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CONJUGACY CLASSES AND NILPOTENT VARIETY
OF A REDUCTIVE MONOID

MOHAN S. PUTCHA

ABSTRACT.  We continue in this paper our study of conjugacy classes of a reductive
monoid M. The main theorems establish a strong connection with the Bruhat-Renner
decomposition of M. We use our results to decompose the variety M, of nilpotent ele-
ments of M into irreducible components. We also identify a class of nilpotent elements
that we call standard and prove that the number of conjugacy classes of standard nilpo-
tent elements is always finite.

Introduction. In the study of a reductive group G, the variety Gy, of unipotent
elements plays an important role, ¢/ [1]. In particular, this variety is irreducible and
has only finitely many conjugacy classes. We will study in this paper the variety My;
of nilpotent elements in a reductive monoid M with zero. While the two varieties are
isomorphic when M is the multiplicative monoid of a finite dimensional algebra, this
is in general not true. In fact M, is usually a reducible variety. We will obtain in this
paper a description of the irreducible components of My;. We accomplish this by first
refining our earlier results on conjugacy classes of M. The relevant affine subsets M(ey)
are shown to generate the same conjugacy classes as the double B x B orbit BeyB. Next
the order on these conjugacy classes is determined within the Renner monoid R. This
yields a description of the irreducible components of Mpy).

The number of conjugacy classes of My is usually infinite. In an earlier paper we
showed that the number of conjugacy classes of rank 1 nilpotent elements is always
finite. We generalize this result to standard (exponent = 1 + rank) nilpotent elements.

1. Preliminaries. Let M be a reductive monoid over an algebraically closed field
k, cf. [6], [14]. We will assume that M has a zero 0. Let G denote the reductive unit group
of M. The G x G orbits (= J-classes) of M form a finite lattice U with order defined by:

L <Jy ifJ; Chh.
There is a cross-section A of idempotents e;, J € U so that
e e, = eney, =eyn, foralldy,, € U
Then A(Z U) is called the cross-section lattice of M. It turns out that

T=Co(A)={geG|ge=egforalle € A}
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is a maximal torus of G. If " C A, then

P=PI)={geG|ge=-egeforalle €T},
Pr=P (N)={ge€G|leg=cgeforallecT}

are opposite parabolic subgroups of G relative to 7. In particular B = P(A) and B~
P~(A) are opposite Borel subgroups of G relative to T. If X C M, then

EX)={ecX|=e}
is the idempotent set of X. Clearly E = E(M) is a partially ordered set if we define:
elf ifef=fe=e

Moreover,
E(M)={x""ex | x € G,e € A}.

If dim 7 = #n, then all maximal chains in A, E(M), E(T) have the same length, #n. In
particular this yields a rank function
tk: M — {0,...,n}
such that
k(0) =0, r1k(l)=n.
Let
Amin = {e €A | rl((e) = 1}
Amax = {e €A | l'k(e) =7n— 1}

Let a € M, rk(a) = m. Then there is a smallest positive integer ¢ such that rk(a’) =
tk(a™"). Then ' lies in a subgroup of M and

() k(a) > k(@) > - - > 1k(a) = tk(a'™).
So tk(a") < 1k(a) — ¢ + 1. We will call a standard if,
(2 k(a") = k(@) — t+ 1

We note that an element of rank < 1 is necessarily standard. An element a is nilpotent
if @ = 0 where ¢ is as in (1). Then ¢ is the exponent of a. Clearly then a is standard
if rk(a) = t — 1. We note that in the case of the full matrix monoid M, (%), a nilpotent
“element g is standard if and only it has atmost one non-zero Jordan block.

As usual let W = Ng(T)/T denote the Weyl group of G with generating set § of
simple reflections, length function / and Bruhat-Chevalley order <, ¢f. [1], [2]. Then by
the Bruhat decomposition,

G=|] BB

xEW
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and forx,y € W,
x <y<= BxB C ByB.

