CONJUGACY CLASSES AND NILPOTENT VARIETY OF A REDUCTIVE MONOID

MOHAN S. PUTCHA

ABSTRACT. We continue in this paper our study of conjugacy classes of a reductive monoid M. The main theorems establish a strong connection with the Bruhat-Renner decomposition of M. We use our results to decompose the variety M_{nil} of nilpotent elements of M into irreducible components. We also identify a class of nilpotent elements that we call standard and prove that the number of conjugacy classes of standard nilpotent elements is always finite.

Introduction. In the study of a reductive group G, the variety G_{uni} of unipotent elements plays an important role, cf. [1]. In particular, this variety is irreducible and has only finitely many conjugacy classes. We will study in this paper the variety M_{nil} of nilpotent elements in a reductive monoid M with zero. While the two varieties are isomorphic when M is the multiplicative monoid of a finite dimensional algebra, this is in general not true. In fact M_{nil} is usually a reducible variety. We will obtain in this paper a description of the irreducible components of M_{nil} . We accomplish this by first refining our earlier results on conjugacy classes as the double $B \times B$ orbit BeyB. Next the order on these conjugacy classes is determined within the Renner monoid R. This yields a description of the irreducible components of M_{nil} .

The number of conjugacy classes of M_{nil} is usually infinite. In an earlier paper we showed that the number of conjugacy classes of rank 1 nilpotent elements is always finite. We generalize this result to standard (exponent = 1 + rank) nilpotent elements.

1. **Preliminaries.** Let M be a reductive monoid over an algebraically closed field k, cf. [6], [14]. We will assume that M has a zero 0. Let G denote the reductive unit group of M. The $G \times G$ orbits (= \mathcal{I} -classes) of M form a finite lattice \mathcal{U} with order defined by:

$$J_1 \leq J_2$$
 if $J_1 \subseteq J_2$.

There is a cross-section Λ of idempotents $e_J, J \in \mathcal{U}$ so that

$$e_{J_1}e_{J_2} = e_{J_2}e_{J_1} = e_{J_1 \wedge J_2}$$
 for all $J_1, J_2 \in \mathcal{U}$.

Then $\Lambda \cong \mathcal{U}$ is called the *cross-section lattice* of M. It turns out that

$$T = C_G(\Lambda) = \{ g \in G \mid ge = eg \text{ for all } e \in \Lambda \}$$

© Canadian Mathematical Society 1998.

Received by the editors January 29, 1997.

AMS subject classification: Primary: 20G99, 20M10; secondary: 14M99, 20F55.

https://doi.org/10.4153/CJM-1998-044-7 Published online by Cambridge University Press

is a maximal torus of G. If $\Gamma \subseteq \Lambda$, then

$$P = P(\Gamma) = \{g \in G \mid ge = ege \text{ for all } e \in \Gamma\},\$$
$$P^{-} = P^{-}(\Gamma) = \{g \in G \mid eg = ege \text{ for all } e \in \Gamma\}$$

are opposite parabolic subgroups of G relative to T. In particular $B = P(\Lambda)$ and $B^- = P^-(\Lambda)$ are opposite Borel subgroups of G relative to T. If $X \subseteq M$, then

$$E(X) = \{e \in X \mid e^2 = e\}$$

is the idempotent set of X. Clearly E = E(M) is a partially ordered set if we define:

 $e \leq f$ if ef = fe = e.

Moreover,

$$E(M) = \{x^{-1}ex \mid x \in G, e \in \Lambda\}.$$

If dim T = n, then all maximal chains in Λ , E(M), $E(\overline{T})$ have the same length, n. In particular this yields a *rank* function

rk: $M \rightarrow \{0, \ldots, n\}$

such that

rk(0) = 0, rk(1) = n.

Let

$$\Lambda_{\min} = \{e \in \Lambda \mid \operatorname{rk}(e) = 1\}$$
$$\Lambda_{\max} = \{e \in \Lambda \mid \operatorname{rk}(e) = n - 1\}$$

Let $a \in M$, rk(a) = m. Then there is a smallest positive integer t such that $rk(a') = rk(a'^{+1})$. Then a' lies in a subgroup of M and

(1)
$$\operatorname{rk}(a) > \operatorname{rk}(a^2) > \cdots > \operatorname{rk}(a') = \operatorname{rk}(a'^{-1}).$$

So $rk(a') \le rk(a) - t + 1$. We will call a standard if,

(2)
$$\operatorname{rk}(a') = \operatorname{rk}(a) - t + 1$$

We note that an element of rank ≤ 1 is necessarily standard. An element *a* is *nilpotent* if $a^t = 0$ where *t* is as in (1). Then *t* is the *exponent* of *a*. Clearly then *a* is standard if rk(a) = t - 1. We note that in the case of the full matrix monoid $M_n(k)$, a nilpotent element *a* is standard if and only it has atmost one non-zero Jordan block.

As usual let $W = N_G(T)/T$ denote the Weyl group of G with generating set S of simple reflections, length function l and Bruhat-Chevalley order \leq , cf. [1], [2]. Then by the Bruhat decomposition,

$$G = \bigsqcup_{x \in W} B x B$$

and for $x, y \in W$,

 $x \leq y \iff BxB \subseteq \overline{ByB}.$

If $x \in W$, then we denote by \dot{x} , a coset representative of $N_G(T)$. If $I \subseteq S$, then $W_I = \langle I \rangle$ is a (standard) parabolic subgroup of W and

$$P_I = BW_IB, \quad P_I^- = B^-W_IB^-$$

are (standard) opposite parabolic subgroups of G with Levi decomposition

$$P_I = L_I U_I, P_I^- = L_I U_I^-, L_I = P_I \cap P_I^-.$$

In particular

$$B = TU$$
, $B^- = TU^-$, $T = B \cap B^-$.

