FINITE EXTENSIONS OF VALUED FIELDS

ΒY

SETH WARNER

ABSTRACT. A corollary of the main result is that if L is a finitedimensional Galois extension of a field K and if w is a valuation of Lextending a valuation v of K, then K is closed in L if and only if all valuations of L extending v are dependent. A further consequence is a generalization of Ostrowski's criterion for a real-valued valuation to be henselian.

Let v be a valuation of a field K. If v is henselian, then K is closed in any separable algebraic extension L, furnished with the topology defined by the unique extension of v to L. Indeed, by Krasner's Lemma [2] (first proved by Ostrowski [5, Hilfssatz, p. 197]) for each $x \in L$, V_x , defined by $V_x = \{y \in L : K(x) \subseteq K(y)\}$, is a neighborhood of x; if $x \in L \setminus K$, then $V_x \subseteq L \setminus K$, so K is closed.

Here we shall seek, conversely, to determine what henselian-like properties follow from the assertion that K is closed in any finite-dimensional separable extension, furnished with a valuation extending v (Theorem 2). More generally, we shall relate the assertion that a finite-dimensional extension L admits only one ring topology inducing on K the topology defined by v with closure properties of various subspaces of L (Theorem 1).

Normality plays a simplifying role, as the following example shows: the 5-adic number field Q_5 contains a cube root $\sqrt[3]{2}$ of 2 but does not contain a primitive cube root ω of unity since $x^3 \equiv 2 \pmod{5}$ has an integral solution but $x^2 \equiv -3 \pmod{5}$ does not. Therefore if u is the unique extension of the 5-adic valuation to an algebraic closure of Q_5 , its restrictions to the conjugate fields $Q(\sqrt[3]{2})$ and $Q(\omega\sqrt[3]{2})$ yield valued fields in one of which Q is dense, in the other, closed. Thus the 5-adic valuation on Q has two extensions to $Q(\sqrt[3]{2})$, for one of which Q is dense, for the other, closed.

We shall use the well-known fact that if $\{e_1, \ldots, e_n\}$ is a base of the *K*-vector space *L* and if *v* is a proper valuation [absolute value] on *K*, *w* an extension of *v* to *L*, then $\{e_1, \ldots, e_n\}$ is a set of generators of the K^{\wedge} -vector space L^{\wedge} (where K^{\wedge} and L^{\wedge} are the completions of *K* and *L* respectively); in particular, $[L^{\wedge}:K^{\wedge}] \leq [L:K]$. Indeed, $K^{\wedge}e_1 + \ldots + K^{\wedge}e_n$ is a closed subspace of L^{\wedge} containing L[1, Cor., p. 121] and hence is L^{\wedge} . Also, for any $a \in L$, $K^{\wedge}(a) = K(a)^{\wedge}$ since $K^{\wedge}(a)$ is a finite-dimensional

Received by the editors August 13, 1984.

AMS Subject Classification (1980): 12J10.

[©] Canadian Mathematical Society 1984.

 K^{\wedge} -vector space and hence is a complete vector space in which K(a) is dense. We shall also call upon the following Lemma, a simple consequence of the product formula for successive extensions and the inequality just mentioned:

LEMMA. If v is a proper valuation [absolute value] of a field K and if w is an extension of v to L such that $[L^{\wedge}:K^{\wedge}] = [L:K]$, then for any subfields E and F such that $K \subseteq E \subseteq F \subseteq L$, $[F^{\wedge}:E^{\wedge}] = [F:E]$.

THEOREM 1. Let v be a proper valuation [absolute value] of a field K, let Ω_0 be an algebraic closure of the completion K^{\wedge} of K for v, let w_0 be an extension of v^{\wedge} to Ω_0 , and let w be the restriction of w_0 to the algebraic closure Ω of K in Ω_0 . Let T_w and T_v be the topologies on Ω and K determined by w and v respectively. Let L be a finite-dimensional extension of K contained in Ω . Let (S) be the statement: there exist $c_0, c_1, \ldots, c_n \in L$ such that $K(c_0)$ is the separable closure L_s of K in L, $L = K(c_0, c_1, \ldots, c_n)$, and the subfields $K(c_0, \ldots, c_i)$, where $i \in [0, n]$, are closed in L. The following statements are equivalent:

(1) $[L^{\wedge}:K^{\wedge}] = [L:K].$

(2a) [2b] For some [every] base $\{e_1, \ldots, e_n\}$ of L over K, $(\lambda_1, \ldots, \lambda_n) \mapsto \sum_{i=1}^n \lambda_i e_i$ is a topological K-isomorphism from the topological K-vector space K^n to the topological K-vector space L.

