
ROBUST CREDIBILITY VIA ROBUST KALMAN FILTERING

BY ERHARD KREMER

Hamburg

ABSTRACT

Credibility theory is closely related to Kalman filtering. As a consequence, methods
proposed for robustifying the Kalman filter can often be specialised to obtain robust
credibility rating procedures. The application of one such method to several
classical credibility models is shown in this paper.

1. INTRODUCTION

Credibility theory is a very old branch of risk theory and non-life insurance
mathematics. Eearly results are by MOWBRAY (1914) and WHITNEY (1918). A
theoretically elegant approach was given by BUHLMANN (1967) and BUHLMANN &
STRAUB (1970).

The classical models presented by those authors can be generalised to regression
models, hierarchical models and evolutionary models. Generalisations have been
studies intensively in the actuarial literature over the past twenty years. Some key
references are HACHEMEISTER (1975), TAYLOR (1979), SUNDT (1980, 1983),
NORBERG (1980, 1986), KREMER (1988a, 1988b).

In later years several authors have investigated ways of robustifying credibility
rating methods. The aim of robustification is to limit the influence of extremely
large claim amounts on the estimated premium. The reader is referred to, e.g.
GISLER (1980), BUHLMANN et al. (1982), KREMER (1991), KUNSCH (1992), GISLER

& REINHARD (1993).
MEHRA (1973) pointed out that credibility estimation can be achieved by the

Kalman filtering technique. DE JONG & ZEHNWIRTH (1983) explored the correspon-
dence for the classical credibility models, and ZEHNWIRTH (1985) explored its
implications for evolutionary models.

Robust versions of the Kalman filter have been studies for some time, for
example by MASRELIEZ & MARTIN (1977), MEINHOLD & SINGPURWALLA (1989)
and CIPRA & ROMERA (1991). Due to the close relation between Kalman filtering
and credibility theory, it is obvious that corresponding robust versions of credibility
rating techniques can be derived. In the present paper we specialise the method
proposed by CIPRA & ROMERA (1991) to the three most important credibility
models. The resulting robust credibility techniques turn out to be quite tractable.
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2. PRELIMINARIES

Suppose that all probabilistic statements are based on a probability space (Q, A, P)
and consider a risk during periods with indices i - 1, 2, 3, . . . , n+ 1. Assume that
the claims behavior of a risk over all periods can be described by a parameter 9.
Suppose that the value of this parameter is unknown and interpret it as a realisation
of a random variable:

0: (Q,A,P)^(0,r),

with the parameter space © and the a-algebra r on <9. Let the observed claims
amounts (or loss ratios) of the risk be represented by the nonnegative random
variables:

Xj, with i= 1,2, 3, ...,n+ 1,

defined on (Q, A,P). It is assumed that all X, lie in the Hilbert space L2 of
measurables, square integrable functions / (identified with the equivalence class of
all g which are P-a.e. equal t o / ) defined on A with scalar product:

and norm:

In the given insurance context the conditional expectation

mi = E(Xi\6)

is called the net premium (or net loss ratio) in period no. /. Then the credibility
estimator is nothing else but the linear-affine prediction of mn + , from
Xt ,X2, ••• ,Xn. Defining the subspace An of all linear-affine combinations

the credibility estimator is defined as the projection of mn +, on An, i.e. as the
random variable mn+ | e An with

\\mn+ i - w n + 1 | | < ||mn + , - / J

for all fne An.

In general the credibility estimator can be determined by solving certain normal
equations. Under more special model assumptions one can derive explicit formulas
for the credibility estimator. Three special models are given in the Section 4.
Especially in the regression model one can calculate explicit credibility estimators,
see e.g. NORBERG (1980).

It is well-known that the usual credibility estimators are not robust against
extremely large claim amounts. This has led to attempts to contruct robust versions
of the classical credibility estimators. One method to robustify the credibility
estimator was given by Gisler already in 1980.
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Alternative robustifications, which also cover the general regression model, are
given by KREMER (1991).