If $K \subseteq I$, then define $K \triangleleft I$ if K is a union of some components of I with respect to the Coxeter graph structure of S. Clearly \triangleleft is a transitive relation and for all $J \subseteq S$,

$$K \triangleleft I \Rightarrow J \cap K \triangleleft J \cap I.$$

For $I \subseteq S$, let

$$D_I = \{ y \in W \mid \ell(yw) = \ell(y) + \ell(w) \text{ for all } w \in W_I \}$$
$$D_I^{-1} = \{ y \in W \mid \ell(wy) = \ell(y) + \ell(w) \text{ for all } w \in W_I \}$$

Then by [1; Chapter 2], for all $y \in D_I^{-1}$,

(3)
$$y^{-1}(B \cap L_I)y \subseteq B$$
 and $yBy^{-1} \subseteq U_I^-B$.

Now $W = D_I W_I = W_I D_I^{-1}$. Hence associated with $x \in W$ is a unique element of D_I^{-1} (and also of D_I). We will need to associate an element of D_I^{-1} in a different way. For $x, y \in W$, define:

$$x \equiv {}_{l}y \quad \text{if} \bigcap_{i \ge 0} x^{i} W_{l} y^{-i} \neq \emptyset.$$

Clearly \equiv_{l} is an equivalence relation on W. We also note that

(4)
$$x \equiv {}_{I}wxw^{-1} \quad \text{if } w \in W_{I}$$
$$x \equiv {}_{I}ux \quad \text{if } u \in \bigcap_{i \ge 0} x^{i}W_{I}x^{-i}$$

PROPOSITION 1.1. Let $x \in W$. Then $x \equiv {}_{l}y$ for a unique $y \in D_{l}^{-1}$. Moreover $\ell(y) \leq \ell(x)$.

PROOF. Let

$$x_1 = x = w_1 y_1, \quad w_1 \in W_I, \quad y_1 \in D_I$$

$$x_2 = y_1 w_1 = w_2 y_2, \quad w_2 \in W_I, \quad y_2 \in D_I^{-1}$$

$$x_3 = y_2 w_2 = w_3 y_3, \quad w_3 \in W_I, \quad y_3 \in D_I^{-1}$$

- n-l

Now

$$x_{j+1} = y_j w_j = w_j^{-1} (w_j y_j) w_j = w_j^{-1} x_j w_j.$$

Hence by (4),

(6)
$$x_1 \equiv {}_{I}x_2 \equiv {}_{I}x_3 \equiv \cdots$$

Also

$$\ell(x_{j+1}) = \ell(y_j w_j) \leq \ell(y_j) + \ell(w_j) = \ell(w_j y_j) = \ell(x_j).$$

Hence

 $\ell(x_1) \geq \ell(x_2) \geq \cdots$

So for some N,

$$\ell(x_N) = \ell(x_{N+1}) = \cdots$$

Hence for $j \ge N$

$$y_j w_j = w_{j+1} y_{j+1}, \quad \ell(y_j w_j) = \ell(y_j) + \ell(w_j).$$

Since $y_j \in D_l^{-1}$, we see by the exchange condition [2; Theorem 5.8] that for $j \ge N$,

$$y_{j+1} = y_j u_j, \quad u_j \in W_I, \ \ell(y_{j+1}) = \ell(y_j) + \ell(u_j).$$

In particular

$$\ell(y_N) \leq \ell(y_{N+1}) \leq \cdots$$

Hence there exists $K \ge N$ such that

 $y_K = y_{K+1} = \cdots$

 $y_K w_j = w_{j+1} y_K.$

So for $j \ge K$,

So

$$y_K w_i y_K^{-1} = w_{i+1} \in W_i.$$

Hence

$$w_K \in \bigcap_{i\geq 0} y_K^{-i} W_I y_K^i.$$

So by (4), (6)

$$x = x_1 \equiv {}_I x_K = w_K y_K \equiv {}_I y_K \in D_I^{-1}$$

Clearly $\ell(y_K) \leq \ell(x_K) \leq \ell(x)$.

Next we prove uniqueness. Let $y, z \in D_I^{-1}$ such that $y \equiv Iz$. Then there exists

$$w \in \bigcap_{i \ge 0} y^i W_l z^{-i}.$$

Let $w_0 = w$ and for $i \ge 1$,

(7)
$$w_i = y^{-1} w_{i-1} z = y^{-i} w z^i \in W_I.$$

https://doi.org/10.4153/CJM-1998-044-7 Published online by Cambridge University Press

832

Now $w_1 = y^{-1}wz$ and hence

$$(8) wz = yw_1$$

Since $z \in D_I^{-1}$,

(9)
$$\ell(w) + \ell(z) = \ell(yw_1) \le \ell(y) + \ell(w_1).$$

By (8), $w^{-1}y = w_1z^{-1}$. Since $y \in D_I^{-1}$,

(10)
$$\ell(w) + \ell(y) = \ell(w_1 z^{-1}) \le \ell(z) + \ell(w_1).$$

Adding (9), (10), we see that $\ell(w) \leq \ell(w_1)$. Thus by (7),

(11)
$$\ell(w) \leq \ell(w_1) \leq \ell(w_2) \leq \cdots.$$

If N = |W|, then by (7), $w_N = w$. Hence by (11), $\ell(w) = \ell(w_1)$. By (9), (10), $\ell(y) = \ell(z)$. Since $y, z \in D_I^{-1}$, we see by (8) and the exchange condition that y = z. Let $I \subseteq S$. Then for all $J \subseteq S$,

$$D_I^{-1} \subseteq (D_I^{-1} \cap D_J) W_J.$$

Hence for all $y \in D_l^{-1}$, we see by [1; Theorem 2.7.4] that

(12) $W_I \cap y W_J y^{-1}$ is a standard parabolic subgroup.

