CONJUGACY CLASSES AND NILPOTENT VARIETY OF A REDUCTIVE MONOID

MOHAN S. PUTCHA

Abstract

We continue in this paper our study of conjugacy classes of a reductive monoid M. The main theorems establish a strong connection with the Bruhat-Renner decomposition of M. We use our results to decompose the variety $M_{\text {nil }}$ of nilpotent elements of M into irreducible components. We also identify a class of nilpotent elements that we call standard and prove that the number of conjugacy classes of standard nilpotent elements is always finite.

Introduction. In the study of a reductive group G, the variety $G_{\text {uni }}$ of unipotent elements plays an important role, $c f$. [1]. In particular, this variety is irreducible and has only finitely many conjugacy classes. We will study in this paper the variety $M_{\text {nil }}$ of nilpotent elements in a reductive monoid M with zero. While the two varieties are isomorphic when M is the multiplicative monoid of a finite dimensional algebra, this is in general not true. In fact $M_{\text {nil }}$ is usually a reducible variety. We will obtain in this paper a description of the irreducible components of $M_{\text {nil }}$. We accomplish this by first refining our earlier results on conjugacy classes of M. The relevant affine subsets $M(e y)$ are shown to generate the same conjugacy classes as the double $B \times B$ orbit $B e y B$. Next the order on these conjugacy classes is determined within the Renner monoid R. This yields a description of the irreducible components of $M_{\text {nil }}$.

The number of conjugacy classes of $M_{\text {nil }}$ is usually infinite. In an earlier paper we showed that the number of conjugacy classes of rank 1 nilpotent elements is always finite. We generalize this result to standard (exponent $=1+$ rank) nilpotent elements.

1. Preliminaries. Let M be a reductive monoid over an algebraically closed field $k, c f$. [6], [14]. We will assume that M has a zero 0 . Let G denote the reductive unit group of M. The $G \times G$ orbits ($=\mathcal{I}$-classes) of M form a finite lattice \mathcal{U} with order defined by:

$$
J_{1} \leq J_{2} \quad \text { if } J_{1} \subseteq \bar{J}_{2} .
$$

There is a cross-section Λ of idempotents $e_{J}, J \in \mathcal{U}$ so that

$$
e_{J_{1}} e_{J_{2}}=e_{J_{2}} e_{J_{1}}=e_{J_{1} J_{2}} \quad \text { for all } J_{1}, J_{2} \in \mathcal{U}
$$

Then $\Lambda(\cong \mathcal{U})$ is called the cross-section lattice of M. It turns out that

$$
T=C_{G}(\Lambda)=\{g \in G \mid g e=e g \text { for all } e \in \Lambda\}
$$

Received by the editors January 29, 1997.
AMS subject classification: Primary: 20G99, 20M10; secondary: 14M99, 20 F 55.
(C) Canadian Mathematical Society 1998.
is a maximal torus of G. If $\Gamma \subseteq \Lambda$, then

$$
\begin{gathered}
P=P(\Gamma)=\{g \in G \mid g e=\text { ege for all } e \in \Gamma\} \\
P^{-}=P^{-}(\Gamma)=\{g \in G \mid \text { eg = ege for all } e \in \Gamma\}
\end{gathered}
$$

are opposite parabolic subgroups of G relative to T. In particular $B=P(\Lambda)$ and $B^{-}=$ $P^{-}(\Lambda)$ are opposite Borel subgroups of G relative to T. If $X \subseteq M$, then

$$
E(X)=\left\{e \in X \mid e^{2}=e\right\}
$$

is the idempotent set of X. Clearly $E=E(M)$ is a partially ordered set if we define:

$$
e \leq f \quad \text { if } e f=f e=e
$$

Moreover,

$$
E(M)=\left\{x^{-1} e x \mid x \in G, e \in \Lambda\right\} .
$$

If $\operatorname{dim} T=n$, then all maximal chains in $\Lambda, E(M), E(\bar{T})$ have the same length, n. In particular this yields a rank function

$$
\mathrm{rk}: M \rightarrow\{0, \ldots, n\}
$$

such that

$$
\operatorname{rk}(0)=0, \quad \operatorname{rk}(1)=n
$$

Let

$$
\begin{gathered}
\Lambda_{\min }=\{e \in \Lambda \mid \operatorname{rk}(e)=1\} \\
\Lambda_{\max }=\{e \in \Lambda \mid \operatorname{rk}(e)=n-1\}
\end{gathered}
$$

Let $a \in M, \operatorname{rk}(a)=m$. Then there is a smallest positive integer t such that $\operatorname{rk}\left(a^{t}\right)=$ $\operatorname{rk}\left(a^{t+1}\right)$. Then a^{t} lies in a subgroup of M and

$$
\begin{equation*}
\operatorname{rk}(a)>\operatorname{rk}\left(a^{2}\right)>\cdots>\operatorname{rk}\left(a^{t}\right)=\operatorname{rk}\left(a^{t-1}\right) \tag{1}
\end{equation*}
$$

So $\mathrm{rk}\left(a^{t}\right) \leq \mathrm{rk}(a)-t+1$. We will call a standard if,

$$
\begin{equation*}
\operatorname{rk}\left(a^{t}\right)=\operatorname{rk}(a)-t+1 \tag{2}
\end{equation*}
$$

We note that an element of rank ≤ 1 is necessarily standard. An element a is nilpotent if $a^{t}=0$ where t is as in (1). Then t is the exponent of a. Clearly then a is standard if $\operatorname{rk}(a)=t-1$. We note that in the case of the full matrix monoid $M_{n}(k)$, a nilpotent element a is standard if and only it has atmost one non-zero Jordan block.