If x € W, then we denote by x, a coset representative of Ng(T). If I C S, then W, = (I)
is a (standard) parabolic subgroup of /¥ and

P, =BW,B, P; =B WB~
are (standard) opposite parabolic subgroups of G with Levi decomposition
P=LU,Pf =LU ,Li=PNPF;.

In particular
B=TU, B =TU, T=BNB".

If K C I, then define K </ if K is a union of some components of / with respect to the
Coxeter graph structure of S. Clearly < s a transitive relation and for allJ C S,

K<I=JNK<aJNIL
For 7 C S, let
Dy = {y e W| tyw) = £(y)+ £(w) forallw € W}
D' ={y e W| &(wy) = L(y)+ L(w) forall w € W;}.
Then by [1; Chapter 2], forally € D!,
©) y'BNL)yCB and yBy~' CUB.

Now W = D;W; = W;D;". Hence associated with x € W is a unique element of D}
(and also of D;). We will need to associate an element of D;! in a different way. For
x,y € W, define:
X=py if ﬂxiny_i 76 0
i>0

Clearly =, is an equivalence relation on /. We also note that

4) x=mwxw ! ifwe W
x=mux ifu€ xWx™
>0

PROPOSITION 1.1.  Letx € W. Then x = jy for a unique y € Dy'. Moreover £(y) <
(x).

PROOF. Let

(5) xi=x=wy, w €W, y €D/
Xy =yiwy =wyys, W €W, »mE€ D,"
X3 =y,wy =wiy3, w3 €W, y3€D;
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Now
X1 = ypwy = w; (wpwy = wi xw;.
Hence by (4),
(6) X=X = X3 =---.
Also
Q1) = LOywy) < L) + Lwy) = Lwpyy) = L(x).
Hence

) > L0) > .

So for some N,
Lay) = Lave) = -+

Hence forj > N
yiwp = wiyp,  Lpwy) = £0y) + E(wy).
Since y; € D,‘l , we see by the exchange condition [2; Theorem 5.8] that forj > N,
Yiel = Yty w; € W, £(y) = L) + L(w).

In particular ‘
ELyn) < lwn) < -0

Hence there exists K > N such that

VK = Yot =

So forj > K,
YKWj = Wir 1 JVK.
So '
VKW' = w1 € Wi,

Hence

wk € vk Wk.

>0

So by (4), (6)

— _ —1
X=x; = xxk =wgyk =k €Dy .

Clearly £(yx) < L(xg) < L(x). A
Next we prove uniqueness. Let y,z € D! such that y = ;z. Then there exists

we Ny Wiz
>0
Let wg = wand fori > 1,
@) w; :y_'w,-_,z :y_ivvzi e w.
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Now w; = y~'wz and hence

(8) wz = ywy.

Since z € D},

9) Lw) + £(z) = LOow1) < L)+ L(wr).

By (8), w™'y = wiz~!. Since y € D!,

(10) Lw) + L) = Lwiz”") S L) + L(wy).
Adding (9), (10), we see that £(w) < £(w;). Thus by (7),

(11 Lw) < Lwy) < lwa) < ---.

If N = | W], then by (7), wy = w. Hence by (11), £(w) = £(w)). By (9), (10), £(y) = £(z).
Since y,z € Dy, we see by (8) and the exchange condition that y = z. B
Let/ C S. Then forallJ C S,

Drt C (D7 NDyw,.
Hence for all y € D;!, we see by [1; Theorem 2.7.4] that
(12) Wy NyW,;y~! s a standard parabolic subgroup.
Hence

winywy ' =w,, L ClI
wWiNyWy ™ =Wy, LCl
WiNyWy ' =Wy, LKCh

Let K = Ko < 1. Then by (12),

Wy NyWiy™' = Wy,, K<l
WiNyWk,y™' = Wg,, K,<b

Let
(13) Dj(K)={y € D;" |y € Dy, forallj > 0}.
We note that

(14) D;(®)=D;', Dj()=D;ND;".
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COROLLARY 1.2. Lety € Di(K), z € Wk, yz = ' € Dj'. Then (/') > L(y). If
e(y) = e(y’), then y :y’_

PROOF. LetXy = K and fori >0
k
Xiv1 = K \ U X <Kisi.
j=0

Then
(15) X aX; UK, X;aX;UX; fori#).