- (3) Every subspace of the K-vector space L is closed.
- (4) T_w induces on L the only ring topology that induces T_v on K.
- (5) All valuations [absolute values] on L extending v are dependent [equivalent], and (S) holds.
- (6a) [6b] Every K-monomorphism σ from L to Ω is continuous [a topological isomorphism from L to $\sigma(L)$], and (S) holds.
- (7) The minimal polynomial of each element of L_s is irreducible over K^{\wedge} , and (S) holds.

These statements imply (8) and are equivalent to (8) if L is a normal extension of K:

(8) K is closed in L and (S) holds.

PROOF. (1) implies (2b): Let $\{e_1, \ldots, e_n\}$ be a base of the *K*-vector space *L*. Since $\{e_1, \ldots, e_n\}$ generates the K^{\wedge} -vector space L^{\wedge} , by (1) $\{e_1, \ldots, e_n\}$ is a base of L^{\wedge} . Therefore $(\lambda_1, \ldots, \lambda_n) \rightarrow \sum_{i=1}^n \lambda_i e_i$ is a topological K^{\wedge} -isomorphism from $K^{\wedge n}$ to L^{\wedge} [1, Prop. 4, p. 120]. The restriction to K^n of that topological isomorphism is therefore a topological *K*-isomorphism from K^n to *L*. (2a) implies (1): the given topological isomorphism extends by continuity to a topological isomorphism from $K^{\wedge n}$ to L^{\wedge} , which necessarily is the mapping $(\lambda_1, \ldots, \lambda_n) \mapsto \sum_{i=1}^n \lambda_i e_i$ as that mapping is continuous from $K^{\wedge n}$ to L^{\wedge} . Thus $\{e_1, \ldots, e_n\}$ is a base of the K^{\wedge} -vector space L^{\wedge} , so $[L^{\wedge}: K^{\wedge}] = [L:K]$. Clearly (2b) implies (3), and by [3, Theorems 2 and 6], (3) implies (2b). Thus (1) - (3) are all equivalent.

(1) implies (4): Let $b_1, \ldots, b_n \in L$ be such that $L = K(b_1, \ldots, b_n)$, and let $K_0 = K$,

 $K_i = K(b_1, \ldots, b_i)$ for all $i \in [1, n]$. For each $i \in [0, n]$ let (P_i) be the statement: T_w induces on K_i the only ring topology inducing T_v on K. It suffices to show that if $i \in [0, n - 1]$, (P_{i+1}) follows from (P_i) . By the Lemma, $[K_{i+1}^{\wedge}:K_i^{\wedge}] = [K_{i+1}:K_i]$, so by [7, Theorem 3] T_w induces on K_{i+1} the strongest ring topology inducing on K_i the same topology as T_w . But the topology T_w induces on K_{i+1} , defined by the restriction of w to K_{i+1} , is minimal among all ring topologies inducing on K_i the same topology as T_w by [7, Theorem 1]. Therefore T_w induces on K_{i+1} the only ring topology inducing on K_i the same topology as T_w . Now let T be any ring topology on K_{i+1} inducing T_v on K. By (P_i) , T induces on K_i the same topology as T_w . By what we have just proved, therefore, T is the topology on K_{i+1} induced by T_w , that is, (P_{i+1}) holds.

(4) implies (5): We shall actually prove that every subfield of L containing L_s is closed. Suppose that F is a nonclosed subfield of L containing L_s , and let $c \in \overline{F} \setminus F$. As L is a purely inseparable extension of F, the minimal polynomial of c over F is $X^{p^n} - a$ for some $a \in F$, where the prime p is the characteristic of K and $n \ge 1$. Now $X^{p^n} - a = (X - c)^{p^n}$ in $F^{\wedge}[X]$, so by [7, Theorem 1], for each $j \in [1, p^n]$ there is a ring topology T_j on F(c) inducing on F the same topology as T_w such that the completion of F(c) for T_j is $F^{\wedge}(c_j)$ where $(X - c)^j$ is the minimal polynomial of c_j . Let $j \in [2, p^n]$. Then $c - c_j$ is a nonzero nilpotent element of $F^{\wedge}(c_j)$. Since any algebra topology on a finite-dimensional algebra over F^{\wedge} is defined by a norm, it is locally bounded. Therefore T_j is a normed and hence locally bounded topology on F(c) and hence, by [8, Satz 1.6], is the restriction to F(c) of a locally bounded (and hence ring) topology T on L. The completion of L for T then contains nonzero nilpotent elements, in contradiction to (4).