As usual let $W=N_{G}(T) / T$ denote the Weyl group of G with generating set S of simple reffections, length function l and Bruhat-Chevalley order $\leq, c f$. [1], [2]. Then by the Bruhat decomposition,

$$
G=\bigsqcup_{x \in W} B x B
$$

and for $x, y \in W$,

$$
x \leq y \Longleftrightarrow B x B \subseteq \overline{B y B}
$$

If $x \in W$, then we denote by \dot{x}, a coset representative of $N_{G}(T)$. If $I \subseteq S$, then $W_{I}=\langle I\rangle$ is a (standard) parabolic subgroup of W and

$$
P_{I}=B W_{I} B, \quad P_{I}^{-}=B^{-} W_{I} B^{-}
$$

are (standard) opposite parabolic subgroups of G with Levi decomposition

$$
P_{I}=L_{I} U_{I}, P_{I}^{-}=L_{I} U_{I}^{-}, L_{I}=P_{I} \cap P_{I}^{-}
$$

In particular

$$
B=T U, \quad B^{-}=T U^{-}, \quad T=B \cap B^{-}
$$

If $K \subseteq I$, then define $K \triangleleft I$ if K is a union of some components of I with respect to the Coxeter graph structure of S. Clearly \triangleleft is a transitive relation and for all $J \subseteq S$,

$$
K \triangleleft I \Rightarrow J \cap K \triangleleft J \cap I .
$$

For $I \subseteq S$, let

$$
\begin{aligned}
D_{I} & =\left\{y \in W \mid \ell(y w)=\ell(y)+\ell(w) \text { for all } w \in W_{I}\right\} \\
D_{I}^{-1} & =\left\{y \in W \mid \ell(w y)=\ell(y)+\ell(w) \text { for all } w \in W_{I}\right\}
\end{aligned}
$$

Then by [1; Chapter 2], for all $y \in D_{I}^{-1}$,

$$
\begin{equation*}
y^{-1}\left(B \cap L_{I}\right) y \subseteq B \quad \text { and } \quad y B y^{-1} \subseteq U_{I}^{-} B \tag{3}
\end{equation*}
$$

Now $W=D_{I} W_{I}=W_{I} D_{I}^{-1}$. Hence associated with $x \in W$ is a unique element of D_{I}^{-1} (and also of D_{I}). We will need to associate an element of D_{I}^{-1} in a different way. For $x, y \in W$, define:

$$
x \equiv{ }_{I} y \quad \text { if } \bigcap_{i \geq 0} x^{i} W_{I} y^{-i} \neq \emptyset
$$

Clearly $\equiv{ }_{I}$ is an equivalence relation on W. We also note that

$$
\begin{gather*}
x \equiv{ }_{I} w x w^{-1} \quad \text { if } w \in W_{I} \tag{4}\\
x \equiv{ }_{I} u x \quad \text { if } u \in \bigcap_{i \geq 0} x^{i} W_{I} x^{-i}
\end{gather*}
$$

Proposition 1.1. Let $x \in W$. Then $x \equiv$ ı for a unique $y \in D_{I}^{-1}$. Moreover $\ell(y) \leq$ $\ell(x)$.

Proof. Let

$$
\begin{gather*}
x_{1}=x=w_{1} y_{1}, \quad w_{1} \in W_{l}, \quad y_{1} \in D_{I}^{-1} \tag{5}\\
x_{2}=y_{1} w_{1}=w_{2} y_{2}, \quad w_{2} \in W_{l}, \quad y_{2} \in D_{I}^{-1} \\
x_{3}=y_{2} w_{2}=w_{3} y_{3}, \quad w_{3} \in W_{l}, \quad y_{3} \in D_{I}^{-1}
\end{gather*}
$$

Now

$$
x_{j+1}=y_{j} w_{j}=w_{j}^{-1}\left(w_{j} y_{j}\right) w_{j}=w_{j}^{-1} x_{j} w_{j}
$$

Hence by (4),

$$
\begin{equation*}
x_{1} \equiv{ }_{1} x_{2} \equiv{ }_{1} x_{3} \equiv \cdots \tag{6}
\end{equation*}
$$

Also

$$
\ell\left(x_{j+1}\right)=\ell\left(y_{j} w_{j}\right) \leq \ell\left(y_{j}\right)+\ell\left(w_{j}\right)=\ell\left(w_{j} y_{j}\right)=\ell\left(x_{j}\right) .
$$

Hence

$$
\ell\left(x_{1}\right) \geq \ell\left(x_{2}\right) \geq \cdots
$$

So for some N,

$$
\ell\left(x_{N}\right)=\ell\left(x_{N+1}\right)=\cdots .
$$

Hence for $j \geq N$

$$
y_{j} w_{j}=w_{j+1} y_{j+1}, \quad \ell\left(y_{j} w_{j}\right)=\ell\left(y_{j}\right)+\ell\left(w_{j}\right) .
$$

Since $y_{j} \in D_{I}^{-1}$, we see by the exchange condition [2; Theorem 5.8] that for $j \geq N$,

$$
y_{j+1}=y_{j} u_{j}, \quad u_{j} \in W_{I}, \ell\left(y_{j+1}\right)=\ell\left(y_{j}\right)+\ell\left(u_{j}\right)
$$

In particular

$$
\ell\left(y_{N}\right) \leq \ell\left(y_{N+1}\right) \leq \cdots .
$$

Hence there exists $K \geq N$ such that

$$
y_{K}=y_{K+1}=\cdots .
$$

So for $j \geq K$,

$$
y_{K} w_{j}=w_{j+1} y_{K} .
$$

So

$$
y_{K} w_{j} y_{K}^{-1}=w_{j+1} \in W_{l} .
$$

Hence

$$
w_{K} \in \bigcap_{i \geq 0} y_{K}^{-i} W_{I} y_{K}^{i}
$$

So by (4), (6)

$$
x=x_{1} \equiv{ }_{I} x_{K}=w_{K} y_{K} \equiv y_{K} \in D_{l}^{-1}
$$

Clearly $\ell\left(y_{K}\right) \leq \ell\left(x_{K}\right) \leq \ell(x)$.
Next we prove uniqueness. Let $y, z \in D_{I}^{-1}$ such that $y \equiv{ }_{I} z$. Then there exists

$$
w \in \bigcap_{i \geq 0} y^{i} W_{I} z^{-i}
$$

Let $w_{0}=w$ and for $i \geq 1$,

$$
\begin{equation*}
w_{i}=y^{-1} w_{i-1} z=y^{-i} w z^{i} \in W_{l} . \tag{7}
\end{equation*}
$$

Now $w_{1}=y^{-1} w z$ and hence

$$
\begin{equation*}
w z=y w_{1} . \tag{8}
\end{equation*}
$$

Since $z \in D_{I}^{-1}$,

$$
\begin{equation*}
\ell(w)+\ell(z)=\ell\left(y w_{1}\right) \leq \ell(y)+\ell\left(w_{1}\right) . \tag{9}
\end{equation*}
$$

$\operatorname{By}(8), w^{-1} y=w_{1} z^{-1}$. Since $y \in D_{I}^{-1}$,

$$
\begin{equation*}
\ell(w)+\ell(y)=\ell\left(w_{1} z^{-1}\right) \leq \ell(z)+\ell\left(w_{1}\right) . \tag{10}
\end{equation*}
$$

Adding (9), (10), we see that $\ell(w) \leq \ell\left(w_{1}\right)$. Thus by (7),

$$
\begin{equation*}
\ell(w) \leq \ell\left(w_{1}\right) \leq \ell\left(w_{2}\right) \leq \cdots . \tag{11}
\end{equation*}
$$