Let
X=Xuxu---=KUKiUK,U---.

Now fori > 0,
wWinyWxy™ C WiNyWiy™ C Wi, C Wy

Hence by (15),

(16) W NyWyy™ C Wy.
Since y € Dy,

17 L(yv) = L(y) + £(v) forallv € Wy.

Now we apply the algorithm (5) in Proposition 1.1 to yz, along with the exchange con-
dition and (17) to obtain:

z =vyzy, Vi €Wy, zy € W, yzi €D,_'.
Then vy = y(zz7 ')y~ € Wy by (16). So
VZ\V = Vayza, Vi € Wi,z € Wy, yzo € D,"'.
Then v, = y(z1viz;' )y~ € Wy by (17). Continuing,
VIV = VilVziet,  Viel € Wi, zin € Wy, yzin € D

Then as in Proposition 1.1, for some j, yz = ;yz; € DJ', z; € Wx. By (17), l(yz) =
£(y) + £(z)). This completes the proof. |

THE RENNER MONOID R = Ng(7)/T. This is a finite inverse monoid with unit group
W and idempotent set E(T). Moreover

R=wAW, ET)= | x'Ax
xEW
By [12], the Bruhat decomposition for G can be extended to M as:
(18) M=||BrB
rer
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IfT C E(T), let
WI)={x€W|xe=exforalle e T'}.

Lete € A. Then

(19) W(e) = W; forsomel/= \e)C S
We={x€EW|xe=ex=e} =Wy forsomeK<l.

Also let
(20) D(e) =Dy, D*(e)=Dj(K), D.=Dg.
Then by (14),

D*(e) = D(e)ND(e)™" ife € Amin
D*(e) = D(e)™' ife € Amax.

We note that W(e) is the Weyl group of L(e) = Cg(e) and W, is Weyl group of G, where
G.={g€G|ge=e=eg}.

If r € WeW, then
r=xey, x€D, y€De".

This is the standard form of r. Let r; = xey, r» = sft in standard form. Define

21 rn<r ifelf, x<sw, w_'tgy for some w € W(NW,.
Then by [4],
(22) r <r, <= Br;BCBnB.

Lete,f € A,y € D(e)~". Then

Beyfy~" = eCa(e)yfy™
=ey -y~ Calely ™"
CeyBf™', by(3)
C eyfBy”"!
= ey - yBy”.
It follows that if # = e - yfy~', then Bh = hBh. So h € A. Thus we have the following
analogue of (12):

(23) ey~ €A foralle,f €A, y€ D).

The monoid analogue of the Coxeter-Dynkin diagram is the type map A: A — 25
where ) is as in (19). ) along with the Tits building determines the (biordered set) £(M),
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cf. [9]. The determination of all possible type maps remains an important open prob-
lem. However the problem has been solved in [9] when |Ap;,| = 1. These are called
J-irreducible monoids of type I where A(e) = I, Amin = {e}. Such monoids arise as the
lined closures of irreducible representations of a semisimple groups. For J-irreducible
monoids of type 7, ) has the following description. Let

(24) A; = {ex | X C S, no component of X is contained in /} U {0}.
Define ey < ey if X C Y and let
Mey) =XU{a €| af = Paforall § € X}.
Then A; & A.
2. Conjugacy classes. Leta,b € M. Then a is conjugateto b (a ~ b) if b = a* =
x 'ax for some x € G. If X, Y C M, then we write X ~ Y to mean that every element of
X is conjugate to an element of Y and every element of Y is conjugate to an element of X.

