Acoustic and Vibration Considerations for Advanced Microscopy Suites

Chris Papadimos*

* Papadimos Group, 818 Fifth Avenue, Suite 207, San Rafael, CA 94901

Transmitting electron microscopes (TEM) and other similar advanced microscopy instruments require very controlled, steady and low acoustic and vibration environments to allow utilization of the full range of their capabilities ^{1, 2, 3, 4}. From recent engagements on a number of such projects in academic research institutions, the author, in collaboration with end users, instrument manufacturers and building designers, has developed a thorough understanding of what is required to attain suitable acoustic and vibration environmental conditions for rooms that house such instruments. The process starts by carrying out acoustic and vibration monitoring to assess proposed building sites, establishing required setbacks from existing sources of noise and vibration, developing space layouts to place TEM rooms optimally in the building, and developing appropriate structural support including foundation systems; together with detailed room considerations. The latter entails selection of partition types and mechanical equipment noise and vibration control, including room ventilation, ductwork and pipe work layout and details of wall penetrations to meet the required level of acoustic and vibration performance.

An inherent difficulty that has been encountered from the most basic to sophisticated facilities has been the lack of proper acknowledgement of the design challenges imposed by the stringent criteria for ultra-quiet laboratories. This is particularly complicated where these spaces are not adequately separated from conflicting uses often due to poor planning decisions or limited understanding about acoustic and vibration requirements for such instruments as typically found in manufacturer pre-installation manuals ^{5, 6}. Resolution of strong disparities in the initial planning stage offers the potential for efficient design and close control of construction details, with the resulting cost savings and heightened assurance of a successful outcome. Refer to Table 1 that shows tasks to be completed for successful planning, design and construction for such spaces.

The information presented will be communicated through recent and ongoing case-studies for several examples that are considered state of the art designs for such research spaces. It is the intent to demonstrate that for such research spaces the entire building should be considered the instrument and treated as such during programming, planning, design and construction of facilities that house such advanced microscopy spaces.

References

- [1] M. A. O'Keefe et al., Lab Design for High-Performance Electron Microscopy, Microscopy Today (May, 2004)
- J.H. Ferris et al., Design, Operation, Housing of Ultra-Stable, Low Temperature, Ultra-High Vacuum Scanning Tunneling Microscope, Review of Scientific Instruments, Volume 69 (2008)
- [3] D.A. Muller et al., Room Design for High Performance Electron Microscopy (2006)
- [4] L.F. Allard, Oak Ridge National Laboratory Advanced Microscopy Suites (2007)
- [5] FEI Tools for Nanotech, Pre-Installation Manuals for Titan, Tecnai, Quanta, and Morgagni Instruments (2006 to 2009)
- [6] JEOL Facilities Installation Requirements/Specifications, Various Instruments (2006 to 2009)

Site Selection	Programming	Building	Building	Construction
0	D : :4	rianning	Design	Kevlew
Carry out	Review with	Review space	Develop initial	Approve all
acoustic and	users	planning	design	contractor
vibration	instrument	throughout the	guidelines and	submittals for
monitoring to	manufacturer	building	finalize space	compliance
establish	acoustic and		layouts for	with building
baseline	vibration		TEM Suites	design
conditions for	specifications			
project site(s)				
Use monitoring	Confirm design	Review	Structural slab	Perform
data to assess	goals in	locations for	design and	periodic site
site and	consultation	elevator and	alternatives for	visits to inspect
exposure and	with the users	mechanical	TEM rooms	constructions
identify		shafts, loading	including	and issue
appropriate		dock and other	foundations	reports with
locations for		areas of high		construction
the TEM rooms		noise and		deficiencies
		vibration levels		
		Review and	Architectural	Carry out
		finalize vertical	design for	testing at key
		stacking in	partitions,	construction
		terms of space	doors and	intervals to
		adjacencies	penetrations for	ensure that
		2	TEM rooms.	design goals are
				met
		Identify and	Mechanical	
		resolve any	systems design	
		remaining	and proper	
		constraints with	equipment	
		various design	selection and	
		disciplines	ventilation	
		1	options	
			Coordinate with	
			users and	
			design team	

Table 1. Timeline for Planning, Design and Construction Sequence to be followed for Facility with TEM Spaces