If $N=|W|$, then by (7), $w_{N}=w$. Hence by (11), $\ell(w)=\ell\left(w_{1}\right)$. By (9), (10), $\ell(y)=\ell(z)$.
Since $y, z \in D_{I}^{-1}$, we see by (8) and the exchange condition that $y=z$.
Let $I \subseteq S$. Then for all $J \subseteq S$,

$$
D_{I}^{-1} \subseteq\left(D_{I}^{-1} \cap D_{J}\right) W_{J} .
$$

Hence for all $y \in D_{I}^{-1}$, we see by [1; Theorem 2.7.4] that

$$
\begin{equation*}
W_{I} \cap y W_{J} y^{-1} \quad \text { is a standard parabolic subgroup. } \tag{12}
\end{equation*}
$$

Hence

$$
\begin{aligned}
W_{I} \cap y W_{I} y^{-1}=W_{I_{1}}, & I_{1} \subseteq I \\
W_{I} \cap y W_{I_{1}} y^{-1}=W_{I_{2}}, & I_{2} \subseteq I_{1} \\
W_{I} \cap y W_{I_{2}} y^{-1}=W_{I_{3}}, & I_{3} \subseteq I_{2}
\end{aligned}
$$

Let $K=K_{0} \triangleleft I$. Then by (12),

$$
\begin{array}{ll}
W_{I} \cap y W_{K_{0}} y^{-1}=W_{K_{1}}, & K_{1} \triangleleft I_{1} \\
W_{I} \cap y W_{K_{1}} y^{-1}=W_{K_{2}}, & K_{2} \triangleleft I_{2}
\end{array}
$$

Let

$$
\begin{equation*}
D_{I}^{*}(K)=\left\{y \in D_{I}^{-1} \mid y \in D_{K_{j}} \text { for all } j \geq 0\right\} . \tag{13}
\end{equation*}
$$

We note that

$$
\begin{equation*}
D_{I}^{*}(\emptyset)=D_{I}^{-1}, \quad D_{I}^{*}(I)=D_{I} \cap D_{I}^{-1} . \tag{14}
\end{equation*}
$$

Corollary 1.2. Let $y \in D_{I}^{*}(K), z \in W_{K}, y z \equiv{ }_{I} y^{\prime} \in D_{I}^{-1}$. Then $\ell\left(y^{\prime}\right) \geq \ell(y)$. If $\ell(y)=\ell\left(y^{\prime}\right)$, then $y=y^{\prime}$.

Proof. Let $X_{0}=K$ and for $i \geq 0$

$$
X_{i+1}=K_{i+1} \backslash \bigcup_{j=0}^{k} X_{j} \triangleleft K_{i+1}
$$

Then

$$
\begin{equation*}
X_{i} \triangleleft X_{i} \sqcup X_{j}, X_{j} \triangleleft X_{i} \sqcup X_{j} \quad \text { for } i \neq j \tag{15}
\end{equation*}
$$

Let

$$
X=X_{0} \sqcup X_{1} \sqcup \cdots=K_{0} \cup K_{1} \cup K_{2} \cup \cdots
$$

Now for $i \geq 0$,

$$
W_{I} \cap y W_{X_{i}} y^{-1} \subseteq W_{I} \cap y W_{K_{i}} y^{-1} \subseteq W_{K_{i+1}} \subseteq W_{X}
$$

Hence by (15),

$$
\begin{equation*}
W_{I} \cap y W_{X} y^{-1} \subseteq W_{X} \tag{16}
\end{equation*}
$$

Since $y \in D_{X}$,

$$
\begin{equation*}
\ell(y v)=\ell(y)+\ell(v) \quad \text { for all } v \in W_{X} . \tag{17}
\end{equation*}
$$

Now we apply the algorithm (5) in Proposition 1.1 to $y z$, along with the exchange condition and (17) to obtain:

$$
y z=v_{1} y z_{1}, \quad v_{1} \in W_{I}, z_{1} \in W_{K}, y z_{1} \in D_{I}^{-1}
$$

Then $v_{1}=y\left(z z_{1}^{-1}\right) y^{-1} \in W_{X}$ by (16). So

$$
y z_{1} v=v_{2} y \dot{z}_{2}, \quad v_{2} \in W_{I}, z_{2} \in W_{X}, y z_{2} \in D_{I}^{-1}
$$

Then $v_{2}=y\left(z_{1} v_{1} z_{2}^{-1}\right) y^{-1} \in W_{X}$ by (17). Continuing,

$$
y z_{i} v_{i}=v_{i+1} y z_{i+1}, \quad v_{i+1} \in W_{I}, z_{i+1} \in W_{X}, y z_{i+1} \in D_{I}^{-1}
$$

Then as in Proposition 1.1, for some $j, y z \equiv{ }_{l} y z_{j} \in D_{I}^{-1}, z_{j} \in W_{X}$. By (17), $l\left(y z_{j}\right)=$ $\ell(y)+\ell\left(z_{j}\right)$. This completes the proof.

THE RENNER MONOID $R=\overline{N_{G}(T)} / T$. This is a finite inverse monoid with unit group W and idempotent set $E(\bar{T})$. Moreover

$$
R=W \Lambda W, \quad E(\bar{T})=\bigcup_{x \in W} x^{-1} \Lambda x
$$

By [12], the Bruhat decomposition for G can be extended to M as:

$$
\begin{equation*}
M=\bigsqcup_{r \in R} \operatorname{Br} B \tag{18}
\end{equation*}
$$

If $\Gamma \subseteq E(\bar{T})$, let

$$
W(\Gamma)=\{x \in W \mid x e=e x \text { for all } e \in \Gamma\}
$$

Let $e \in \Lambda$. Then

$$
\begin{gather*}
W(e)=W_{I} \quad \text { for some } I=\lambda(e) \subseteq S \tag{19}\\
W_{e}=\{x \in W \mid x e=e x=e\}=W_{K} \quad \text { for some } K \triangleleft I .
\end{gather*}
$$

Also let

$$
\begin{equation*}
D(e)=D_{I}, \quad D^{*}(e)=D_{I}^{*}(K), \quad D_{e}=D_{K} \tag{20}
\end{equation*}
$$

Then by (14),

$$
\begin{gathered}
D^{*}(e)=D(e) \cap D(e)^{-1} \quad \text { if } e \in \Lambda_{\min } \\
D^{*}(e)=D(e)^{-1} \quad \text { if } e \in \Lambda_{\max }
\end{gathered}
$$