We will further refine here our earlier results on conjugacy classes [7], [8], while at the
same time finding some surprising connections with the Bruhat-Renner decomposition

(18).

LEMMA 2.1. Lety € D(e)™!, H= Cg(¢" | z € (y)). Then for all b € Cg(e), h € H,
ebhy ~ eh'y for some b’ € H.

PROOF. Let L = Cg(e). Then by (3),
(25) y N UNLy CU=UNL)U,.

Let Vo =1andfori>1,

i_l . . . .
V=N UNLy7NyUy~ CUNL
Jj=0

V=N UNLy " CH.

>0
If N = |W|, then clearly V; = 1 fori > N. Let
U=V--V, j=0.

Then since U is a product of root subgroups in any order, we see by (25) that UNL =

UyV. Also
Vi C ULy WVimy C Vi fori> 1
So
(26) y Uy C UL, i 20.
Now

bh € (UNL)TH = UyVTH = UyH.
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So
bh = uh; forsomeu; € Uy, h) € H.

Suppose u; € U, 1> 0. Then
emhy=ep-y 'why ~35 " uhy-ep
=y wy -3 hjey.
By (26), y~'u1y = vu, for some v € Uy, uy € U;. Also by = y~'hyy € H. So
| ebhy ~ vinhyep = veurhyp = euphyy.

Hence by induction ebhy ~ eh’y for some 4’ € H. B
Let e € A and let D(e), D*(e) be as in (20). Let y € D(e)™!, H = Cg(¢* | z € (y)).
Define

M(ey) = eHy
Gley)=H / I1 H.
z€y)

where
H;={hEH|hez=e:h=ez}.

Clearly y yields a natural map and automorphism,
@27 §:M(ey) — Gley), o € AutG(ey)

where £(ehy) is the coset of 4 and o(h) = yhy~!. If a,b € G(ey), then a is o-conjugate
to b if gao(g)~' = b for some g € G(ey). Let

Mey)= | g-M(ey)- g
g€G

THEOREM 2.2. Lete € A. Then
(i) Ify € D(e)™", then

M(ey)= |J g-BeyB- g™
g€CG

(ii) GeG is the disjoint union:

GeG= || Mey).
yeD*(e)
(i) Ify € D(e)™', a,b € M(ey), then a ~ b in M if and only if &(a), £(b) are
a-conjugate in G(ey), where §, o are as in (27).
PROOF. (i) Let H = Cg(¢* | z € (»)). Then y yields an automorphism o of H given
by: o(h) = yhy~'. Then by (3), s(BNH) = BNH. Soif h € H, then by [15; Lemma 7.3],
there exists g € H such that gha(g)~' € BN H. Hence

ehy ~g-ehy-g~' = egha(g)™'y € e(BN H)y C BeyB.
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Also BeyB ~ Bey = eCg(e)y. Combined with Lemma 2.1, we see that M(ey) ~ BeyB.
(ii) Let/ = A(e). Ifx € W, then by Proposition 1.1,x = ;y forsomey € D(e)~!, I(y) <
I(x). Hence by [8; Theorem 2.1, 2.6], every element of GeG is conjugate to an element
of M(ey) for some y € D(e)~!. Moreover if y;,y, € D(e)~", then M(ey;) ~ M(ey,) if
and only if for some x € W, ey; ~ ex in R and x = ;y,. In such a case, write y; & y,.
If y1 % y», then by [8], no element of M(ey,) is conjugate to an element of M(ey,). We
can assume that £(y) is minimum in the ~-class of y. Then if ey ~ ¢)’, )’ € D(e)™', then
£(') > £(y). We claim that y € D*(e). Suppose y = y'z7!, £(y) = L(/') + £(z) > £(p),

zEWe,....,& YW, .

Then in R,

(28) e =eyz~vzey=ezy=ey- 2 ~7 -ep=---~7 -ey=ey.