(5) implies (6b): If σ is a *K*-monomorphism from *L* to Ω and if $T_{w,\sigma}$ is the topology induced on $\sigma(L)$ by T_w , then $\sigma^{-1}(T_{w,\sigma})$ is the topology on *L* defined by the valuation $w \circ \sigma$. By (5), $\sigma^{-1}(T_{w,\sigma})$ is also the topology induced on *L* by T_w , that is, σ is a topological isomorphism from *L* to $\sigma(L)$. Also (6a) implies (6b), for if σ is continuous, $w \circ \sigma$ defines on *L* a topology weaker than the topology induced by T_w ; these topologies are then identical, since a valuation topology on *L* inducing T_v on *K* is minimal among all ring topologies on *L* inducing T_v on *K* by, for example, [7, Theorem 1].

Each of (6b) and (7) implies (1): With the notation of (S), $L_s = K(c_0)$. We shall first show that $[L_s^{\wedge}: K^{\wedge}] = [L_s: K]$. Assume (6b). If σ is any *K*-monomorphism from L into Ω , then by (6b) σ has a continuous extension to a K^{\wedge} -isomorphism from L^{\wedge} to the subfield $\sigma^{\wedge}(L^{\wedge})$ of Ω_0 . Thus every *K*-conjugate of c_0 is also a K^{\wedge} -conjugate, so as c_0 is separable over *K*, the minimal polynomials of c_0 over *K* and over K^{\wedge} are identical. Consequently, each of (6b) and (7) implies that $[L_s^{\wedge}: K^{\wedge}] = [L_s: K]$. With the notation of (*S*), let $L_j = K(c_0, \ldots, c_j)$ for each $j \in [0, n]$. By the product formula for successive extensions, it suffices to show that $[L_j^{\wedge}: L_{j-1}^{\wedge}] = [L_j: L_{j-1}]$ for each $j \in [1, n]$. As L_j is a finite-dimensional, purely inseparable extension of L_{j-1} , there exists $m \ge 0$ such that $L_j \subseteq \tau^{-1}(L_{j-1})$ where τ is the automorphism $x \mapsto x^{p^m}$ of Ω_0 . As τ is continuous, $L_j^{\wedge} \subseteq \tau^{-1}(L_{j-1}^{\wedge})$, and hence L_j^{\wedge} is a purely inseparable extension of L_{j-1}^{\wedge} . As b = $c_j^{p^r} \in L_j, \ b \in L_j \cap L_{j-1}^{\wedge} \subseteq L \cap L_{j-1}^{\wedge} = L_{j-1}$, since L_{j-1} is closed in L. Thus $X^{p^r} - b \in L_{j-1}[X]$ and hence is the minimal polynomial of c_j over L_{j-1} . Therefore $[L_j^{\wedge}:L_{j-1}^{\wedge}] = [L_{j-1}^{\wedge}(c_j):L_{j-1}^{\wedge}] = [L_{j-1}(c_j):L_{j-1}] = [L_j:L_{j-1}].$

(1) implies (7): If $a \in L$, $[K^{\wedge}(a): K^{\wedge}] = [K(a): K]$ by the Lemma, so the minimal polynomials of a over K and K^{\wedge} coincide. Also as (1) implies (3), (S) holds.

Clearly (3) and (7) imply (8). Conversely, assume (8), and suppose that *L* is a normal extension of *K*. To prove (7), let $b \in L_s$ and let *f* be the minimal polynomial of *b* over *K*. Then there exist $b_1, \ldots, b_r \in L$ such that $f = \prod_{i=1}^r (X - b_i)$, so the minimal polynomial *g* of *b* over K^{\wedge} is $\prod_{i \in J} (X - b_i)$ for some nonempty subset *J* of [1, r]. Each coefficient of *g* is an elementary symmetric polynomial of the b_i 's, where $i \in J$, and hence belongs to *L*. Thus $g \in (L \cap K^{\wedge})[X] = K[X]$, as *K* is closed in *L*. Therefore g = f. Thus (7) holds.