We note that $W(e)$ is the Weyl group of $L(e)=C_{G}(e)$ and W_{e} is Weyl group of G_{e} where

$$
G_{e}=\{g \in G \mid g e=e=e g\}^{c}
$$

If $r \in W e W$, then

$$
r=x e y, \quad x \in D_{e}, y \in D(e)^{-1}
$$

This is the standard form of r. Let $r_{1}=x e y, r_{2}=s f t$ in standard form. Define

$$
\begin{equation*}
r_{1} \leq r_{2} \quad \text { if } e \leq f, x \leq s w, w^{-1} t \leq y \quad \text { for some } w \in W(f) W_{e} \tag{21}
\end{equation*}
$$

Then by [4],

$$
\begin{equation*}
r_{1} \leq r_{2} \Longleftrightarrow \mathrm{Br}_{1} B \subseteq \overline{\mathrm{Br}_{2} B} \tag{22}
\end{equation*}
$$

Let $e, f \in \Lambda, y \in D(e)^{-1}$. Then

$$
\begin{aligned}
\text { Beyfy }^{-1} & =e C_{B}(e) y f y^{-1} \\
& =e y \cdot y^{-1} C_{B}(e) y \cdot f y^{-1} \\
& \subseteq e y B f y^{-1}, \quad \text { by }(3) \\
& \subseteq e y f B y^{-1} \\
& =e y f y^{-1} \cdot y B y^{-1} .
\end{aligned}
$$

It follows that if $h=e \cdot y f y^{-1}$, then $B h=h B h$. So $h \in \Lambda$. Thus we have the following analogue of (12):

$$
\begin{equation*}
e \cdot y f y^{-1} \in \Lambda \quad \text { for all } e, f \in \Lambda, y \in D(e)^{-1} \tag{23}
\end{equation*}
$$

The monoid analogue of the Coxeter-Dynkin diagram is the type map $\lambda: \Lambda \rightarrow 2^{S}$ where λ is as in (19). λ along with the Tits building determines the (biordered set) $E(M)$,
cf. [9]. The determination of all possible type maps remains an important open problem. However the problem has been solved in [9] when $\left|\Lambda_{\min }\right|=1$. These are called $g_{\text {-irreducible monoids }}$ of type I where $\lambda(e)=I, \Lambda_{\min }=\{e\}$. Such monoids arise as the lined closures of irreducible representations of a semisimple groups. For \mathcal{I}-irreducible monoids of type I, λ has the following description. Let

$$
\begin{equation*}
\Lambda_{I}=\left\{e_{X} \mid X \subseteq S, \text { no component of } X \text { is contained in } I\right\} \cup\{0\} . \tag{24}
\end{equation*}
$$

Define $e_{X} \leq e_{Y}$ if $X \subseteq Y$ and let

$$
\lambda_{I}\left(e_{X}\right)=X \cup\{\alpha \in I \mid \alpha \beta=\beta \alpha \text { for all } \beta \in X\} .
$$

Then $\Lambda_{I} \cong \Lambda$.
2. Conjugacy classes. Let $a, b \in M$. Then a is conjugate to $b(a \sim b)$ if $b=a^{x}=$ $x^{-1} a x$ for some $x \in G$. If $X, Y \subseteq M$, then we write $X \sim Y$ to mean that every element of X is conjugate to an element of Y and every element of Y is conjugate to an element of X. We will further refine here our earlier results on conjugacy classes [7], [8], while at the same time finding some surprising connections with the Bruhat-Renner decomposition (18).

Lemma 2.1. Let $y \in D(e)^{-1}, H=C_{G}\left(e^{z} \mid z \in\langle y\rangle\right)$. Then for all $b \in C_{B}(e), h \in H$, ebhy \sim eh'y for some $h^{\prime} \in H$.

Proof. Let $L=C_{G}(e)$. Then by (3),

$$
\begin{equation*}
\dot{y}^{-1}(U \cap L) \dot{y} \subseteq U=(U \cap L) U_{I} . \tag{25}
\end{equation*}
$$

Let $V_{0}=1$ and for $i \geq 1$,

$$
\begin{gathered}
V_{i}=\bigcap_{j=0}^{i-1} \dot{y}^{j}(U \cap L) \dot{y}^{-j} \cap \dot{y}^{i} U_{l} \dot{y}^{-i} \subseteq U \cap L \\
V=\bigcap_{i \geq 0} \dot{y}^{i}(U \cap L) \dot{y}^{-i} \subseteq H .
\end{gathered}
$$

If $N=|W|$, then clearly $V_{i}=1$ for $i \geq N$. Let

$$
U_{j}=V_{j} \cdots V_{0}, \quad j \geq 0
$$

Then since U is a product of root subgroups in any order, we see by (25) that $U \cap L=$ $U_{N} V$. Also

$$
\dot{y}^{-i} V_{1} \dot{y} \subseteq U_{I}, \dot{y}^{-1} V_{i+1} \dot{y} \subseteq V_{i} \quad \text { for } i \geq 1 .
$$

So

$$
\begin{equation*}
\dot{y}^{-1} U_{i+1} \dot{y} \subseteq U_{I} U_{i}, \quad i \geq 0 \tag{26}
\end{equation*}
$$

Now

$$
b h \in(U \cap L) T H=U_{N} V T H=U_{N} H .
$$

So

$$
b h=u_{1} h_{1} \quad \text { for some } u_{1} \in U_{N}, h_{1} \in H .
$$

Suppose $u_{1} \in U_{i+1}, i \geq 0$. Then

$$
\begin{aligned}
e u_{1} h_{1} \dot{y} & =e \dot{y} \cdot \dot{y}^{-1} u_{1} h_{1} \dot{y} \sim \dot{y}^{-1} u_{1} h_{1} \dot{y} \cdot e \dot{y} \\
& =\dot{y}^{-1} u_{1} \dot{y} \cdot \dot{y}^{-1} h_{1} \dot{y} e \dot{y} .
\end{aligned}
$$

By (26), $\dot{y}^{-1} u_{1} \dot{y}=v u_{2}$ for some $v \in U_{I}, u_{2} \in U_{i}$. Also $h_{2}=\dot{y}^{-1} h_{1} \dot{y} \in H$. So

$$
e b h \dot{y} \sim v u_{2} h_{2} e \dot{y}=v e u_{2} h_{2} \dot{y}=e u_{2} h_{2} \dot{y} .
$$