This contradiction shows that y € D*(e). Next let y,y>» € D*(e) such that y; & y,. Let
£(y1) > £(y2). Then by [8; Theorem 2.6] and (4), there exists z € W, such thatzy, = ;y».
So yz = [y,. By Proposition 1.1 and Corollary 1.2, y; = y,. This proves (ii).

(iii) This is proved in [7; Theorem 2.4]. B

Let < denote the transitive relation on R generated by:

1. If r; <rp,thenr; < ry.

2. Ify € D(e)™!, x € W, then eyx < xey. Let

R*={ey|e€ Ay € D)}

THEOREM 2.3. (i) <is a partial order on R*.
(ii) M is the disjoint union:
M= || M.
reR*
(iii) If r1,r, € R, then

M(r) C M(r;) <=1 <.
(iv) Ifr € R*, then M(r) = Uy cp* M(r).
Y=3r

PROOF. (ii) This follows from Theorem 2.2.
(iii) Forr € R, let
Xr)=Jg-BrB-g™".
geC
If » € R*, then by Theorem 2.2, X(r) = M(r). For r € R, G acts on X(r) by conjugation
and B stabilizes Br B under this action. Since G /B is a projective variety, it follows that

(29) X»=Ug-BrB-g™' = | x(r").
geg r<r

https://doi.org/10.4153/CJM-1998-044-7 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1998-044-7

CONJUGACY CLASSES AND NILPOTENT VARIETY 839

Letee A,y e D(e)~',x € W.Let L = Cg(e). Then
BeyxB ~ Beyx = e(BM L)yx ~ xe(BN L)y
=xey-y ' (BNL)y
C xeyB, by(3)

C BxeyB.
Hence
(30) X(eyx) C X(xey) fory € D(e)™!, x € W.
Also
BxeyB ~ eyBx
C U Beyx'B, by [13; Theorem 1.4].
x<x
~ Hence
31 X(xey) C |J X(eyx') fory € D(e)™!, x € W.
x'<x

Note also that
eyx’ <x'ey <xey fory e D)™, x' <x.

By (20), (30), for all r,7” € R,
¥ < r= X(") C X(@).

Now lete € A, x € D*(e), r € R* such that X(ex) C X(r). Then by (29), (30), (31),
there exists x; € W such that ex; < rand ex € X(ex;). Choose x; such that £(x;) is
minimum. Then applying the algorithm (5) in Proposition 1.1 and using (30), (31) and
the minimality of £(x;), we see that ex € X(evy) for somey € D(e)™!,v € W(e*|a € (y))
such that evy < ex; and £(vy) = £(x;). Now

BevyB ~ Bevy = eCg(e)vy.

By Lemma 2.1, it follows that ex is conjugate to an element of M(ey) C X(ey). Also
1

ey < vey = evy < r.Hence £(y) = £(x). We claim thaty € D*(e). Otherwisey = y,;z7",
L) = L)+ L) > LOn),
z€We,...,e )N Wi
Then y; € D(e)~! and
eyy=ey-zXzey=ezy=ey-2 X7 -ey=--- 7" -ey=ey.

Hence ey; =< ey. Also by (28), ey ~ ey in R. By [8; Theorem 2.6], M(ey) ~ M(ey,) C
X(ey)). Hence ex € X(ey), ey1 X r, £(y1) < £(x1). This contradiction shows that y €
D*(e). By Theorem 2.2 (ii), x = y. Hence ex < r, proving (ii).
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(iv) This follows from the proof of (iii).

(i) Letr;,r, € R* such that r; < r; < ry. Then M(r) = m Since this is an
irreducible variety, there exist non-empty open subsets O, O, such that O; C M(r) and
0> C M(r). In particular M(r) N\ M(r2) # 0. By Theorem 2.2, | = r,. This completes
the proof. B

EXAMPLE 2.4. < is not a partial order on R. If M = Mj3(k), then

0 0 1 010 0 0 1
(0 0 O)S(O 0 0)5(0 0 O).
0 00 0 00 000

Lete € A,y € D(e)™'. Then by (23), e - yey™! € A. So again by (23),
e-yey Yoy =e-ye-yey Yy €A
Continuing, we see that
f=c-yey - YPey 2. N lgl=N e A
where N = |¥|. Hence (ey)" =" =f. So
(32) (en)V e A forally € D(e)™".
In particular
vew, eeM={acM|of =fa=F).

