 0.

Because @17 contains all 4),-compact roots, we have Il U A; = IT U A,,. Furthermore,
®ryup, is 1g-stable and

Ye(®" — Prup,) = 27 — Priua,
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whence b) holds.

Let I be a connected component of the Dynkin diagram of IT U A, which meets II and
A, —II. Let ] be a connected component of I N IT, and let & be the sum of all simple roots
of J. Then a € ®f; and we can find § € (A, — II) N I which is connected to . Thus,
a+ [ € @, It follows that Y, (o + ) = Yy(a) + f € &*, whence a + 3 € ®; and v is
imaginary. Because @ € @1 = @y, Proposition 6 implies that v € ®yy,. Thus, INII C II..
This implies c).

Conversely, assume that a), b) and c) hold. By b), we have P¥s C Ly, and the latter
is tpg-stable. Thus, we may assume that A = ITU A,,. Let G5 be the connected adjoint
semisimple group with root system @3 ; then ), induces an 1nv01ut10n of Gz , and we

have a 1pg equivariant quotient map q: G — G Because wg fixes A pointwise, it acts on

Gz, by conjugation by an element of g(T). Thus, G— contains g(T'), and its roots are the
tpg-compact roots of @5 A+ By a) and c), this set of roots is @H A&, In other words,

b0
Gx = 4ln,az,)-
Because q_lq(LHmZ”) = Ly, it follows that G¥¢° C Ly, that is, P¥¢? = G%?, []

Corollary 3  The parabolic subgroup P is 0-split if and only if the orbit G?P/P is an open
affine subset of G/P. Then this orbit consists of all 0-split G-conjugates of P.

Proof Choose B C P such that G’B is open in G’P. Then, by Proposition 5(iii), each
a € Il is either #-compact or in 8(® 7).

If P is O-split, then O(®* — &) = &~ — &y Thus, eachaw € A — Il is in (P ). Now
Corollary 1 implies that G’B is open in G. Then G’P/P ~ G?/P? = G’/L’ is an open
affine subset of G/P.

Conversely, if G’P/P is an open affine subset of G/P, then G’B is open in G. It follows
that all imaginary roots are compact, e.g. by Proposition 6(i). Applying Proposition 7 with
A, = @, we see that P is §-split. Let now Q be a #-split conjugate of P. Write Q = gPg™!,
then G’¢P is open in G, whence G’¢P = G’Pand g € G?P. Thus, Q is conjugate to P in G.

|

2.4 Examples

1) (see [13,10.1]) Let G be a connected reductive group, B C G a Borel subgroup, and
T C B a maximal torus. Consider G = G x G with involution 6 defined by 6(g, ) =
(g2,41). Then G is the diagonal diag(G). The maximal torus T = T x T and the Borel
subgroup B = B x B are 6-stable.

The map (g1,) ~ g; ' induces a bijection G \ G/B — B\ G/B. More generally,
let P be a parabolic subgroup of G containing B; then P = P; x P, where P, and P, are
parabolic subgroups of G containing B, and we have a bijection G’ \ G/P — P, \ G/P,
which is compatible with the partial orderings given by inclusion of closures. Thus, our
results in this case can be derived more directly from the Bruhat decomposition.
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The root system of (G, T) is the disjoint union of two copies of the root system ® of
(G, T); we shall denote these copies by ® x 0 and 0 x ®. Let N be the normalizer of T in G;
then

V=1{(g,%) | ¢ & € N} = diag(G)(1 x N).

For g = (g1,) € V, let w be the image of g, 'g» in W = N/T. Then g acts on G
by Yg(x1,%) = (nx;n~',n~'xin), and on roots by ¢g(,0) = (0, w™'(@)), 1(0, ) =
(w(a), 0). In particular, there are no 1),-imaginary roots.

Let IT = (II; x 0) U (0 x II,) be a subset of the set of simple roots, and let g € V.
By Proposition 5, g € V™ if and only if w(II;) and w~!(I,) are contained in ®~. This
amounts to: w is the element of maximal length in its (W1, , Wiy, )-double coset. Further-
more, we have P; = P; x P, and

Pﬁg ={(x1,%) €EP; x Py | x; = mxan~ '} ~ Py NwPyw L.

And Py is 1g-split if and only if the parabolic subgroups P;, w(P,) are opposite. This is

also equivalent to: Pﬁg is reductive (this can be seen directly, or deduced from Proposition 7
together with non-existence of imaginary roots.)

2) (see [13,10.2]) Let G = GL, with involution # defined by (g) = (g~ !)’; then G is
the orthogonal group O,,. Let B be the Borel subgroup of G consisting of upper triangular
matrices, and let T be the maximal torus of diagonal matrices. Then T is §-stable, and B is
0-split; we have f(a) = —a forall a € @.