Hence

$$W_{I} \cap y W_{I} y^{-1} = W_{I_{1}}, \quad I_{1} \subseteq I$$
$$W_{I} \cap y W_{I_{1}} y^{-1} = W_{I_{2}}, \quad I_{2} \subseteq I_{1}$$
$$W_{I} \cap y W_{I_{2}} y^{-1} = W_{I_{3}}, \quad I_{3} \subseteq I_{2}$$
$$\vdots$$

Let $K = K_0 \triangleleft I$. Then by (12),

$$W_{I} \cap y W_{K_{0}} y^{-1} = W_{K_{1}}, \quad K_{1} \triangleleft I_{1}$$
$$W_{I} \cap y W_{K_{1}} y^{-1} = W_{K_{2}}, \quad K_{2} \triangleleft I_{2}$$

:

Let

(13)
$$D_I^*(K) = \{ y \in D_I^{-1} \mid y \in D_{K_j} \text{ for all } j \ge 0 \}.$$

We note that

(14)
$$D_I^*(\emptyset) = D_I^{-1}, \quad D_I^*(I) = D_I \cap D_I^{-1}.$$

COROLLARY 1.2. Let $y \in D_l^*(K)$, $z \in W_K$, $yz \equiv ly' \in D_l^{-1}$. Then $\ell(y') \ge \ell(y)$. If $\ell(y) = \ell(y')$, then y = y'.

PROOF. Let $X_0 = K$ and for $i \ge 0$

$$X_{i+1} = K_{i+1} \setminus \bigcup_{j=0}^k X_j \triangleleft K_{i+1}.$$

Then

(15)
$$X_i \triangleleft X_i \sqcup X_j, \ X_j \triangleleft X_i \sqcup X_j \quad \text{for } i \neq j.$$

Let

$$X = X_0 \sqcup X_1 \sqcup \cdots = K_0 \cup K_1 \cup K_2 \cup \cdots$$

Now for $i \ge 0$,

$$W_I \cap y W_{X_i} y^{-1} \subseteq W_I \cap y W_{K_i} y^{-1} \subseteq W_{K_{i+1}} \subseteq W_X$$

Hence by (15),

(16) $W_l \cap y W_X y^{-1} \subseteq W_X.$

Since $y \in D_X$,

(17)
$$\ell(yv) = \ell(y) + \ell(v) \quad \text{for all } v \in W_X.$$

Now we apply the algorithm (5) in Proposition 1.1 to yz, along with the exchange condition and (17) to obtain:

 $yz = v_1yz_1, v_1 \in W_I, z_1 \in W_K, yz_1 \in D_I^{-1}.$

Then $v_1 = y(zz_1^{-1})y^{-1} \in W_X$ by (16). So

 $yz_1v = v_2yz_2, v_2 \in W_I, z_2 \in W_X, yz_2 \in D_I^{-1}.$

Then $v_2 = y(z_1v_1z_2^{-1})y^{-1} \in W_X$ by (17). Continuing,

$$yz_iv_i = v_{i+1}yz_{i+1}, v_{i+1} \in W_I, z_{i+1} \in W_X, yz_{i+1} \in D_I^{-1}.$$

Then as in Proposition 1.1, for some j, $yz \equiv {}_{l}yz_{j} \in D_{l}^{-1}$, $z_{j} \in W_{X}$. By (17), $l(yz_{j}) = l(y) + l(z_{j})$. This completes the proof.

THE RENNER MONOID $R = \overline{N_G(T)}/T$. This is a finite inverse monoid with unit group W and idempotent set $E(\tilde{T})$. Moreover

$$R = W \Lambda W, \quad E(\bar{T}) = \bigcup_{x \in W} x^{-1} \Lambda x$$

By [12], the Bruhat decomposition for G can be extended to M as:

(18)
$$M = \bigsqcup_{r \in R} \operatorname{Br} B$$

If $\Gamma \subseteq E(\overline{T})$, let

$$W(\Gamma) = \{ x \in W \mid xe = ex \text{ for all } e \in \Gamma \}.$$

Let $e \in \Lambda$. Then

(19)
$$W(e) = W_I \quad \text{for some } I = \lambda(e) \subseteq S$$
$$W_e = \{x \in W \mid xe = ex = e\} = W_K \quad \text{for some } K \triangleleft I.$$

Also let

(20)
$$D(e) = D_l, \quad D^*(e) = D_l^*(K), \quad D_e = D_K.$$

Then by (14),

$$D^*(e) = D(e) \cap D(e)^{-1} \quad \text{if } e \in \Lambda_{\min}$$
$$D^*(e) = D(e)^{-1} \quad \text{if } e \in \Lambda_{\max}.$$

We note that W(e) is the Weyl group of $L(e) = C_G(e)$ and W_e is Weyl group of G_e where

 $G_e = \{g \in G \mid ge = e = eg\}^c.$

If $r \in WeW$, then

r = xey, $x \in D_e$, $y \in D(e)^{-1}$.

This is the standard form of r. Let $r_1 = xey$, $r_2 = sft$ in standard form. Define

(21)
$$r_1 \le r_2$$
 if $e \le f$, $x \le sw$, $w^{-1}t \le y$ for some $w \in W(f)W_e$.