So ey is a nilpotent element of R(M;) and the study of conjugacy within M{(ey) reduces to
studying conjugacy within Cg(Gy) and conjugacy within My(eY). See [5; Theorem 4.1].
We note that every element of My(ey) is nilpotent in M;. We are therefore naturally led
to studying nilpotent elements in reductive monoids.

3. Nilpotent variety. While the variety Gy of unipotent elements in a reductive
group G is always irreducible, the variety M of nilpotent elements in a reductive monoid
M is usually not irreducible. We will use the results of the previous section to decompose

M, into irreducible components. Let RY;, denote the set of nilpotent elements in R*.

THEOREM 3.1. (i) Lete € A, e # 0,y € D*(e). Then ey € RY, if and only if
v & W() for all f € Amin withf < e
(ii) My is the disjoint union:

Mo = || M().
"ER;H
(iii) The irreducible components of My are M(r) where r is a maximal element of
R, with respect to the partial order <.

PROOF. (i) Suppose ey is not nilpotent. Then by (32), there exists f € Ay, such
that eyf = fey = f. This implies that / < e and y € W(f). Conversely suppose f € Ampin,
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S < esuchthaty € W(f). Then eyf = efy = fy. So (ey)/f = fi/' for all i. So ey is not
nilpotent.

(ii) It is easy to see that M(r) has a nilpotent element if and only if r is nilpotent in R.
In this case every element of M(r) is nilpotent. Hence (ii) follows from Theorem 2.3.

(iif) This follows from Theorem 2.3 since each M(r) is irreducible. B

We will now apply Theorem 3.1 to two special cases. By a canonical monoid on G,
we mean a J-irreducible monoid of type (). Such monoids are obtained by taking the
lined closure of an irreducible representation of a semisimple group with the highest
weight being in the interior of the Weyl chamber. They are also related to the canonical
compactification of a reductive group. We refer to [10] for details. In the case of SL, (k)
such a monoid is obtained by taking the lined closure of the representation:

A— ;N A.

We will also consider the dual canonical monoid (see [11]) where the cross section lattice
of the canonical monoid is turned upside down. For SL,(k) such a monoid is obtained by
taking the lined closure of the representation:

A— @ N A.

THEOREM 3.2. (i) Let M be a canonical monoid with Apax = {fo | @ € S}, where
Mfw) = S\ {a}. Then My has |S| irreducible components: M(fycx), o E.S.

(ii) Let M be a dual canonical monoid with Amax = {e}. If S has t components, then
M,y has 219" irreducible components: W wherey is a Coxeter element of W of length
|S].

PROOF. (i) Now

A={ex| XC StuU{0}

with M(ex) = X. For a € S, letfy, = ex where X = S\ {a}. Let X C S, exy € R%;.
Then y starts with o ¢ X. So exy < fya. By Theorem 3.1 (ii), fox € R;;. The result now
follows from Theorem 3.1 (iii).
(i) Now
A={1}U{ex | XC S}

with 0 = es and Amax = {eg}. Let e = ep. Let X C 5, X # S. Then W(ey) = W,, = Wy.
Let exy € R%,;. By Theorem 3.1(ii), y ¢ Wy for any proper subset ¥ of S containing X.
Thus y involves each a € S\ X. Thus y > z for some Coxeter elements of W,y of length
IS\ X]. Let v be a Coxeter element of Wy of length |X|. Then vz is a Coxeter element
of W of length |S). Since v € W,,, exy < eyz < evz. Since W(e) = 1, X = < on eW.
Also if x € W is a Coxeter element of length |S|, then by Theorem 3.1(i), ex € R¥,. It
is a consequence of induction and the exchange condition that the number of Coxeter

element of length | S| is 25", This completes the proof. B
EXAMPLE 3.3. Let

M={4QB| A,B € My(K),A'B = BA'" is a scalar matrix }.
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Then S = {& — B — 7} and M is a J-irreducible monoid of type {}. Hence
Amax = {e1,e2,e3}, Me) ={a. 8}, Me) ={a,7}, Mes) = {8,7}.
The maximal elements with respect to < as well as < of R}, are:
{e1, e, €287, e30}.