For g € 'V, we have wé = 1, and the map g > w, induces a bijection from G’ \ G/B =
G’ \ V/T onto the set of elements of W of order < 2, see [13, 10.2]. We identify W with the
symmetric group S,, and ® with the set of pairs (7, j) of distinct integers between 1 and #;
then A consists of the pairs o; = (,i+1), 1 < i < n—1. Wehave ¢,(i, j) = (Wg(j), wg(i));
as a consequence, the 1),-imaginary roots are the pairs (i, Wg(i)).

We claim that there are no 1,-compact roots. To see this, let I' be the copy of GL; in
G associated with the the pair (i , wg(i)). Then 1), stabilizes I', and acts there by inverse
transpose followed with conjugation by a symmetric monomial matrix. A matrix compu-
tation shows that ¥, (E; ,())) = —Ei ;) where E; ; denotes the elementary n X n matrix;
this proves the claim. As a consequence, the imaginary simple roots are the pairs (7,7 + 1)

such that w, (i) = i + 1; because w§ = 1, these simple roots are pairwise orthogonal.

Let IT be a subset of A and let g € V. By the claim and Proposition 5(iii), g € V! if and
only if wg(i) < we(i + 1) forany (i,i +1) € IL. Ifg € VI, then it follows easily that II,
consists of those pairs in II that are fixed by w,. In particular, ®1y is t,-stable if and only if
w, fixes II pointwise.

For any subset IT" of A, the parabolic subgroup Pyy/ is 1)g-split if and only if w, stabilizes
®* U @y1/ (because 1), acts on roots by —w,). This amounts to: w, € Wrp/. Using these

remarks, Proposition 7 simplifies as follows: for I C A and g € VY, the group Pﬁ“' is
reductive if and only if wy fixes II and is a product of simple transpositions with disjoint
supports.

3) (see [13, 10.5]) Let G = GL, with involution 6 such that (g) = zgz~! where
z = diag(1,...,1,—1); then G’ = GL,_, xk*. Let Band T be as in the previous example;
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then T is f-fixed, and B is §-stable. One checks that a system of representatives of G’ \ V/T
consists of the

Gijiler,. . en) > (er,... 61,6 T €, €i1,...,€j_1,6 —€n,€j,...,85_1)

(1<i<j<n)
together with the
Giit (e, .. en) = (er,...,ei1,en€,€41,...,e,-1) (1 <i<n).

Furthermore, for i < j, the corresponding involution ¢, is conjugation by the
permutation matrix associated with the transposition (ij); and 1), is conjugation by
diag(1,...,1,—1,1,...,1) where —1 occurs at the i-th place. As a consequence, for a
subset IT of A, we have: g; ; € VI if and only if o;_, and «;j are not in IL.
We sketch a geometric interpretation of this result. Consider G/B as the variety of com-
plete flags
V=WV,cV;C---CV,_,CV,=k")

where each V; is a linear subspace of dimension i. Observe that G? is the isotropy group in
G of the pair (¢, H) where £ is the line spanned by e,;, and H is the hyperplane spanned by
er,...,en—1. Forl <1< j < mn,set

Xi,j = {K S G/B | {C V]‘ andV;_; C H}

Then one checks that the X; ; are the G?-orbit closures in G/B. More precisely, denoting by
O; j the G’-orbit of g; ;B in G/B, we have

Xij =05 =05 UXi,j UXij

where X, j, is empty if a > b. In particular, the closed orbits are the X;; = O;; (1 <i < n).

The right stabilizer of G’g; ;B is the largest parabolic subgroup P*/ = P D B such
that X; ; is the pull-back of a subvariety of G/P under the projection G/B — G/P. Asa
consequence, we see that P/ is generated by the P,’s with a ¢ {ai_, aj}.

3 Closed Orbits
3.1 Parametrization of Closed Orbits

For simplicity, we assume from now on that G’ is connected; by [17], this holds if G is
semisimple and simply connected. In order to describe closed G?-orbits in G/P, it will be
convenient to choose a standard pair (B, T), that is, B C G is a 6-stable Borel subgroup,
and T C Bis a f-stable maximal torus (such pairs exist by [17, Theorem 7.5]). Then T? is
a regular subtorus of G by Lemma 4, and hence a maximal subtorus of G’. Furthermore,
B’ is a Borel subgroup of G’ by Lemma 3.

With notation as in 2.1, the 8-action on ® stabilizes ®* and hence A. Let P = Py bea
parabolic subgroup of G containing B; then 6(P) = Py). Finally, for ¢ € 'V, recall that w,
denotes the image in W of g~ 16(g).
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Proposition 8  For g € 'V, the following conditions are equivalent:

Gi) & gP is closed in G.
(ii) P N py(P) is a parabolic subgroup of G.
(iii) wy, € WnWoar.

In particular, G’¢B is closed in G if and only if wg = 1, thatis, g7'0(g) € T (this follows
also from Corollary 1).

Proof (i)=-(ii) Observe that G¥sPis closed in G, whence G¥* / P¥ is closed in G/P. Thus,
PY contains a Borel subgroup B’ of G%. In turn, B’ is contained in a Borel subgroup B’/ of
P. Then B’ is 1),-stable by Lemma 3. Thus, P N 4,(P) 2 B’ is a parabolic subgroup of G.