Then by [4],

(22)
$$r_1 \leq r_2 \iff \operatorname{Br}_1 B \subseteq \overline{\operatorname{Br}_2 B}.$$

Let $e, f \in \Lambda, y \in D(e)^{-1}$. Then

$$Beyfy^{-1} = eC_B(e)yfy^{-1}$$

= $ey \cdot y^{-1}C_B(e)y \cdot fy^{-1}$
 $\subseteq eyBfy^{-1}$, by (3).
 $\subseteq eyfBy^{-1}$
= $eyfy^{-1} \cdot yBy^{-1}$.

It follows that if $h = e \cdot yfy^{-1}$, then Bh = hBh. So $h \in \Lambda$. Thus we have the following analogue of (12):

(23)
$$e \cdot yfy^{-1} \in \Lambda$$
 for all $e, f \in \Lambda, y \in D(e)^{-1}$.

The monoid analogue of the Coxeter-Dynkin diagram is the type map $\lambda: \Lambda \to 2^S$ where λ is as in (19). λ along with the Tits building determines the (biordered set) E(M), cf. [9]. The determination of all possible type maps remains an important open problem. However the problem has been solved in [9] when $|\Lambda_{\min}| = 1$. These are called *J-irreducible monoids* of type I where $\lambda(e) = I$, $\Lambda_{\min} = \{e\}$. Such monoids arise as the lined closures of irreducible representations of a semisimple groups. For *J*-irreducible monoids of type I, λ has the following description. Let

(24)
$$\Lambda_I = \{e_X \mid X \subseteq S, \text{ no component of } X \text{ is contained in } I\} \cup \{0\}.$$

Define $e_X \leq e_Y$ if $X \subseteq Y$ and let

$$\lambda_I(e_X) = X \cup \{ \alpha \in I \mid \alpha\beta = \beta\alpha \text{ for all } \beta \in X \}.$$

Then $\Lambda_I \cong \Lambda$.

2. Conjugacy classes. Let $a, b \in M$. Then a is conjugate to $b (a \sim b)$ if $b = a^x = x^{-1}ax$ for some $x \in G$. If $X, Y \subseteq M$, then we write $X \sim Y$ to mean that every element of X is conjugate to an element of Y and every element of Y is conjugate to an element of X. We will further refine here our earlier results on conjugacy classes [7], [8], while at the same time finding some surprising connections with the Bruhat-Renner decomposition (18).

LEMMA 2.1. Let $y \in D(e)^{-1}$, $H = C_G(e^z | z \in \langle y \rangle)$. Then for all $b \in C_B(e)$, $h \in H$, ebby $\sim eh'y$ for some $h' \in H$.

PROOF. Let $L = C_G(e)$. Then by (3),

(25)
$$\dot{y}^{-1}(U \cap L)\dot{y} \subseteq U = (U \cap L)U_I.$$

Let $V_0 = 1$ and for $i \ge 1$,

$$V_i = \bigcap_{j=0}^{i-1} \dot{y}^j (U \cap L) \dot{y}^{-j} \cap \dot{y}^j U_l \dot{y}^{-i} \subseteq U \cap L$$
$$V = \bigcap_{i \ge 0} \dot{y}^j (U \cap L) \dot{y}^{-i} \subseteq H.$$

If N = |W|, then clearly $V_i = 1$ for $i \ge N$. Let

$$U_j = V_j \cdots V_0, \quad j \ge 0.$$

Then since U is a product of root subgroups in any order, we see by (25) that $U \cap L = U_N V$. Also

$$\dot{y}^{-i}V_1\dot{y} \subseteq U_i, \ \dot{y}^{-1}V_{i+1}\dot{y} \subseteq V_i \quad \text{for } i \ge 1.$$

So

(26)
$$\dot{y}^{-1}U_{i+1}\dot{y} \subseteq U_I U_i, \quad i \ge 0.$$

Now

$$bh \in (U \cap L)TH = U_N VTH = U_N H.$$

So

$$bh = u_1h_1$$
 for some $u_1 \in U_N$, $h_1 \in H$.

Suppose $u_1 \in U_{i+1}$, $i \ge 0$. Then

$$eu_1h_1\dot{y} = e\dot{y}\cdot\dot{y}^{-1}u_1h_1\dot{y}\sim\dot{y}^{-1}u_1h_1\dot{y}\cdot e\dot{y}$$
$$=\dot{y}^{-1}u_1\dot{y}\cdot\dot{y}^{-1}h_1\dot{y}e\dot{y}.$$

By (26), $\dot{y}^{-1}u_1\dot{y} = vu_2$ for some $v \in U_I$, $u_2 \in U_i$. Also $h_2 = \dot{y}^{-1}h_1\dot{y} \in H$. So

$$ebh\dot{y} \sim vu_2h_2e\dot{y} = veu_2h_2\dot{y} = eu_2h_2\dot{y}.$$

Hence by induction $ebh\dot{y} \sim eh'\dot{y}$ for some $h' \in H$.