Hence by induction $e b h \dot{y} \sim e h^{\prime} \dot{y}$ for some $h^{\prime} \in H$.
Let $e \in \Lambda$ and let $D(e), D^{*}(e)$ be as in (20). Let $y \in D(e)^{-1}, H=C_{G}\left(e^{z} \mid z \in\langle y\rangle\right)$. Define

$$
\begin{gathered}
M(e y)=e H y \\
G(e y)=H / \prod_{z \in\langle y\rangle} H_{e^{z}}^{\prime}
\end{gathered}
$$

where

$$
H_{e^{z}}^{\prime}=\left\{h \in H \mid h e^{z}=e^{z} h=e^{z}\right\}
$$

Clearly \dot{y} yields a natural map and automorphism,

$$
\begin{equation*}
\xi: M(e y) \rightarrow G(e y), \quad \sigma \in \text { Aut } G(e y) \tag{27}
\end{equation*}
$$

where $\xi(e h y)$ is the coset of h and $\sigma(h)=\dot{y} h \dot{y}^{-1}$. If $a, b \in G(e y)$, then a is σ-conjugate to b if $g a \sigma(g)^{-1}=b$ for some $g \in G(e y)$. Let

$$
\tilde{M}(e y)=\bigcup_{g \in G} g \cdot M(e y) \cdot g^{-1}
$$

ThEOREM 2.2. Let $e \in \Lambda$. Then
(i) If $y \in D(e)^{-1}$, then

$$
\tilde{M}(e y)=\bigcup_{g \in G} g \cdot B e y B \cdot g^{-1}
$$

(ii) GeG is the disjoint union:

$$
G e G=\bigsqcup_{y \in D^{*}(e)} \tilde{M}(e y)
$$

(iii) If $y \in D(e)^{-1}, a, b \in M(e y)$, then $a \sim b$ in M if and only if $\xi(a), \xi(b)$ are σ-conjugate in $G(e y)$, where ξ, σ are as in (27).

Proof. (i) Let $H=C_{G}\left(e^{z} \mid z \in\langle y\rangle\right)$. Then \dot{y} yields an automorphism σ of H given by: $\sigma(h)=\dot{y} h \dot{y}^{-1}$. Then by (3), $\sigma(B \cap H)=B \cap H$. So if $h \in H$, then by [15; Lemma 7.3], there exists $g \in H$ such that $g h \sigma(g)^{-1} \in B \cap H$. Hence

$$
e h \dot{y} \sim g \cdot e h \dot{y} \cdot g^{-1}=e g h \sigma(g)^{-1} \dot{y} \in e(B \cap H) y \subseteq B e y B .
$$

Also BeyB \sim Bey $=e C_{B}(e) y$. Combined with Lemma 2.1, we see that $M(e y) \sim B e y B$.
(ii) Let $I=\lambda(e)$. If $x \in W$, then by Proposition $1.1, x \equiv{ }_{l} y$ for some $y \in D(e)^{-1}, l(y) \leq$ $l(x)$. Hence by [8; Theorem 2.1, 2.6], every element of GeG is conjugate to an element of $M(e y)$ for some $y \in D(e)^{-1}$. Moreover if $y_{1}, y_{2} \in D(e)^{-1}$, then $M\left(e y_{1}\right) \sim M\left(e y_{2}\right)$ if and only if for some $x \in W, e y_{1} \sim e x$ in R and $x \equiv{ }_{I} y_{2}$. In such a case, write $y_{1} \approx y_{2}$. If $y_{1} \not \approx y_{2}$, then by [8], no element of $M\left(e y_{1}\right)$ is conjugate to an element of $M\left(e y_{2}\right)$. We can assume that $\ell(y)$ is minimum in the \approx-class of y. Then if $e y \sim e y^{\prime}, y^{\prime} \in D(e)^{-1}$, then $\ell\left(y^{\prime}\right) \geq \ell(y)$. We claim that $y \in D^{*}(e)$. Suppose $y=y^{\prime} z^{-1}, \ell(y)=\ell\left(y^{\prime}\right)+\ell(z)>\ell(y)$,

$$
z \in W\left(e, \ldots, e^{y^{-i}}\right) \cap W_{e^{-i}} .
$$

Then in R,

$$
\begin{equation*}
e y^{\prime}=e y z \sim z e y=e z y=e y \cdot z^{y} \sim z^{y} \cdot e y=\cdots \sim z^{y^{j}} \cdot e y=e y . \tag{28}
\end{equation*}
$$

This contradiction shows that $y \in D^{*}(e)$. Next let $y_{1}, y_{2} \in D^{*}(e)$ such that $y_{1} \approx y_{2}$. Let $\ell\left(y_{1}\right) \geq \ell\left(y_{2}\right)$. Then by [8; Theorem 2.6] and (4), there exists $z \in W_{e}$ such that $z y_{1} \equiv t y_{2}$. So $y_{1} z \equiv y_{2}$. By Proposition 1.1 and Corollary $1.2, y_{1}=y_{2}$. This proves (ii).
(iii) This is proved in [7; Theorem 2.4].

Let \preceq denote the transitive relation on R generated by:

1. If $r_{1} \leq r_{2}$, then $r_{1} \preceq r_{2}$.
2. If $y \in D(e)^{-1}, x \in W$, then $e y x \preceq x e y$. Let

$$
R^{*}=\left\{e y \mid e \in \Lambda, y \in D^{*}(e)\right\} .
$$

THEOREM 2.3. (i) \preceq is a partial order on R^{*}.
(ii) M is the disjoint union:

$$
M=\bigsqcup_{r \in R^{*}} \tilde{M}(r) .
$$

(iii) If $r_{1}, r_{2} \in R^{*}$, then

$$
\tilde{M}\left(r_{1}\right) \subseteq \overline{\tilde{M}\left(r_{2}\right)} \Longleftrightarrow r_{1} \preceq r_{2} .
$$

(iv) If $r \in R^{*}$, then $\overline{\tilde{M}(r)}=\sqcup_{\substack{r^{\prime} \in R^{*} \\ r^{\prime} \leq r}} \tilde{M}\left(r^{\prime}\right)$.