(ii)=-(iii) Because P M 1)g(P) contains T, it contains a Borel subgroup xBx~! for some
x € W. Then x € Wy (because xBx™' C P) and x(®*) C 1,(®* U @) (because xBx~' C
Pg(P)). But ¢y = w,0 and ®* is f-stable. Thus,

nglxﬂ(qﬁ) C " U Py

Because Ow, 1x0 € W, we must have 0w, 1x0 € Wy, that s, wy 'x € Wyqr). We conclude
that Wy € WHWQ(H).
(iii)=(i) is checked by reversing the previous arguments. [ |

The statement (i)<>(ii) also follows from [9, Lemma 1.7].

To parametrize the closed double cosets, we need more notation. Let
g: N> N/T=W

be the quotient map; then q(N?) is a subgroup of W%, Because T? is a regular subtorus of
T, we have

N (T?) = Ngo(T) = N?.

It follows that g(N?) is isomorphic to the Weyl group W (G?, T?).
Finally, let

Q= PN O(P) = Punro

be the largest 6-stable parabolic subgroup contained in P. Then 6 acts on G/Q.

Proposition 9

(i) Any closed (G’ P)-double coset in G meets g~ (W?), along a unique (Na7 q_l(Wﬁ))—
double coset. This defines a bijection from the set of closed G’ -orbits in G/P, onto q(N?) \
wo/wi.

(ii) The union of all closed G’-orbits in G/Q is the subset of all 0-fixed points; under the
projection G/Q — G/P, this subset is mapped isomorphically to the union of all closed
G?-orbits in G/P.
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Proof Let G’¢P C G be a closed double coset. As it contains a closed (G?, B)-double
coset, we may assume that G?¢gB is closed in G, too. Then the G’-orbit G’¢B/B is closed in
G/B; thus, it contains a fixed point of B’. So we may assume further that B’ C gBg~'. Then
gBg~! is O-stable by Lemma 3. Furthermore, gBg~! contains the regular torus T?, whence
it contains T. It follows that ¢ € NB; we may assume further that ¢ € N. Now, because
gBg ! is -stable, we have 6(g) € gB. Thus, g € q~'(W?). Conversely, if g € g~ (W?)
then G?¢P is closed in G by Proposition 8.

Let now g’ € G’¢P N q~'(W?). Then g’ normalizes TY and hence g’P/P is a T?-fixed
point in G’¢gP/P. The latter is a complete homogeneous space under G?. Thus, g’ €
N (T%)gP = NYgP. Because g and g’ are in g~'(W?), it follows that g’ is in Ngg(P N
q '(W?) = NPgq='(Wf}). This proves (i).

For the first assertion of (ii), let G’¢Q be a closed double class. We may assume that
g € g '(W?) by (i). Then g~'0(g) € T whence #(gQ) = ¢gQ: any closed G’-orbit in G/Q
consists of §-fixed points. Conversely, let ¢ € G such that gQ € G/Q is 6-fixed; we may
assume that g € V. Then gQg ' is §-stable, whence g~ '6(g) € Q. Butg~'6(g) € N so that
g '9(g) e NNLNO(L), and wg € Wrngan- By Proposition 8, G’¢Qis closed in G.

For the second assertion of (ii), observe that

0
Wi = (Wnno(Wn)" = Winm-

Thus, the map G/Q — G/P induces a bijection on the subsets of closed orbits. Further-
more, for g € g~ (W?), we have:

G'9Q/Q~ G /(gQg™") = G’/ (gPg~" N B(gPg "))’
=G/(gPg™ ") ~ GgP/P

because #(gPg~"') = gf(P)g~". So the map G’¢Q/Q — G’¢gP/P is an isomorphism. M

3.2 Standard Representatives

We begin by constructing a set of representatives for closed (G’, P)-double cosets in G or,
equivalently, for (q(N?), W{})-double cosets in W?. An element w € W will be called
standard if (wBw=1)? = BY.

Proposition 10~ For any w € WY, the double coset g(N?)wW} contains a unique standard
u € W? such that u(Il) C &+.

Proof By Proposition 8, GwB is closed in G. Thus, G'wB /B is a closed G?-orbit in G/B,
with wB/B as a T?-fixed point. It follows that there exists x € N? such that xwB/B is fixed
by BY. In other words, B’ = (xwBw~'x~")? . Replacing w by g(x)w, we may assume that w
is standard. Then there exist unique u, v in W such that: u(II) C ®*,v € Wy and w = uv.
Because @ stabilizes IT and &7, it follows that # and v are in W?.

We claim that (wUw™")? = (uUu~")?; then u will be a standard representative of w. For
this, denote by Ly the Levi subgroup of Pry containing T, and set Uy = U N L. Observe
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that (wUpw1)? C U. But wUpw™! C ulgu~!, and ulgu~ ' N U = uUgu~! because
u(Il) C ®*. Thus,
(wUnw™ ! C (uUpu™")".