Let $e \in \Lambda$ and let $D(e), D^*(e)$ be as in (20). Let $y \in D(e)^{-1}, H = C_G(e^z \mid z \in \langle y \rangle)$. Define

$$M(ey) = eHy$$
$$G(ey) = H \Big/ \prod_{z \in \langle y \rangle} H'_{e}$$

where

$$H'_{e^z} = \{h \in H \mid he^z = e^z h = e^z\}.$$

Clearly \dot{y} yields a natural map and automorphism,

(27)
$$\xi: M(ey) \to G(ey), \quad \sigma \in \operatorname{Aut} G(ey)$$

where $\xi(ehy)$ is the coset of h and $\sigma(h) = \dot{y}h\dot{y}^{-1}$. If $a, b \in G(ey)$, then a is σ -conjugate to b if $ga\sigma(g)^{-1} = b$ for some $g \in G(ey)$. Let

$$\tilde{M}(ey) = \bigcup_{g \in G} g \cdot M(ey) \cdot g^{-1}.$$

THEOREM 2.2. Let $e \in \Lambda$. Then (i) If $y \in D(e)^{-1}$, then

$$\tilde{M}(ey) = \bigcup_{g \in G} g \cdot BeyB \cdot g^{-1}$$

(ii) GeG is the disjoint union:

$$GeG = \bigsqcup_{y \in D^*(e)} \tilde{M}(ey).$$

(iii) If $y \in D(e)^{-1}$, $a, b \in M(ey)$, then $a \sim b$ in M if and only if $\xi(a)$, $\xi(b)$ are σ -conjugate in G(ey), where ξ , σ are as in (27).

PROOF. (i) Let $H = C_G(e^z | z \in \langle y \rangle)$. Then \dot{y} yields an automorphism σ of H given by: $\sigma(h) = \dot{y}h\dot{y}^{-1}$. Then by (3), $\sigma(B \cap H) = B \cap H$. So if $h \in H$, then by [15; Lemma 7.3], there exists $g \in H$ such that $gh\sigma(g)^{-1} \in B \cap H$. Hence

$$eh\dot{y} \sim g \cdot eh\dot{y} \cdot g^{-1} = egh\sigma(g)^{-1}\dot{y} \in e(B \cap H)y \subseteq BeyB.$$

Also $BeyB \sim Bey = eC_B(e)y$. Combined with Lemma 2.1, we see that $M(ey) \sim BeyB$.

(ii) Let $I = \lambda(e)$. If $x \in W$, then by Proposition 1.1, $x \equiv ly$ for some $y \in D(e)^{-1}$, $l(y) \leq l(x)$. Hence by [8; Theorem 2.1, 2.6], every element of GeG is conjugate to an element of M(ey) for some $y \in D(e)^{-1}$. Moreover if $y_1, y_2 \in D(e)^{-1}$, then $M(ey_1) \sim M(ey_2)$ if and only if for some $x \in W$, $ey_1 \sim ex$ in R and $x \equiv ly_2$. In such a case, write $y_1 \approx y_2$. If $y_1 \not\approx y_2$, then by [8], no element of $M(ey_1)$ is conjugate to an element of $M(ey_2)$. We can assume that $\ell(y)$ is minimum in the \approx -class of y. Then if $ey \sim ey'$, $y' \in D(e)^{-1}$, then $\ell(y') \geq \ell(y)$. We claim that $y \in D^*(e)$. Suppose $y = y'z^{-1}$, $\ell(y) = \ell(y') + \ell(z) > \ell(y)$,

$$z \in W(e,\ldots,e^{y^{-i}}) \cap W_{e^{y^{-i}}}.$$

Then in R,

(28)
$$ey' = eyz \sim zey = ezy = ey \cdot z^{\nu} \sim z^{\nu} \cdot ey = \cdots \sim z^{\nu'} \cdot ey = ey.$$

This contradiction shows that $y \in D^*(e)$. Next let $y_1, y_2 \in D^*(e)$ such that $y_1 \approx y_2$. Let $\ell(y_1) \ge \ell(y_2)$. Then by [8; Theorem 2.6] and (4), there exists $z \in W_e$ such that $zy_1 \equiv _l y_2$. So $y_1z \equiv _l y_2$. By Proposition 1.1 and Corollary 1.2, $y_1 = y_2$. This proves (ii).

(iii) This is proved in [7; Theorem 2.4].

Let \leq denote the transitive relation on *R* generated by:

1. If $r_1 \leq r_2$, then $r_1 \leq r_2$.

2. If $y \in D(e)^{-1}$, $x \in W$, then $eyx \preceq xey$. Let

$$R^* = \{ ey \mid e \in \Lambda, y \in D^*(e) \}.$$

THEOREM 2.3. (i) \leq is a partial order on \mathbb{R}^* . (ii) M is the disjoint union:

$$M = \bigsqcup_{r \in R^*} \tilde{M}(r).$$

(iii) If $r_1, r_2 \in R^*$, then

$$\tilde{M}(r_1) \subseteq \overline{\tilde{M}(r_2)} \iff r_1 \preceq r_2.$$

(iv) If
$$r \in R^*$$
, then $\overline{\tilde{M}(r)} = \bigsqcup_{\substack{r' \in R^* \\ r' \preceq r}} \tilde{M}(r')$

PROOF. (ii) This follows from Theorem 2.2. (iii) For $r \in R$, let

$$X(r) = \bigcup_{g \in G} g \cdot \operatorname{Br} B \cdot g^{-1}.$$

If $r \in R^*$, then by Theorem 2.2, $X(r) = \tilde{M}(r)$. For $r \in R$, G acts on $\overline{X(r)}$ by conjugation and B stabilizes $\overline{\operatorname{Br} B}$ under this action. Since G/B is a projective variety, it follows that

(29)
$$\overline{X(r)} = \bigcup_{g \in G} g \cdot \overline{\operatorname{Br} B} \cdot g^{-1} = \bigcup_{r' \leq r} X(r').$$

Let $e \in \Lambda$, $y \in D(e)^{-1}$, $x \in W$. Let $L = C_G(e)$. Then

$$BeyxB \sim Beyx = e(B \cap L)yx \sim xe(B \cap L)y$$
$$= xey \cdot y^{-1}(B \cap L)y$$
$$\subseteq xeyB, \quad by (3)$$
$$\subseteq BxeyB.$$

Hence

(30)
$$X(eyx) \subseteq X(xey) \quad \text{for } y \in D(e)^{-1}, \ x \in W.$$

Also

$$BxeyB \sim eyBx$$
$$\subseteq \bigcup_{x' \leq x} Beyx'B, \text{ by [13; Theorem 1.4].}$$

Hence

(31)
$$X(xey) \subseteq \bigcup_{x' \le x} X(eyx') \text{ for } y \in D(e)^{-1}, x \in W.$$

Note also that

$$eyx' \leq x'ey \leq xey$$
 for $y \in D(e)^{-1}$, $x' \leq x$.