Correspondingly the irreducible components of My are:

MerY), M(efa), M(eY), M(esa).

CONJECTURE 3.4. The maximal element of R};; with respect to < are also the max-
imal element of R} with respect to <.

4. Finiteness. We study in this section the problem of when the number of conju-
gacy classes within M(ey) is finite.

THEOREM4.1. Lete € A,y € D(e)™". Then the following conditions are equivalent:

(i) M(ey) has finitely many conjugacy classes.

(ii) M(ey) is a single conjugacy class. .

(iii) G(ey) is a torus and for all f € E(T) with f* = f, [ € TLegy) Te-
In this case ey is nilpotent.

PROOF. (i) = (iii). Let o denote the automorphism of G(ey) associated with y. By -
Theorem 2.2, G(ey) has finitely many o-conjugacy classes. So for some x € G(ey), the
o-conjugacy class of x is dense in G(ey). Let 6 denote the automorphism of G(ey) given
by: 8(g) = xo(g)x~". So the map:

g— 20" =gro(g) ™ -x!
from G(ey) to G(ey) is dominant. By [15; 10.2],
Gley) = {g € Gley) | 0(g) = g}

is finite. By [15; Corollary 10.12], G(ey) is solvable. Since G(ey) is reductive it follows
that G(ey) = T is a torus. So

T'=T/Ty, T;=T] Te.
2€(y)

Hence o = 0 and T, is finite. Now let /' € (E(T) such that /* = f. Let y"*! = 1,
L={t-¢ ¢ |teT}

Then 75 is a torus and /' € T5. Clearly the image of T; in T” is contained in T" 7. Since 77,
is finite, 7, C T1. Sof € Ty. In particular 0 € T). This implies that [Leyy e = 0and
hence ey is nilpotent.
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(iii) = (ii). Let y"™! = 1,
Ty={t-?---#|teT)
Then 7, is a torus, 0 € 7. Let |

= {t-t)’---t-"' e I1 Tec}.
z&(y)

Then E(T)) = E(T»), T, C T,. Hence T}, = T5. So for all 1 € G(ey),, ! = 1.
Hence G(ey), is finite. By [15; Theorem 10.1], the o-conjugacy class of 1 is G(eo). By
Theorem 2.2, M(ey) is a single conjugacy class.

(ii) = (i). This is obvious.

REMARK 4.2.  Since G(ey) is a reductive group, we see that G(ey) = 1 if and only if
T = ey Te-

Finally we generalize our earlier result [5; Theorem 4.8] on rank 1 nilpotent elements.

THEOREM 4.3. The number of conjugacy classes of standard nilpotent elements in
M is finite and is equal to the number of standard nilpotent elements in R*.

PROOF. Lete € A,y € D(e)*. Then clearly an element of M(ey) is standard nilpotent
if and only if ey is standard nilpotent in R. Let ey be standard nilpotent of rank p. Then

rk((qy)i> =p—i+]1. Let
e=e-yey ' ---yey™, i=0,...,p.
Then (ey)™' = ey’,i=0,...,p. Hence tk(e;) = p — i and
e=eg>e >--->¢ =0

Let Ty = [Leg) T-. Then T, C T and ep, ... e, € T. Hence we have a maximal chain
of E(T) contained in 7). Hence dim 7} = dim T. So T = 7). By Remark 4.2, G(ey) = 1.
We are now done by Theorem 2.3. =
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