Furthermore,
wR,(Pm)w™! = uR,(Pp)u~!

because v € Wr. As wUw™! is the semi-direct product of the -stable normal subgroup
wR,,(Pr)w™! with the §-stable subgroup wUpw™!, it follows that

wUw ™! C (wUu™)".

But (wUw™!)? = U is a maximal unipotent subgroup of G?, which implies our claim.
Let u’ be another standard representative of w such that u’/(II) C ®*. Then u'B/B
is a B?-fixed point in G’uP;/B. Under the map G/B — G/Py, the latter is mapped to
G?uPr/Pr, a complete G?-orbit with a unique B?-fixed point uPy/Pp. Thus, u’B/B is in
the fiber uPr/B, that is, u’ € uPp. Because u and u’ are in W, we have u’ € uWry. It
follows that u’ = u, as both u(II) and u’(II) are contained in ®*. [ |

We now give two characterizations of standard elements. As in 2.2, denote by ®, (resp.
®c) the set of all compact (resp. complex) roots for 8; there are no real roots because ®*
is f-stable. Let A; C A be the subset of all imaginary simple roots; then 6 acts trivially
on ®x,.

Proposition 11~ For w € WY, the following conditions are equivalent:

(i) wis standard.
(ii) ®F U DL C w(d™).
(iii) w € Wp, and @5 N . C w(®}).

Proof (i)<(ii) Asin the proof of Proposition 8, observe that w is standard if and only if
U? C wUw™ !, thatis, u” C wuw~!. Furthermore, a basis of u” consists of the X,, (o € oF)
together with the X,, + 6(X,,) (o € ®(). This basis is contained in wuw ™" if and only if
OF U BE C w(d™), because 4 stabilizes & and commutes with w.

(ii)=>(iii) We argue by induction on the length I(w). The case where w = 1 is trivial.
Otherwise, we can find o € A and 7 € W such that w = s,7 and I[(w) = I(7) + 1 where
lis the length function on W. Then w™'(a) € @~ ; thus, a ¢ ®F U ®f, that is, « is
non-compact imaginary. In particular, « € A;; as a consequence, T € WY, Purthermore,

o Nw(d) = (B N7(d)) — {a}.

Thus, ® U ®{ is contained in 7(®*). By the induction hypothesis, 7 € Wa, whence
w € Wa, as well. It follows that

Ac SW@) NPy, = w(Py).

(iii)=-(ii) If w € Wy, then w stabilizes ®* — ®A,. The latter contains all positive
complex roots. [ ]
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Examples We determine the standard elements in the cases considered in Section 2.4.

1) The pair (B, T) is standard. As there are no imaginary roots, the identity is the
unique standard element. This agrees with the fact that the unique closed orbit of diag(G)
in G/P; x G/P; is the orbit of the base point, isomorphic to G/P; N P,.

2)" We modify slightly Example 2, because the pair (B, T) is not standard there, and
G’ is not always connected. As in [13, 10.3], consider G = SL, with involution 6 given
by 6(g) = Int(dy)(g~")’, where dy € GL, maps each ¢; to e,+1_;. Then GY is the special
orthogonal group for the quadratic form g(xy, ..., x,) = Y., XiXu+1—;. The pair (B, T) is
standard, and 6 acts on roots by 6(a;) = a,—;. If n is odd, then the set A; is empty, and
the unique standard element is the identity. If n = 2n’ is even, then A; consists of the non-
compact root a,+; thus, the standard elements are 1 and the transposition (n’, n’ + 1). This
agrees with the fact that SO,,, has two closed orbits in the Grassmanian of n’-dimensional
subspaces of k2", associated with two types of null subspaces.

3) The pair (B, T) is standard, and all roots are imaginary; the compact roots are the
pairs (i, j) with 1 < i, j < n — 1. Thus, w € S, is standard if and only if w=1(1) <
w1(2) < -+ < wl(n — 1), that is, w is the image in S,, of g;; for some i, 1 < i < n;
denote this image by w;.

If IT is the complement of {a;_y,;} in A, then the standard elements w such that
w(Il) C ®* are 1, w;_; and w;. They represent the three closed G’-orbits in G/Py; =
G/P"i, consisting of all pairs (V;_, C V;)suchthat V; C H (resp. £ C V;_; Viy CH
and/ C V;.)

Let7;j: G/B — G/ P"/ be the projection. Geometrically, ;. j maps each complete flag
V to (V;_; C V;). Thus, the orbit closure X; ; is the pull-back via 7; ; of the closed orbit
Geiji’j/Pi’j. The latter identifies, via the map (V;_, C V;) — (Vi_; C V; N H), to the
variety of partial flags of dimensions i — 1, j — 1 in H. And each fiber of

Tt X,"]‘ — GQWjPi’j/Pi’j

is isomorphic to the complete flag variety for GL;_; X GL;_;;; X GL,_;, a Levi subgroup
of PiJ.
Thus, each orbit closure of GL,,—; in GL,, /B is an “induced flag variety”.