3. ROBUST KALMAN FILTERING

The KALMAN filter is a well-known instrument for recursive prediction in dynamic
linear systems. A dynamic linear system is defined by the two stochastic linear
recursions:

X, = H, • b, + v,

where X, is a /^-dimensional stochastic vector of observations, //, a known
(/m7)-dimensional design matrix, £>, a ^-dimensional stochastic parameter vector
and Fj a known (qxq )-dimensional transition matrix. The vt, ivt are random
disturbances with:

£(*,-) = 0, E(wi) = 0,

E(vrvJ) = 0, E(wrwJ) = 0, i*j

E{vrvJ) = Rl, E(wrwJ) = Ql

E(vrwJ) = 0, i*j,

where Rt, Qt are known covariance matrices. The Kalman filter algorithm gives
handy recursions for the optimal affine-linear predictor of bt from Xt, X2, • • •, Xt_ t.
For more details see Section 3 in DE JONG et al. (1983).

Like other standard methods the Kalman filter is not robust to outliers. As a
consequence, several authors have proposed robust versions of the usual Kalman
filter algorithm. Recently, a handy robutistification was proposed by CIPRA &
ROMERA (1991). We give a brief summary of their result.

Denote by b-t, the one-step ahead prediction of bt, based on the observations
X, , . . . , X,•_ i, and define its error covariance matrix as

ci = E(bi-&i)(bi-6i)
T.

For a given covariance matrix M, we define as M~U2 any matric which satisfies
M-m-M-(M-ia)T=I.
With this convention we now introduce the matrices

and the random vectors
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Note that, conditional on bt, the stochastic vector s, has mean D, • bt and
covariance matrix /. Further note that

In the spirit of M-Estimation, CIPRA & ROMERA (1991) propose to determine the
updated estimate b\ of bt, given all observations X , , . . . , X,•, as the solution of a
minimisation problem, namely

r 1 P

(3.1) minimised Y P\k(Pu ~ ali" b\) + Y, Pn(sa- dj. • b])

Here p 1 ( , . . . , p l l ? > 0 and p 2 1 , ..., p2(, — 0 are arbitrary robustifying functions,
the k-th row of A, is denoted by aT

kj, and the 7-th row of D, is denoted by dj,.
Denote the derivatives of the functions p by W.

It is seen that the resulting estimator b\ will be the result of a compromise
between the desire to minimise deviation from the one-step ahead prediction (note
Pi - A, • bj = 0) and the desire to have b) reflect the information in the new data as
represented by st.

Having solved (3.1) to obtain b\, one obtains the one-step ahead prediction to use
in the next recursion by

bi+l=Fi+rb>.

For b'i one has the normal equations (see (2.8) in CIPRA & ROMERA (1991)):

(3.2) £ aT
ki • V, k (Pki - aT

ki • # ) + I 4 • ^ (^ - djt • b\) = 0 .
k=\ j=\

By approximating b\ by bt (3.2) gives a certain approximate normal equation

Q P

(3.3) X wlki-alr(pki-alrb))+ £ w2Ji • d? • (Sji - d£ • b\) = 0
k = 1 j = \

where the weights wx kj, w2j, are defined as:

wlki= l im
x -> 0

So far for the general robustification of the Kalman-filter. Turn now to more
practicable, special cases.

It is reasonable to assume that the disturbances w, do not produce outliers. This
results in the choice:
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Furthermore one is willing to take:

independent of j , e.g.:

In the practical case p = 1 one can choose the so called (one-sided) Huber-
function:

VH(z) = z , f o r z < c

= c, for z > c,

where c is a given positive constant. CIPRA & ROMERA (1991) propose to take (3.2)
in case of the Huber-function WH for W and the approximation (3.3) in case of
general W. For general W the formula (3.3) gives the following recursion in case
that p = 1:

•• •• , C,Hl
(3.4) b\ = bi + \ —L_J _ | • (Xi - Hi

where:

(3.5)

(3.6) c; = d- -

i

(3.7) k, = -

Hr CrHf + Rilki

W(R~ m • (X, - H, • £,.))

,- 1/2

Note that the 'ordinary' Kalman filter is just (3.4)-(3.6) with kt= 1.
For the special W = WH one gets from (3.2) in case p = 1 the recursion:

(3.8, b] = bl + CrHl-Rr^.wJR!'2-(X''HrBi)

Cipra & Romera propose to update C, like in the original (nonrobust) Kalman-
filter, i.e.:

(3.9) Ci = FrCl:l-Fj+Qi

Ci • Hi • Hi • C,
(3.10) C! = Ci - —! ! 1 '-.