By (20), (30), for all $r, r' \in R$,

$$r' \preceq r \Longrightarrow X(r') \subseteq \overline{X(r)}.$$

Now let $e \in \Lambda$, $x \in D^*(e)$, $r \in R^*$ such that $X(ex) \subseteq \overline{X(r)}$. Then by (29), (30), (31), there exists $x_1 \in W$ such that $ex_1 \preceq r$ and $e\dot{x} \in X(ex_1)$. Choose x_1 such that $\ell(x_1)$ is minimum. Then applying the algorithm (5) in Proposition 1.1 and using (30), (31) and the minimality of $\ell(x_1)$, we see that $e\dot{x} \in X(evy)$ for some $y \in D(e)^{-1}$, $v \in W(e^{\alpha} | \alpha \in \langle y \rangle)$ such that $evy \preceq ex_1$ and $\ell(vy) = \ell(x_1)$. Now

$$BevyB \sim Bevy = eC_B(e)vy.$$

By Lemma 2.1, it follows that $e\dot{x}$ is conjugate to an element of $M(ey) \subseteq X(ey)$. Also $ey \leq vey = evy \leq r$. Hence $\ell(y) = \ell(x_1)$. We claim that $y \in D^*(e)$. Otherwise $y = y_1 z^{-1}$, $\ell(y) = \ell(y_1) + \ell(z) > \ell(y_1)$,

$$z \in W(e,\ldots,e^{v^{-i}}) \cap W_{e^{v^{-i}}}.$$

Then $y_1 \in D(e)^{-1}$ and

$$ey_1 = ey \cdot z \preceq zey = ezy = ey \cdot z^{y} \preceq z^{y} \cdot ey = \cdots \preceq z^{y_i} \cdot ey = ey.$$

Hence $ey_1 \leq ey$. Also by (28), $ey \sim ey_1$ in R. By [8; Theorem 2.6], $M(ey) \sim M(ey_1) \subseteq X(ey_1)$. Hence $e\dot{x} \in X(ey_1)$, $ey_1 \leq r$, $\ell(y_1) < \ell(x_1)$. This contradiction shows that $y \in D^*(e)$. By Theorem 2.2 (ii), x = y. Hence $ex \leq r$, proving (ii).

(iv) This follows from the proof of (iii).

(i) Let $r_1, r_2 \in \mathbb{R}^*$ such that $r_1 \leq r_2 \leq r_1$. Then $\widetilde{M}(r_1) = \widetilde{M}(r_2)$. Since this is an irreducible variety, there exist non-empty open subsets O_1, O_2 such that $O_1 \subseteq \widetilde{M}(r_1)$ and $O_2 \subseteq \widetilde{M}(r_2)$. In particular $\widetilde{M}(r_1) \cap \widetilde{M}(r_2) \neq \emptyset$. By Theorem 2.2, $r_1 = r_2$. This completes the proof.

EXAMPLE 2.4. \leq is not a partial order on R. If $M = M_3(k)$, then

$$\begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \leq \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \preceq \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Let $e \in \Lambda$, $y \in D(e)^{-1}$. Then by (23), $e \cdot yey^{-1} \in \Lambda$. So again by (23),

$$e \cdot y e y^{-1} \cdot y^2 e y^{-1} = e \cdot y (e \cdot y e y^{-1}) y^{-1} \in \Lambda.$$

Continuing, we see that

$$f = e \cdot y e y^{-1} \cdot y^2 e y^{-2} \cdots y^{N-1} e y^{1-N} \in \Lambda$$

where N = |W|. Hence $(ey)^N = fy^N = f$. So

(32) $(ey)^N \in \Lambda \quad \text{for all } y \in D(e)^{-1}.$

In particular

$$y \in W_f$$
, $ey \in M_f = \{a \in M \mid af = fa = f\}^c$.

So ey is a nilpotent element of $R(M_f)$ and the study of conjugacy within M(ey) reduces to studying conjugacy within $C_G(G_f)$ and conjugacy within $M_f(eY)$. See [5; Theorem 4.1]. We note that every element of $M_f(eY)$ is nilpotent in M_f . We are therefore naturally led to studying nilpotent elements in reductive monoids.

3. Nilpotent variety. While the variety G_{uni} of unipotent elements in a reductive group G is always irreducible, the variety M_{nil} of nilpotent elements in a reductive monoid M is usually not irreducible. We will use the results of the previous section to decompose M_{nil} into irreducible components. Let R_{nil}^* denote the set of nilpotent elements in R^* .

THEOREM 3.1. (i) Let $e \in \Lambda$, $e \neq 0$, $y \in D^*(e)$. Then $ey \in R^*_{nil}$ if and only if $y \notin W(f)$ for all $f \in \Lambda_{\min}$ with $f \leq e$

(ii) M_{nil} is the disjoint union:

$$M_{\rm nil} = \bigsqcup_{r \in R^*_{\rm nil}} \tilde{M}(r).$$

(iii) The irreducible components of M_{nil} are $\tilde{M}(r)$ where r is a maximal element of R_{nil}^* with respect to the partial order \leq .