3.3 ¢-Stable Parabolic Subgroups

As an application of the results in 3.1 and 3.2, we describe the G?-conjugacy classes of 6-
stable parabolic subgroups, and their relation to parabolic subgroups of G.

Theorem 2 Let Q C G be a 0-stable parabolic subgroup; let I1 be the subset of A such that
Q is G-conjugate to Py. Then I1 is O-stable, and Q is G?-conjugate to wPpw™" for a unique
standard w € WY such that w(II) C &*.

As a consequence, Q' C G is a parabolic subgroup, G°-conjugate to (wPpw~")?. Con-
versely, any parabolic subgroup of G? is G’-conjugate to (wPgw™")? for some II and w as
above.
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Proof Letg € G such that Q = gPpg~!. Moving g in its (G, B)-double coset, we may
assume that g € V. As Q is 0-stable, we have (w,0)(Pr1) = Py1. In terms of roots, this means
that (wg6)(®* U &) = &* U ®yp. Thus,

ng0(<I>+) - ot U (I)g(n).
Because 0wy € W, it follows that Owg,0 € Wy and that w, € W1, whence
0(P) = wy ' (Pn) = P

Thus, II is §-stable.

Now the 6-stable G-conjugates of Pyy are the 6-fixed points in G/Pyy, that is, the points
with closed G?-orbit by Proposition 8. By Propositions 9 and 10, there exists h € G’ and a
unique standard w € W? such that w(IT) C ®* and that Q = hwPyw~'h~!. Then

Q" = h(wPrw "h™' D hB’h~!

so that Q’ is a parabolic subgroup of G? (this follows also from Lemma 3).
Conversely, let I' C G’ be a parabolic subgroup. For a multiplicative one-parameter
subgroup A: G,, — G, set

G\ :={g€G]| }g% A(t)gA(t™ ") exists}.

Then G(\) is a parabolic subgroup of G; moreover, all parabolic subgroups of G are ob-
tained in this way. Applying this to the connected reductive group G’, we obtain \: G, —
G? such that T' = G%(\). Then Q := G()) is a f-stable parabolic subgroup of G, and
Q’=T. [

Remark Given a parabolic subgroup I" of G’ containing B?, there may exist several -
stable parabolic subgroups Q such that Q’ = I' (e.g. if ' = B’ and there are several stan-
dard elements). And there may exist no parabolic subgroup P of G containing B such that
P! =T.

Consider for example G = SP4, the group which preserves the symplectic form ( , )
on k* such that (e;,es) = (es,e5) = 1 and (ei,ej) = 0ifi+ j # 5. Let B (resp. T)
be the standard Borel subgroup (resp. maximal torus) of G. Let 6 be the conjugation by
diag(1, —1,—1, 1), then G’ = SL, x SL, contains T, and the pair (B, T) is standard. Let o,
0 be the simple roots of (G, T') where « is short; then the roots of (G?, T) are £, £ 2a+ ).
Let I be the parabolic subgroup of G? containing T, with roots § and £(2« + 3); then I’
contains B’ but is not contained in a proper parabolic subgroup P O B.

4 Orbit Closures and Restriction of Representations
4.1 Induced Flag Varieties

From now on, we assume that the characteristic of the ground field k is zero. As in Section 3,
we also assume that G’ is connected, and we choose a standard pair (B, T). Let P be a -
stable parabolic subgroup containing B; let

m: G/B— G/P
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be the projection. The pull-back under 7 of a closed G’-orbit will be called an induced flag
variety.

Recall that any closed G?-orbit in G/P can be written as G’wP/P for a unique standard
w € WY such that w(IT) C ®*. Because w € WY, the group

Q:=wPw™!
is a f-stable parabolic subgroup of G, with
M = wLw™!

as a f-stable Levi subgroup containing T. Furthermore, Q? contains B’ (because w is stan-

dard), and
BNM =wBNLw!

(because w(II) C ®*). It follows that (BN M)? is a Borel subgroup of M?. The latter is a
Levi subgroup of Q’.
Set
X := 7~ (G’wP/P) = G’wP/B.

Then the image of X under 7 is the homogeneous space G'wP/P ~ G’/Q’, and the fiber
71 (wP/P) is isomorphic to wP/B = wL/BNL. This isomorphism is Q-equivariant, where
Q acts on wL/B N L through the quotient map Q — Q/R,(Q) =~ M. It follows that

X~ G xqp (WL/BNL) ~ G’ x (M/BN M)

where Q acts on the flag variety M /B N M through M?. This explains the terminology of
“induced flag variety”.

Let X be a character of T; then it extends uniquely to a character of B, also denoted by A.
Let £, be the associated line bundle on G/B. Then

H(G/B, L)) = Ind§(—))
(the induced module from B to G of the one-dimensional B-module with weight —X\).
This is a simple G-module with lowest weight —J, if A is dominant (against roots of B);

otherwise, H(G/B, L)) = 0.

Theorem 3  Let X be as above and let X be a dominant character of T.