H, • Ci • H[ + Ri

Obviously the resulting recursions are quite tractable.
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4. ROBUST CREDIBILITY

We consider three well-known credibility models. For each model the robustifica-
tions (3.4)-(3.10) are presented, giving recursions for a robust credibility estima-
tor.

4.1. Buhlmann-Straub (1970) model

Suppose that Xt,... ,Xn + i are conditionally independent given 0. There exist
measurable functions

H : (0 , r) -> (IR, IB)

such that:

E(Xi\e)=/i(0)

Var (X,. I 6) = o1 (OW,,

where Vt, i > 1 are known volume measures. Explicit formulas for the credibility
estimator mn+l can be found in the original article, equivalent recursions for it
based on the classical Kalman filter in DE JONG et al. (1983). Obviously a dynamic
linear model like in Section 3 is given with:

p=\, Hi=l, R^o^lV,

q=\, F, = \, Q, = 0,

where:

One has:

£,• = #:,' =/a,, ci = c;:}

implying from (3.4), (3.6), (3.7) in case of general W:

mi+x =iht +

Cf • Vt • k,

k,=
V,"l • (X, - m,)/o0
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and from (3.8), (3.10) in case of special W=WH:

o0

Obviously one has quite handy recursions for the (robust) credibility estimator

4.2. Hachemeister's (1975) regression model

Conditionally given 0 the X,,...,Xn+, are independent. Suppose that there exist
functions:

b :{©,x)^>{IR

O2:(0,T)->(IR+ ,

such that:

Var (X; I 6) = o2 (0)/V,,

where a, is a known ^-dimensional vector and Vt, i s 1 are given volume measures.
The credibility estimator mn + , of mn + , is given by:

riin+ 1 = an+ 1 ' bn+ I >

where bn +, is the (vector-valued) credibility estimator of b (9) based on
X],..., Xn.

Explicit formulas for bn+, can be found in the original paper of HACHEMEISTER

(1975), equivalent recursions based on the classical Kalman-filter in DE JONG &
ZEHNWIRTH (1983).
Obviously the model fits into the framework of Section 3.
Choose simply there:

p=\, H, = a], R^ollVi

where:

One has:

b, = b{6)
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The recursion (3.4), (3.6), (3.7) give in case of general V:

( Ci • a; -VrL \ T „
bi+l= b, + — ^ ^ • (X,. - aj • b,)

{fCVk S)

a] • Ct • at • Vj • kj +

and the recursions (3.8)-(3.10) in case of special W= V/
H:

bl + i=bj+Crar

— C ;

ff0 J I «/' • C, • a-, • V, + ol

CraraJ-CrV,

a] • C, • a, • Vi +

Obviously also these recursions for a (robust) credibility estimator are quite
practicable.

4.3. Gerber & Jones' (1975) evolutionary model

Suppose that Xx, ... ,Xn + l are conditionally independent given 0. Furthermore
assume that:

nij = nij _ | + Wj,

E(w,) = 0, E(wf) =

where the random disturbances satisfy:

E(w,) = 0,

E(WJ • u/j) = 0, i ̂ j, E(WJ • m0) = 0 .

Finally let:
o2:(0,r)-^(IR+ ,IB+)

such that:

where Vt, i > 1 are given volume measures. Recursions for the credibility estimator
are given e.g. in the paper SUNDT (1981).

This model is a special case of the dynamic linear model of Section 3. Choose
simply there:

p=\, H,= \, Ri = ol/V,

F,= l, Qi = w,

with:
ol = E(o2(6)).
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The recursions (3.4), (3.6), (3.7) give in case of general W:

C, • Vi • ki

mi+ | = m, +

Cf • Vi • kt

Ci+ i = C, - + w
C V k l

k_W(ViU2-(X,-m,)/o0)
l/2

and the recursions (3.8), (3.10) in case of special W= WH:

(W2) ( on- VU2-(X1-mi)

O()

Cf • V,
+ w.