Proof. (ii) This follows from Theorem 2.2.
(iii) For $r \in R$, let

$$
X(r)=\bigcup_{g \in G} g \cdot \operatorname{Br} B \cdot g^{-1} .
$$

If $r \in R^{*}$, then by Theorem 2.2, $X(r)=\tilde{M}(r)$. For $r \in R, G$ acts on $\overline{X(r)}$ by conjugation and B stabilizes $\overline{\operatorname{Br} B}$ under this action. Since G / B is a projective variety, it follows that

$$
\begin{equation*}
\overline{X(r)}=\bigcup_{g \in G} g \cdot \overline{\operatorname{Br} B} \cdot g^{-1}=\bigcup_{r \leq r} X\left(r^{\prime}\right) . \tag{29}
\end{equation*}
$$

Let $e \in \Lambda, y \in D(e)^{-1}, x \in W$. Let $L=C_{G}(e)$. Then

$$
\begin{aligned}
\text { BeyxB } \sim B e y x & =e(B \cap L) y x \sim x e(B \cap L) y \\
& =x e y \cdot y^{-1}(B \cap L) y \\
& \subseteq x e y B, \quad \text { by }(3) \\
& \subseteq B x e y B
\end{aligned}
$$

Hence

$$
\begin{equation*}
X(e y x) \subseteq X(x e y) \quad \text { for } y \in D(e)^{-1}, x \in W \tag{30}
\end{equation*}
$$

Also

$$
\begin{aligned}
B x e y B & \sim \operatorname{ey} B x \\
& \subseteq \bigcup_{x^{\prime} \leq x} B e y x^{\prime} B, \quad \text { by }[13 ; \text { Theorem 1.4]. }
\end{aligned}
$$

Hence

$$
\begin{equation*}
X(x e y) \subseteq \bigcup_{x^{\prime} \leq x} X\left(e y x^{\prime}\right) \quad \text { for } y \in D(e)^{-1}, x \in W \tag{31}
\end{equation*}
$$

Note also that

$$
e y x^{\prime} \preceq x^{\prime} e y \leq x e y \quad \text { for } y \in D(e)^{-1}, x^{\prime} \leq x
$$

By (20), (30), for all $r, r^{\prime} \in R$,

$$
r^{\prime} \preceq r \Longrightarrow X\left(r^{\prime}\right) \subseteq \overline{X(r)}
$$

Now let $e \in \Lambda, x \in D^{*}(e), r \in R^{*}$ such that $X(e x) \subseteq \overline{X(r)}$. Then by (29), (30), (31), there exists $x_{1} \in W$ such that $e x_{1} \preceq r$ and $e \dot{x} \in X\left(e x_{1}\right)$. Choose x_{1} such that $\ell\left(x_{1}\right)$ is minimum. Then applying the algorithm (5) in Proposition 1.1 and using (30), (31) and the minimality of $\ell\left(x_{1}\right)$, we see that $e \dot{x} \in X(e v y)$ for some $y \in D(e)^{-1}, v \in W\left(e^{\alpha} \mid \alpha \in\langle y\rangle\right)$ such that $e v y \preceq e x_{1}$ and $\ell(v y)=\ell\left(x_{1}\right)$. Now

$$
B e v y B \sim B e v y=e C_{B}(e) v y .
$$

By Lemma 2.1, it follows that $e \dot{x}$ is conjugate to an element of $M(e y) \subseteq X(e y)$. Also $e y \leq v e y=e v y \preceq r$. Hence $\ell(y)=\ell\left(x_{1}\right)$. We claim that $y \in D^{*}(e)$. Otherwise $y=y_{1} z^{-1}$, $\ell(y)=\ell\left(y_{1}\right)+\ell(z)>\ell\left(y_{1}\right)$,

$$
z \in W\left(e, \ldots, e^{y^{-i}}\right) \cap W_{e^{1^{-i}}} .
$$

Then $y_{1} \in D(e)^{-1}$ and

$$
e y_{1}=e y \cdot z \preceq z e y=e z y=e y \cdot z^{y} \preceq z^{y} \cdot e y=\cdots \preceq z^{y_{i}} \cdot e y=e y .
$$

Hence $e y_{1} \preceq e y$. Also by (28), ey $\sim e y_{1}$ in R. By [8; Theorem 2.6], $M(e y) \sim M\left(e y_{1}\right) \subseteq$ $X\left(e y_{1}\right)$. Hence $e \dot{x} \in X\left(e y_{1}\right), e y_{1} \preceq r, \ell\left(y_{1}\right)<\ell\left(x_{1}\right)$. This contradiction shows that $y \in$ $D^{*}(e)$. By Theorem 2.2 (ii), $x=y$. Hence $e x \preceq r$, proving (ii).
(iv) This follows from the proof of (iii).
(i) Let $r_{1}, r_{2} \in R^{*}$ such that $r_{1} \preceq r_{2} \preceq r_{1}$. Then $\overline{\tilde{M}\left(r_{1}\right)}=\overline{\tilde{M}\left(r_{2}\right)}$. Since this is an irreducible variety, there exist non-empty open subsets O_{1}, O_{2} such that $O_{1} \subseteq \tilde{M}\left(r_{1}\right)$ and $O_{2} \subseteq \tilde{M}\left(r_{2}\right)$. In particular $\tilde{M}\left(r_{1}\right) \cap \tilde{M}\left(r_{2}\right) \neq \emptyset$. By Theorem 2.2, $r_{1}=r_{2}$. This completes the proof.

EXAMPLE 2.4. \preceq is not a partial order on R. If $M=M_{3}(k)$, then

$$
\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \leq\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \preceq\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) .
$$

Let $e \in \Lambda, y \in D(e)^{-1}$. Then by (23), $e \cdot$ yey $^{-1} \in \Lambda$. So again by (23),

$$
e \cdot y e y^{-1} \cdot y^{2} e y^{-1}=e \cdot y\left(e \cdot y e y^{-1}\right) y^{-1} \in \Lambda .
$$

Continuing, we see that

$$
f=e \cdot y e y^{-1} \cdot y^{2} e y^{-2} \cdots \cdot y^{N-1} e y^{1-N} \in \Lambda
$$

where $N=|W|$. Hence $(e y)^{N}=f y^{N}=f$. So

$$
\begin{equation*}
(e y)^{N} \in \Lambda \quad \text { for all } y \in D(e)^{-1} . \tag{32}
\end{equation*}
$$

In particular

$$
y \in W_{f}, \quad e y \in M_{f}=\{a \in M \mid a f=f a=f\}^{c} .
$$

So $e y$ is a nilpotent element of $R\left(M_{f}\right)$ and the study of conjugacy within $M(e y)$ reduces to studying conjugacy within $C_{G}\left(G_{f}\right)$ and conjugacy within $M_{f}(e Y)$. See [5; Theorem 4.1]. We note that every element of $M_{f}(e y)$ is nilpotent in M_{f}. We are therefore naturally led to studying nilpotent elements in reductive monoids.
3. Nilpotent variety. While the variety $G_{\text {uni }}$ of unipotent elements in a reductive group G is always irreducible, the variety $M_{\text {nil }}$ of nilpotent elements in a reductive monoid M is usually not irreducible. We will use the results of the previous section to decompose $M_{\text {nil }}$ into irreducible components. Let $R_{\text {nil }}^{*}$ denote the set of nilpotent elements in R^{*}.