(i)  The restriction map
resy: H(G/B, L) — H°(X, L))

is surjective, and H'(X, L)) = 0 forall i > 1.
(ii) We have an isomorphism of G?-modules

HO(X, L) = Ind$ HYM/B N M, Lyn)

where Q” acts on H*(M /B N M, L,,x)) via the quotient map Q° — M.

https://doi.org/10.4153/CJM-2000-012-9 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2000-012-9

286 Michel Brion and Aloysius G. Helminck

(iii) The M?-module H° (M/BN M, L, is a direct sum of simple modules with GY-anti-
dominant lowest weights.

(iv) The kernel of resx is a direct sum of simple G’-modules with lowest weights of the form
w + v where i is the lowest weight of a simple M?-submodule of H'(M/B N\ M, L,,(\),
and v is the restriction to T? of a non-trivial sum of non-compact roots in w(®* — ®pp).

Proof Under theisomorphism X ~ GP % o (M/BNM), the restriction of £ ) to X identifies
with G X L), the G’-linearized line bundle whose restriction to M /B N M is L,y
This implies (ii).

Composing resy with the restriction map

r's HY(X, L)) — H(wP/B, L)) ~ H'(M/BNM, L,\),
we obtain the restriction map
"'t H'(G/B, L)) — H(M/BN M, Ly )-

Observe that H*(M /BN M, L,,(»)) is a simple M-module with lowest weight —w(\). Fur-
thermore, '’ is non-zero (because L) is generated by its global sections) whence r'’ is
surjective. Thus, the same holds for r’. Decompose the M?-module H*(M/B N M, L,,(y))
into a direct sum of simple submodules; each of them is of the form

0 0
Ind gy (—w) = Ind$ (—w).

By (ii), the G’-module H°(X, L) decomposes into the direct sum of the corresponding

lnduced m()dules
Il‘ld 0 Illd 0 —Ww) = I]ld o (—W).
Q B ( ) B ( )

Because r’ is surjective, all these induced modules are non-zero. Thus, their lowest weight
vectors 1 = —w are G?-antidominant, which proves (iii). Furthermore, by surjectivity of
r'’, the image of resy meets all these induced modules. Because the latter are simple, resy
is surjective.

To prove vanishing of H'(X, L)) for i > 1, observe that Rim, Ly = 0 forall j > 1,
because A is dominant. Thus, we obtain isomorphisms

H'(X, L)) ~ H(G*wP/P,m, L)) = H(G? Q¥ 7, L)).

The restriction of 7, L to the G?-orbit G’ /Q’ is the homogeneous vector bundle associ-
ated with the Q’-module H*(M/B N M, £,,(»)). By (iii), this module is semisimple and
its lowest weights are G?-antidominant. So H (G’ / QY 7w Ly) = 0fori > 1, by Bott’s
theorem.

LetJ C Og/p be the ideal sheaf of X in G/B, then the kernel of resy is H*(G/B,J @ L)).
To study the lowest weight vectors of this G’-module, we embed it into a larger module, as
follows. Let P~ be the parabolic subgroup of G such that P~ NP = L;set Q~ := wP~w™ L,
Then G/B contains

Q wP/B=wP P/B
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as an open affine subset, stable under Q. Thus, the restriction map
H°(G/B,J® L)) — H(Q wP/B,J ® L))

is injective, and equivariant for the action of (Q~)?. The latter is a parabolic subgroup
of G, with unipotent radical R,(Q~)? and Levi subgroup M? (because Q™ is a §-stable
parabolic subgroup of G). Furthermore, (Q~)? meets Q? along M?, their common Levi
subgroup containing T?. Thus, Q’ and (Q™)? are opposite parabolic subgroups of G’.

Let B~ be the Borel subgroup of G such that B~ N B = T. Then B~ is #-stable, and
(B™)? is the Borel subgroup of G’ such that (B~)? N B? = T?. Because B’ is contained in
Q’, it follows that (B~)? is contained in (Q™)?. Thus, (B~)? is the semidirect product of
R,(Q7)? with

B~ M)’ =B nwiw ")’ = (wB nLw ")’

(indeed, B~ N wLw™! = w(B~ N L)w~! because w(II) C ®%).
By the Bruhat decomposition, the product map

R,(Q7) x wP/B— Q" wP/B

is an isomorphism. Combining this with Lemma 1(i), we obtain a (Q~ )a-equivariant iso-
morphism
R(Q7)? x 7(Ri(Q7)) x wL/BNL ~ Q wP/B

which restricts to an equivariant isomorphism
R,(Q7) x {1} x wL/BN L ~ (G'wP N Q wP)/B.

Let p: Q" wP/B — T(Ru(Q*)) and ps: Q- wP/B — wL/BNL be the corresponding pro-
jection maps. Let I be the ideal of k[R,(Q7)] (the algebra of regular functions on R,(Q7))
consisting of functions that vanish at 1. Then the isomorphism above identifies J|o-,p/5
with p3I, and L [o- wp/ With p3 L. Thus, we obtain a (Q™ )?-equivariant isomorphism

H(Q wP/B,J® L)) ~ k[R,(Q)!]1 @I @ H (WL/BNL,L)).