PROOF. (i) Suppose ey is not nilpotent. Then by (32), there exists $f \in \Lambda_{\min}$ such that eyf = fey = f. This implies that $f \leq e$ and $y \in W(f)$. Conversely suppose $f \in \Lambda_{\min}$,

 $f \le e$ such that $y \in W(f)$. Then eyf = efy = fy. So $(ey)^i f = fy^i$ for all *i*. So ey is not nilpotent.

(ii) It is easy to see that $\tilde{M}(r)$ has a nilpotent element if and only if r is nilpotent in R. In this case every element of $\tilde{M}(r)$ is nilpotent. Hence (ii) follows from Theorem 2.3.

(iii) This follows from Theorem 2.3 since each $\tilde{M}(r)$ is irreducible.

We will now apply Theorem 3.1 to two special cases. By a *canonical monoid* on *G*, we mean a \mathcal{J} -irreducible monoid of type \emptyset . Such monoids are obtained by taking the lined closure of an irreducible representation of a semisimple group with the highest weight being in the interior of the Weyl chamber. They are also related to the canonical compactification of a reductive group. We refer to [10] for details. In the case of $SL_n(k)$ such a monoid is obtained by taking the lined closure of the representation:

$$A \longrightarrow \bigotimes_i \wedge^i A.$$

We will also consider the *dual canonical monoid* (see [11]) where the cross section lattice of the canonical monoid is turned upside down. For $SL_n(k)$ such a monoid is obtained by taking the lined closure of the representation:

$$A \longrightarrow \bigoplus_i \wedge^i A.$$

THEOREM 3.2. (i) Let M be a canonical monoid with $\Lambda_{\max} = \{f_{\alpha} \mid \alpha \in S\}$, where $\lambda(f_{\alpha}) = S \setminus \{\alpha\}$. Then M_{nil} has |S| irreducible components: $\widetilde{M}(f_{\alpha}\alpha)$, $\alpha \in S$.

(ii) Let M be a dual canonical monoid with $\Lambda_{\max} = \{e\}$. If S has t components, then M_{nil} has $2^{|S|-t}$ irreducible components: $\overline{\tilde{M}(ey)}$ where y is a Coxeter element of W of length |S|.

PROOF. (i) Now

$$\Lambda = \{e_X \mid X \subseteq S\} \cup \{0\}$$

with $\lambda(e_X) = X$. For $\alpha \in S$, let $f_\alpha = e_X$ where $X = S \setminus \{\alpha\}$. Let $X \subseteq S$, $e_X y \in R_{nil}^*$. Then y starts with $\alpha \notin X$. So $e_X y \leq f_\alpha \alpha$. By Theorem 3.1 (ii), $f_\alpha \alpha \in R_{nil}^*$. The result now follows from Theorem 3.1 (iii).

(ii) Now

 $\Lambda = \{1\} \cup \{e_X \mid X \subseteq S\}$

with $0 = e_S$ and $\Lambda_{\max} = \{e_{\emptyset}\}$. Let $e = e_{\emptyset}$. Let $X \subseteq S, X \neq S$. Then $W(e_X) = W_{e_X} = W_X$. Let $e_X y \in R_{nil}^*$. By Theorem 3.1(ii), $y \notin W_Y$ for any proper subset Y of S containing X. Thus y involves each $\alpha \in S \setminus X$. Thus $y \ge z$ for some Coxeter elements of $W_{S\setminus X}$ of length $|S \setminus X|$. Let v be a Coxeter element of W_X of length |X|. Then vz is a Coxeter element of W of length |S|. Since $v \in W_{e_X}, e_X y \le e_X z \le e_V z$. Since $W(e) = 1, \le e_X e_X$. Also if $x \in W$ is a Coxeter element of length |S|, then by Theorem 3.1(i), $e_X \in R_{nil}^*$. It is a consequence of induction and the exchange condition that the number of Coxeter element of length |S| is $2^{|S|-t}$. This completes the proof.

EXAMPLE 3.3. Let

$$M = \{A \otimes B \mid A, B \in M_4(K), A'B = BA' \text{ is a scalar matrix}\}.$$

Then $S = \{\alpha - \beta - \gamma\}$ and *M* is a *J*-irreducible monoid of type $\{\beta\}$. Hence

$$\Lambda_{\max} = \{e_1, e_2, e_3\}, \quad \lambda(e_1) = \{\alpha, \beta\}, \quad \lambda(e_2) = \{\alpha, \gamma\}, \quad \lambda(e_3) = \{\beta, \gamma\}.$$

The maximal elements with respect to \leq as well as \leq of R_{nil}^* are:

$$\{e_1\gamma, e_2\beta\alpha, e_2\beta\gamma, e_3\alpha\}.$$

Correspondingly the irreducible components of M_{nil} are:

 $\overline{\tilde{M}(e_1\gamma)}, \quad \overline{\tilde{M}(e_2\beta\alpha)}, \quad \overline{\tilde{M}(e_2\beta\gamma)}, \quad \overline{\tilde{M}(e_3\alpha)}.$

CONJECTURE 3.4. The maximal element of R_{nil}^* with respect to \leq are also the maximal element of R_{nil}^* with respect to \leq .

4. Finiteness. We study in this section the problem of when the number of conjugacy classes within M(ey) is finite.

THEOREM 4.1. Let $e \in \Lambda$, $y \in D(e)^{-1}$. Then the following conditions are equivalent: (i) $\tilde{M}(e_V)$ has finitely many conjugacy classes.

(ii) $\tilde{M}(ey)$ is a single conjugacy class.

(iii) G(ey) is a torus and for all $f \in E(\overline{T})$ with $f^y = f, f \in \overline{\prod_{z \in \{y\}} T_{e^z}}$. In this case ey is nilpotent.