S

5. A SIMULATION STUDY

For the model of Section 4.1 data was simulated with the choice VJ = 1 for all /. The
conditional distribution of X, given 6 - •& was assumed to be given according

(5.1) P(X, = k I 9 = &) = (1 - n) • pt (k) + it • P%(k)

(for k = 0, 1,2,3,...)

with the Poisson-probabilities:

pt)(k) =

and a probability JI. For ft()> ft TI can be interpreted as the probability of an outlier
occurring according to the probabilities p#o(k). The risk parameter ft was simulated
according to the Gamma-model with density on (0, °°):

(5.2) f"(.&) = -?—»

where a and j3 are the nonnegative parameters. One gets for jt = 0 as credibility
estimator:

(5.3) m n + [ =
P + n

https://doi.org/10.2143/AST.24.2.2005066 Published online by Cambridge University Press

https://doi.org/10.2143/AST.24.2.2005066


230 ERHARD KREMER

what shall be compared with a robust variant calculated recursively according to the
formulas:

(5.4) (C/)W

where CTQ = ifi'Jp) ar>d *¥H 1S m e Huber-function with c = 1.645. The recursions start
with:

ift, = {alp), C, = (a/132).

The aim of the study was to compare the results of (5.3), (5.4) with the 'true'
value ?? and to see which one gives the smaller mean squared error:

1 "
(5.5) • X (m,-+i-0)2 ,

n- nQ+ 1 i = n0

where n0 is an adequate number smaller than n. The claims data had to be simulated
with a sufficiently large &0 and an adequate small it. The author chosed n = 0.05
and for &0 the values 20, 25, 30, whereas he took a = 100, /? = 10, giving for E(9)
the value 10. With these parameter choices he simulated 100 risk parameters #,-,
7 = 1 , . . . , 100 according to the model (5.2) and for each •& = #7 independently n = 9
values Xj according to (5.1) (with JT = 0.05). In (5.5) he took n0 = 6. He got for the
overall mean squared error

. 100 10

MSE = — • X X (/ftH',-0/
500 ; = , ;=6

the results of the following table:

0 = 20 25 30

with
(5.3)
(5.4)

0.956 1.231 1.593
0.806 0.807 0.807

showing the strong superiority of (5.4) for situations where bigger outliers can
occur with small probability but one wants to rate the normal risk (i.e. case n = 0).
For further illustration the simulation results shall be given for two typical cases. In
the first row of the following tables the simulated X( are given, in the second the m,
of (5.3) and in the third the m, of (5.4).

#o = 20:
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,= 11.30

9

10.00

10.00

13

9.91

9.91

11

10.17

10.17

22

10.23

10.23

13

11.07

10.63

15

11.20

10.79

14

11.44

11.05

14

11.59

11.23

16

11.72

11.38

—

11.95

11.62

= 8.42

21

10.00

10.00

8

11.00

10.52

12

10.75

10.31

9

10.85

10.44

4

10.71

10.34

8

10.27

9.91

9

10.13

9.80

19

10.06

9.75

8

10.56

10.05

—

10.42

9.95

= 9.60

7

10.00

K).(K)

19

9.73

9.73

11

10.50

10.20

11

10.54

10.26

11

10.57

10.31

33

10.60

10.36

12

12.00

10.70

11

12.00

10.78

11

11.94

10.80

—

11.89

10.81

#,= 10.71

12

10.00

10.00

8

10.18

10.18

24

10.00

10.00

12

11.08

10.43

15

11.14

10.55

15

11.40

10.84

10

11.63

11.10

13

11.53

11.03

11

11.61

11.15

—

11.58

11.14

f0 = 30:

?,•= 10.77

11

10.00

10.00

7

10.09

10.09

13

9.83

9.83

6

9.79

10.08

7

9.60

9.79

28

9.60

9.60

7

10.75

9.95

40

10.53

9.77

11

12.17

10.08

—

12.11

10.13
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#,- = 8.42

31

10.00

10.00

8

11.91

10.52

12

11.58

10.31

9

11.62

10.44

4

11.43

10.34

8

10.93

9.91

9

10.75

9.80

29

10.65

9.75

8

11.67

10.05

—

11.47

9.95

6. FINAL REMARKS

By applying robustifications of the Kalman-filter to credibility models one can
derive fairly practicable recursions for a (robust) credibility estimator. For the
Biihlmann-Straub and Hachemeister models one gets an alternative to an already
existing approach to robust credibility (see KREMER (1991), KONSCH (1992)). For
practical application of the above robustified recursions one needs (robust)
estimators for the unknown model parameters. Desirable would be such estimators
in a recursive form. Obviously here is something left for further research.
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