It identifies the subset of (B~)?-eigenvectors in the left hand side (that is, the subset of
lowest weight vectors), with the subset of (B~ N M )0—eigenvectors in

I®@H(WL/BNL,Ly) =1 H(M/BNM, L,

The latter being the tensor product of two M?-modules, each of its lowest weights is the
sum of a weight of T? in J with a lowest weight of H(M/BN M, L)

To complete the proof, we check that the weights of T? in J are non-trivial sums of non-
compact roots in w(®* — ®yy). Indeed, the T-variety R,(Q™) is isomorphic to a module
with set of weights w(®~ — ®y;). Thus, the T?-variety T(RU(Q_)) is isomorphic to a
module with weights a| v where « is a non-compact element of w(®~ —®yy). Furthermore,
the weights of T? in I are non-trivial sums of opposites of weights in 7 (RM(Q* )). [ |
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For )\ as above, let V), be the dual of the G-module H°(G/B, L)) and let €, C V) be
the G-orbit closure of a highest weight vector. If X is regular, then C, is the affine cone
over G/B for its projective embedding associated with £; this cone is smooth outside the
origin.

Recall that C) is normal, with a rational singularity at the origin (see [12] for a proof in
arbitrary characteristics). We shall see that the same holds for the affine cone X, C €), over
X C G/B; because X is smooth, X), is smooth outside the origin.

Corollary 4 Let X be as above and let \ be a regular dominant weight. Then X), is normal,
with a rational singularity at the origin.
Proof Let
oo o0
R=@H (X, LY = @ HX, Luy).
n=0 n=0

Because X is smooth, the algebra R is normal. The algebra S of regular functions over X}, is
the subalgebra of R generated by H°(X, L)). But

resy: H*(G/B, L,y) — H°(X, L)
is surjective, and the graded algebra
P H(G/B, L)
n=0

is generated by its elements of degree 1. It follows that S = R, that is, X}, is normal.
Let p: Z — X, be the blow-up of the origin. Then Z is the total space of the line bundle
over X, dual of the restriction of L. It follows that Z is smooth, and that

H'(Z,0,) = @ H'(X, L)
n=0

forall i > 0. By Theorem 3, we thus have H'(Z, 9,) = 0 for i > 1. This means that X has
rational singularities. ]

4.2 Restriction of Representations

We begin by applying Theorem 3 to the decomposition of simple G-modules into G-
modules.

The map T — T?: t + t6(¢) is surjective, and its restriction to T? is the map t + 2.
Using this map, we shall identify the character group of T? with the set of all x +60() where
X is a character of T.

Corollary5  Let w be a G’-dominant character of T° and let \ be a dominant character of
T. Then we have for multiplicities:

[Id§(—A) : Ind§ (—w)] > [Indy, (—w(N)) : Ind 0 (—w)]
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with equality if \+0(X\)—2w™ 1 (w) is a sum of positive roots in ®r;. Furthermore, ifIndg; (—w)
occurs in the G?-module Indg(—)\), then X + O(\) — 2w~ (w) is a sum of positive roots.

Proof The inequality follows from surjectivity of resy and the structure of H°(X, L))
(Theorem 3(i) and (ii).)

Assume moreover that A + 8(\) — 2w~ !(w) is a sum of positive roots in ®17. To prove

0
equality, it is enough to check that Indgg (—w) does not occur in the kernel of resy. Oth-
0

erwise, we can write w = —pu — v where Indgg (w) occurs in H*(M/B N M, L)), and
v is a sum of roots in w(®* — ®yy) (Theorem 3(iv).) In particular, y is a weight of T? in
H°(M/B N M, L,). But each weight of T in that module can be written as —w(\) + x
where  is a sum of elements of w(®};). It follows that

w(\) + O(W(/\)) +2u = w(/\ + H(A)) +2u
is a sum of elements of w(®j;). Thus,
A+ —2w N w) = X+ 0N + 2w () + 2w H(v)

is a sum of positive roots, not all in @y, a contradiction.
The proof of the latter assertion is similar. ]

Define a polytope C(G, 6, \) as the convex hull of the set of all G’-dominant weights w

such that Indg: (w) occurs in the G’-module Ind§()). Applying Corollary 5 with IT = &,
we see that w(\) is a vertex of C(G, 0, ) and that the corresponding multiplicity is 1. More
generally, for a subset I C A such that w(II) C ®*, we see that G(WLHW_l, 0, W()\))
is a face of C(G, 0, \) and that the multiplicity functions agree on that face. This will be
developed elsewhere, in relation to “moment polytopes” [4].

For a reductive subgroup K of G, the pair (G, K) is multiplicity-free if the multiplicity of
any simple K-module in any simple G-module is at most 1. Equivalently, a Borel subgroup
Bk C K has a dense orbit in G/B.