PROOF. (i) \Rightarrow (iii). Let σ denote the automorphism of G(ey) associated with \dot{y} . By Theorem 2.2, G(ey) has finitely many σ -conjugacy classes. So for some $x \in G(ey)$, the σ -conjugacy class of x is dense in G(ey). Let θ denote the automorphism of G(ey) given by: $\theta(g) = x\sigma(g)x^{-1}$. So the map:

$$g \to g\theta(g)^{-1} = gx\sigma(g)^{-1} \cdot x^{-1}$$

from G(ey) to G(ey) is dominant. By [15; 10.2],

$$G(ey)_{\theta} = \{g \in G(ey) \mid \theta(g) = g\}$$

is finite. By [15; Corollary 10.12], G(ey) is solvable. Since G(ey) is reductive it follows that G(ey) = T' is a torus. So

$$T' = T/T_1, \quad T_1^c = \overline{\prod_{z \in \langle y \rangle} T_{e^z}}.$$

Hence $\sigma = \theta$ and T'_{σ} is finite. Now let $f \in (E(\overline{T})$ such that $f^{\gamma} = f$. Let $y^{n+1} = 1$,

$$T_2 = \{t \cdot t^{\mathcal{Y}} \cdots t^{\mathcal{Y}^n} \mid t \in T_f\}.$$

Then T_2 is a torus and $f \in \overline{T}_2$. Clearly the image of T_2 in T' is contained in T'_{σ} . Since T'_{σ} is finite, $T_2 \subseteq T_1$. So $f \in \overline{T}_1$. In particular $0 \in \overline{T}_1$. This implies that $\prod_{z \in \langle y \rangle} e^z = 0$ and hence ey is nilpotent.

(iii) \Rightarrow (ii). Let $y^{n+1} = 1$,

$$T_{\mathsf{I}} = \{t \cdot t^{\mathsf{y}} \cdots t^{\mathsf{y}^{\mathsf{y}^{\mathsf{y}}}} \mid t \in T\}.$$

Then T_1 is a torus, $0 \in \overline{T}_1$. Let

$$T_2 = \left\{ t \cdot t^{\gamma} \cdots t^{\gamma^n} \mid t \in \prod_{z \in \langle \gamma \rangle} T_{e^z} \right\}.$$

Then $E(\tilde{T}_1) = E(\tilde{T}_2)$, $T_2 \subseteq T_1$. Hence $T_1 = T_2$. So for all $t \in G(ey)_{\sigma}$, $t^{n+1} = 1$. Hence $G(ey)_{\sigma}$ is finite. By [15; Theorem 10.1], the σ -conjugacy class of 1 is $G(e\sigma)$. By Theorem 2.2, $\tilde{M}(ey)$ is a single conjugacy class.

(ii) \Rightarrow (i). This is obvious.

REMARK 4.2. Since G(ey) is a reductive group, we see that G(ey) = 1 if and only if $T = \prod_{z \in \langle y \rangle} T_{e^z}$.

Finally we generalize our earlier result [5; Theorem 4.8] on rank 1 nilpotent elements.

THEOREM 4.3. The number of conjugacy classes of standard nilpotent elements in M is finite and is equal to the number of standard nilpotent elements in R^* .

PROOF. Let $e \in \Lambda$, $y \in D(e)^*$. Then clearly an element of $\tilde{M}(ey)$ is standard nilpotent if and only if ey is standard nilpotent in R. Let ey be standard nilpotent of rank p. Then $\operatorname{rk}((ey)^i) = p - i + 1$. Let

$$e_i = e \cdot y e y^{-1} \cdots y^i e y^{-i}, \quad i = 0, \dots, p.$$

Then $(e_i)^{i+1} = e_i y^i$, i = 0, ..., p. Hence $rk(e_i) = p - i$ and

$$e=e_0>e_1>\cdots>e_p=0.$$

Let $T_1 = \prod_{z \in \langle y \rangle} T_{e^z}$. Then $T_e \subseteq T_1$ and $e_0, \ldots, e_p \in \overline{T}$. Hence we have a maximal chain of $E(\overline{T})$ contained in \overline{T}_1 . Hence dim $T_1 = \dim T$. So $T = T_1$. By Remark 4.2, G(ey) = 1. We are now done by Theorem 2.3.

References

- 1. R. W. Carter, Finite groups of Lie type: Conjugacy classes and complex characters. Wiley, 1985.
- 2. J. E. Humphreys, Reflection groups and Coxeter groups. Cambridge Univ. Press, 1990.
- 3. G. Lusztig, On the finiteness of the number of unipotent classes. Invent. Math. 34(1976), 201-213.
- 4. E. A. Pennell, M. S. Putcha and L. E. Renner, Analogue of the Bruhat-Chevally order for reductive monoids. J. Algebra 196(1997), 339–368.
- 5. M. S. Putcha, Regular linear algebraic monoids. Trans. Amer. Math. Soc. 290(1985), 615-626.
- 6. _____, Linear algebraic monoids. London Math. Soc., Lecture Note Series 133, Cambridge Univ. Press, 1988.
- 7. _____, Conjugacy classes in algebraic monoids. Trans. Amer. Math. Soc. 303(1987), 529-540.
- 8. _____, Conjugacy classes in algebraic monoids II. Canad. J. Math. 46(1994), 648-661.
- M. S. Putcha and L. E. Renner, The system of idempotents and the lattice of J-classes of reductive algebraic monoids. J. Algebra 116(1988), 385–399.
- _____, The canonical compactification of a finite group of Lie type. Trans. Amer. Math. Soc. 337(1993), 305–319.

闇