Theorem 3.1. (i) Let $e \in \Lambda, e \neq 0, y \in D^{*}(e)$. Then $e y \in R_{\text {nil }}^{*}$ if and only if $y \notin W(f)$ for all $f \in \Lambda_{\text {min }}$ with $f \leq e$
(ii) $M_{\text {nil }}$ is the disjoint union:

$$
M_{\mathrm{nil}}=\bigsqcup_{r \in R_{\mathrm{nil}}^{*}} \tilde{M}(r) .
$$

(iii) The irreducible components of $M_{\text {nil }}$ are $\overline{\tilde{M}(r)}$ where r is a maximal element of $R_{\text {nil }}^{*}$ with respect to the partial order \preceq.

Proof. (i) Suppose ey is not nilpotent. Then by (32), there exists $f \in \Lambda_{\text {min }}$ such that eyf $=f e y=f$. This implies that $f \leq e$ and $y \in W(f)$. Conversely suppose $f \in \Lambda_{\min }$,
$f \leq e$ such that $y \in W(f)$. Then eyf $=e f y=f y$. So $(e y)^{i} f=f y^{i}$ for all i. So $e y$ is not nilpotent.
(ii) It is easy to see that $\tilde{M}(r)$ has a nilpotent element if and only if r is nilpotent in R. In this case every element of $\tilde{M}(r)$ is nilpotent. Hence (ii) follows from Theorem 2.3.
(iii) This follows from Theorem 2.3 since each $\tilde{M}(r)$ is irreducible.

We will now apply Theorem 3.1 to two special cases. By a canonical monoid on G, we mean a \mathcal{I}-irreducible monoid of type \emptyset. Such monoids are obtained by taking the lined closure of an irreducible representation of a semisimple group with the highest weight being in the interior of the Weyl chamber. They are also related to the canonical compactification of a reductive group. We refer to [10] for details. In the case of $\mathrm{SL}_{n}(k)$ such a monoid is obtained by taking the lined closure of the representation:

$$
A \rightarrow \otimes_{i} \wedge^{i} A .
$$

We will also consider the dual canonical monoid (see [11]) where the cross section lattice of the canonical monoid is turned upside down. For $\mathrm{SL}_{n}(k)$ such a monoid is obtained by taking the lined closure of the representation:

$$
A \rightarrow \oplus_{i} \wedge^{i} A .
$$

Theorem 3.2. (i) Let M be a canonical monoid with $\Lambda_{\max }=\left\{f_{\alpha} \mid \alpha \in S\right\}$, where $\lambda\left(f_{\alpha}\right)=S \backslash\{\alpha\}$. Then $M_{\text {nil }}$ has $|S|$ irreducible components: $\tilde{M}\left(f_{\alpha} \alpha\right), \alpha \in S$.
(ii) Let M be a dual canonical monoid with $\Lambda_{\max }=\{e\}$. If S has t components, then M_{nil} has $2^{|S|-t}$ irreducible components: $\overline{\tilde{M}(e y)}$ where y is a Coxeter element of W of length $|S|$.

Proof. (i) Now

$$
\Lambda=\left\{e_{X} \mid X \subseteq S\right\} \cup\{0\}
$$

with $\lambda\left(e_{X}\right)=X$. For $\alpha \in S$, let $f_{\alpha}=e_{X}$ where $X=S \backslash\{\alpha\}$. Let $X \subseteq S, e_{X} y \in R_{\text {nil }}^{*}$. Then y starts with $\alpha \notin X$. So $e_{X} y \leq f_{\alpha} \alpha$. By Theorem 3.1 (ii), $f_{\alpha} \alpha \in R_{\text {nil }}^{*}$. The result now follows from Theorem 3.1 (iii).
(ii) Now

$$
\Lambda=\{1\} \cup\left\{e_{X} \mid X \subseteq S\right\}
$$

with $0=e_{S}$ and $\Lambda_{\max }=\left\{e_{\emptyset}\right\}$. Let $e=e_{\emptyset}$. Let $X \subseteq S, X \neq S$. Then $W\left(e_{X}\right)=W_{e_{X}}=W_{X}$. Let $e_{X} y \in R_{\text {nil }}^{*}$. By Theorem 3.1(ii), $y \notin W_{Y}$ for any proper subset Y of S containing X. Thus y involves each $\alpha \in S \backslash X$. Thus $y \geq z$ for some Coxeter elements of $W_{S \backslash X}$ of length $|S \backslash X|$. Let v be a Coxeter element of W_{X} of length $|X|$. Then $v z$ is a Coxeter element of W of length $|S|$. Since $v \in W_{e_{X}}, e_{X} y \leq e_{X} z \leq e v z$. Since $W(e)=1, \preceq=\leq$ on $e W$. Also if $x \in W$ is a Coxeter element of length $|S|$, then by Theorem 3.1(i), ex $\in R_{\text {nil }}^{*}$. It is a consequence of induction and the exchange condition that the number of Coxeter element of length $|S|$ is $2^{|S|-t}$. This completes the proof.

Example 3.3. Let

$$
M=\left\{A \otimes B \mid A, B \in M_{4}(K), A^{t} B=B A^{t} \text { is a scalar matrix }\right\} .
$$

Then $S=\{\alpha-\beta-\gamma\}$ and M is a \mathcal{I}-irreducible monoid of type $\{\beta\}$. Hence

$$
\Lambda_{\max }=\left\{e_{1}, e_{2}, e_{3}\right\}, \quad \lambda\left(e_{1}\right)=\{\alpha, \beta\}, \quad \lambda\left(e_{2}\right)=\{\alpha, \gamma\}, \quad \lambda\left(e_{3}\right)=\{\beta, \gamma\} .
$$

The maximal elements with respect to \leq as well as \preceq of $R_{\text {nil }}^{*}$ are:

$$
\left\{e_{1} \gamma, e_{2} \beta \alpha, e_{2} \beta \gamma, e_{3} \alpha\right\} .
$$

Correspondingly the irreducible components of $M_{\text {nil }}$ are:

$$
\overline{\tilde{M}\left(e_{1} \gamma\right)}, \quad \overline{\tilde{M}\left(e_{2} \beta \alpha\right)}, \quad \overline{\tilde{M}\left(e_{2} \beta \gamma\right)}, \quad \overline{\tilde{M}\left(e_{3} \alpha\right)} .
$$

CONJECTURE 3.4. The maximal element of $R_{\text {nil }}^{*}$ with respect to \leq are also the maximal element of $R_{\text {nil }}^{*}$ with respect to \preceq.
4. Finiteness. We study in this section the problem of when the number of conjugacy classes within $\tilde{M}(e y)$ is finite.