By [10] or [5], any multiplicity-free pair with G semisimple and simply connected is a
product of (the simply connected cover of) one of the following indecomposable pairs:

(SLnaGLn71)7 (Soﬂysonfl)a (SOS7SPin7)-
In particular, multiplicity-free pairs are symmetric; their associated polytopes are described

in [15]. We check that the corresponding orbit closures in flag varieties have a very nice
structure.

Proposition 12 If (G, G’) is multiplicity-free, then any G’-orbit closure X C G/B is an
induced flag variety; writing X = G’ x » (M/B N M), the pair (M, M?) is multiplicity-free
as well. In particular, all G?-orbit closures in G/B are smooth.
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Proof We may assume that the pair (G,G’) is indecomposable. In the case of
(SL,, GL,—1), our assertion has been checked in Example 3 in 3.2. Consider the case of
(SO,,S0,_1) where n = 2n’ is even. Then G/B is the set of all flags

V=WVeCcViC---CVup_)

of null subspaces of k" of dimensions 0,1,...,n" — 1. Let H C k*' be the unique
hyperplane stabilized by SO;,_1. One checks that the SO,,/_;-orbit closures of SO,,/_;
in SO,, /B are the

X; = {Z | Vi C H}

for 1 < i < n’. In particular, X,/ is the closed orbit, isomorphic to the flag variety of
SO,,7—1. More generally, one checks that the map

mi: V= VoCVyC---C Vi)

makes X; an induced flag variety with M/M? = SO3,:_5; / SO2,1 2 1.
The case of (SO, SO,_1) where n = 2n’ + 1 is odd, is similar: the variety G/B is now

the set of all flags

V=(V,CViC-CVy)
of null subspaces of dimensions 0,1,...,n’. The orbit closures of SO,, in SO3,/4+1 /B
are the varieties X, ..., X, _; defined as above, plus two varieties X},, X2, defined by:

V, C H (the unique hyperplane of k**"*! stabilized by SO,,'), and V,» belongs to a fixed
orbit under SO,,/ of n’-dimensional null subspaces of K (there are two such orbits).
Then X}, and X2, are the closed orbits, isomorphic to the flag variety of SO,,; the other
X;’s are induced flag varieties as above.

Finally, the analysis of (SOg, Spin,) follows from that of (SOg, SO7) by applying a triality
automorphism. ]

4.3 An Example Where resy is Not Surjective

As in Example 2 in 3.2, consider G = SL,, with involution @ defined by §(g) = (g~ ')". The
standard Borel subgroup B of G is the isotropy group of the flag

Kckkc---Ck

where each k' is the span of the i first basis vectors of k”. And G/B is the variety of complete
flags
V=WV,cvViCc---CV,.1 CV,=k")

where each V; is a linear subspace of dimension i.

For1 <i < n—1,letX; C G/B be the subset of flags V such that restriction of g to
Vi is degenerate (where g denotes the standard quadratic form on k"). Then the pull-back
of X; in G is the subset of all g such that restriction of g~!q to k' is degenerate, that is, the
discriminant of g~ 'g|i is zero. This discriminant is invariant for the action of SO, by left
multiplication, and is an eigenvector of weight 27; for the action of B by right multiplica-
tion; here 7; denotes the highest weight of the simple GL,-module A'k". Thus, X; is the
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divisor of a SO,-invariant section of L,,,. Observe that each X; is irreducible if n > 3
(which we will assume from now on.)
Let A be a weight, then we have an exact sequence of sheaves on G/B:

0— L/\—2ﬂ'f — L)\ — L)\ ®(‘)G/B OX‘ — 0.
If moreover \ is dominant, then H'(G/B, L) = 0 and we obtain an exact sequence
H°(G/B,L)) — H(X;, L)) = H(G/B,Ly_2r,) — O.

Now choose
)\ = Z xjﬂ'j
j#
where the x; are integers such that x; > 0if |[j —i| > 2,and x; > 1if |j —i] = 1. Let
a1, ..., 0,1 be the simple roots and sy, . . ., s, the corresponding simple reflections; let
p be the half sum of positive roots. Then

ssA=2mi+p)—p=A—-2mi+a; =A— Z j
Jli—il=1

is dominant, and hence H!(G/B, L) _,,,) is non-zero by Bott’s theorem. In other words,
the restriction map
resy.: H'(G/B, L)) — H°(X;, L))

is not surjective.

Let P C G be the stabilizer of the line k'. Then G/P is the projective space of lines in k"; it
contains a unique closed SO ,-orbit Q, the quadric (g = 0). Let 7: G/B — G/P be the pro-
jection, then X; = 7~ 1(Q); in particular, X; is smooth. Thus, Theorem 3 does not extend
to all parabolic subgroups (here P is not conjugate to a f-stable parabolic subgroup!).

Observe finally that resy, is surjective for all X; as above, and all regular dominant
weights ). In fact, we do not know any example of a symmetric subgroup G’ C G, a G’-
orbit closure X C G/B and a regular dominant weight A such that resy: H°(G/B, L)) —
HO(X, L) fails to be surjective.
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