Theorem 4.1. Lete $\in \Lambda, y \in D(e)^{-1}$. Then the following conditions are equivalent:
(i) $\tilde{M}(e y)$ has finitely many conjugacy classes.
(ii) $\tilde{M}(e y)$ is a single conjugacy class.
(iii) $G(e y)$ is a torus and for all $f \in E(\bar{T})$ with $f^{y}=f, f \in \overline{\bar{\Pi}_{z \in(y)} T_{e^{2}}}$. In this case ey is nilpotent.

Proof. (i) \Rightarrow (iii). Let σ denote the automorphism of $G(e y)$ associated with \dot{y}. By Theorem 2.2, $G(e y)$ has finitely many σ-conjugacy classes. So for some $x \in G(e y)$, the σ-conjugacy class of x is dense in $G(e y)$. Let θ denote the automorphism of $G(e y)$ given by: $\theta(g)=x \sigma(g) x^{-1}$. So the map:

$$
g \rightarrow g \theta(g)^{-1}=g x \sigma(g)^{-1} \cdot x^{-1}
$$

from $G(e y)$ to $G(e y)$ is dominant. By [15; 10.2],

$$
G(e y)_{\theta}=\{g \in G(e y) \mid \theta(g)=g\}
$$

is finite. By [15; Corollary 10.12], $G(e y)$ is solvable. Since $G(e y)$ is reductive it follows that $G(e y)=T^{\prime}$ is a torus. So

$$
T^{\prime}=T / T_{1}, \quad T_{\mathrm{I}}^{c}=\overline{\prod_{z \in(\nu)} T_{e^{e}}} .
$$

Hence $\sigma=\theta$ and T_{σ}^{\prime} is finite. Now let $f \in\left(E(\bar{T})\right.$ such that $f^{y}=f$. Let $y^{n+1}=1$,

$$
T_{2}=\left\{t \cdot t^{y} \cdots t^{y^{\prime \prime}} \mid t \in T_{f}\right\} .
$$

Then T_{2} is a torus and $f \in \bar{T}_{2}$. Clearly the image of T_{2} in T^{\prime} is contained in T_{σ}^{\prime}. Since T_{σ}^{\prime} is finite, $T_{2} \subseteq T_{1}$. So $f \in \bar{T}_{1}$. In particular $0 \in \bar{T}_{1}$. This implies that $\Pi_{z \in(y)} e^{z}=0$ and hence $e y$ is nilpotent.
(iii) \Rightarrow (ii). Let $y^{n+1}=1$,

$$
T_{1}=\left\{t \cdot t^{y} \cdots t^{y^{\prime \prime}} \mid t \in T\right\}
$$

Then T_{1} is a torus, $0 \in \bar{T}_{1}$. Let

$$
T_{2}=\left\{t \cdot t^{y} \cdots t^{y^{\prime \prime}} \mid t \in \prod_{z \in\langle y\rangle} T_{e^{z}}\right\}
$$

Then $E\left(\bar{T}_{1}\right)=E\left(\bar{T}_{2}\right), T_{2} \subseteq T_{1}$. Hence $T_{1}=T_{2}$. So for all $t \in G(e y)_{\sigma}, t^{n+1}=1$. Hence $G(e y)_{\sigma}$ is finite. By [15; Theorem 10.1], the σ-conjugacy class of 1 is $G(e \sigma)$. By Theorem 2.2, $\tilde{M}(e y)$ is a single conjugacy class.
(ii) \Rightarrow (i). This is obvious.

REMARK 4.2. Since $G(e y)$ is a reductive group, we see that $G(e y)=1$ if and only if $T=\prod_{z \in\langle y\rangle} T_{e^{z}}$.

Finally we generalize our earlier result [5; Theorem 4.8] on rank 1 nilpotent elements.
THEOREM 4.3. The number of conjugacy classes of standard nilpotent elements in M is finite and is equal to the number of standard nilpotent elements in R^{*}.

Proof. Let $e \in \Lambda, y \in D(e)^{*}$. Then clearly an element of $\tilde{M}(e y)$ is standard nilpotent if and only if ey is standard nilpotent in R. Let ey be standard nilpotent of rank p. Then $\mathrm{rk}\left((e y)^{i}\right)=p-i+1$. Let

$$
e_{i}=e \cdot y e y^{-1} \cdots y^{i} e y^{-i}, \quad i=0, \ldots, p
$$

Then $(e y)^{i+1}=e_{i} y^{i}, i=0, \ldots, p$. Hence $\mathrm{rk}\left(e_{i}\right)=p-i$ and

$$
e=e_{0}>e_{1}>\cdots>e_{p}=0
$$

Let $T_{1}=\Pi_{z \in\langle y\rangle} T_{e^{z}}$. Then $T_{e} \subseteq T_{1}$ and $e_{0}, \ldots, e_{p} \in \bar{T}$. Hence we have a maximal chain of $E(\bar{T})$ contained in \bar{T}_{1}. Hence $\operatorname{dim} T_{1}=\operatorname{dim} T$. So $T=T_{1}$. By Remark 4.2, $G(e y)=1$. We are now done by Theorem 2.3.

REFERENCES

1. R. W. Carter, Finite groups of Lie type: Conjugacy classes and complex characters. Wiley, 1985.
2. J. E. Humphreys, Reflection groups and Coxeter groups. Cambridge Univ. Press, 1990.
3. G. Lusztig, On the finiteness of the number of unipotent classes. Invent. Math. 34(1976), 201-213.
4. E. A. Pennell, M. S. Putcha and L. E. Renner, Analogue of the Bruhat-Chevally order for reductive monoids. J. Algebra 196(1997), 339-368.
5. M. S. Putcha, Regular linear algebraic monoids. Trans. Amer. Math. Soc. 290(1985), 615-626.
6. ___Linear algebraic monoids. London Math. Soc., Lecture Note Series 133, Cambridge Univ. Press, 1988.
7. \qquad Conjugacy classes in algebraic monoids. Trans. Amer. Math. Soc. 303(1987), 529-540.
8. \qquad Conjugacy classes in algebraic monoids II. Canad. J. Math. 46(1994), 648-661.
9. M. S. Putcha and L. E. Renner, The system of idempotents and the lattice of I-classes of reductive algebraic monoids. J. Algebra 116(1988), 385-399.
10. \qquad The canonical compactification of a finite group of Lie type. Trans. Amer. Math. Soc. 337(1993); 305-319.