The example given earlier shows that (8) may hold but (6a) fail if L is not a normal extension of K.

Nagata [4, p. 56] (see also [1, Exercise 14 c), p. 193]) has given an example of a valuation v of a field K of prime characteristic p such that K^{\wedge} is a simple, purely inseparable extension of K of degree p. Consequently, K and $L = K^{\wedge}$ satisfy the first halves of (5)–(7) but not (1)–(4).

In the statement of Theorem 1, we may, of course, replace "(S) holds" with " L_s is closed" in (5)–(8) if L is a simple extension of K.

COROLLARY 1. Let v be a proper valuation [absolute value] of a field K, and let w be an extension of v to a finite-dimensional Galois extension L. The following statements are equivalent:

- (1) $[L^{\wedge}:K^{\wedge}] = [L:K].$
- (2) For some [every] base $\{e_1, \ldots, e_n\}$ of L over K, $(\lambda_1, \ldots, \lambda_n) \mapsto \sum_{i=1}^n \lambda_i e_i$ is a topological isomorphism from K^n to L.
- (3) Every subspace of the K-vector space L is closed.
- (4) The topology defined by w is the only ring topology on L inducing on K the topology defined by v.
- (5) All valuations [absolute values] on L extending v are dependent [equivalent].
- (6) Every K-automorphism of L is continuous.
- (7) The minimal polynomial over K of each element of L is irreducible over K^{\wedge} .
- (8) K is closed in L.

COROLLARY 2. Let v be a proper valuation [absolute value] of a field K, and let $\{w_1, \ldots, w_r\}$ be a complete set of independent valuations [inequivalent absolute values] extending v on a finite-dimensional Galois extension L of K. For each $i \in [1, r]$ let \overline{K}_i be the closure of K in L for the topology T_i defined by w_i . (1) For each $i \in [1, r]$, \overline{K}_i is the smallest of the subfields E containing K such that all extensions to L of the

1986]

restriction of w_i to E are dependent [equivalent]. (2) $[\overline{K}_i:K] = [\overline{K}_j:K]$ for all $i, j \in [1, r]$.

PROOF. (1) If *E* satisfies the description of (1), then *E* is closed in *L* for T_i by Corollary 1, so $E \supseteq \overline{K_i}$. But again by Corollary 1, all extensions to *L* of the restriction of w_i to $\overline{K_i}$ are dependent [equivalent]. Thus $\overline{K_i}$ is the smallest such field. (2) By Krull's theorem [1, Ch. 6, Cor. 1, p. 152] there is a *K*-automorphism σ of *L* such that $w_j = w_i \circ \sigma$. Hence σ is a topological *K*-automorphism from *L*, furnished with T_i , to *L*, furnished with T_i . Consequently, $[\overline{K_i}:K] = [\sigma(\overline{K_i}):\sigma(K)] = [\overline{K_i}:K]$.

THEOREM 2. Let v be a proper valuation [absolute value] of a field K. The following statements are equivalent:

(1) *K* is closed in every finite-dimensional separable extension field *L*, furnished with a valuation [absolute value] extending v.

(2) For every finite-dimensional extension L of K, all valuations [absolute values] on L extending v are dependent [equivalent].

(3) Each finite-dimensional separable extension L of K admits only one ring topology inducing on K the topology defined by v (namely, the topology defined by a valuation [absolute value] extending v).

(4) K is separably algebraically closed in K^{\wedge} .

PROOF. Since every finite-dimensional separable extension of K is contained in a finite-dimensional Galois extension, the equivalence of (1)-(3) follows from Theorem 1. (1) implies (4), for if $a \in K^{\wedge} \setminus K$ were separable algebraic over K, then K would be a proper dense subfield of K(a) for the topology induced by v^{\wedge} , in contradiction to (1). Conversely, assume (4), and let L satisfy the hypotheses of (1). If $a \in \overline{K} \setminus K$, then a would be an element of $K^{\wedge} \setminus K$ that is separable over K, in contradiction to (4).

The equivalence of (2) and (5) of the following Corollary is a classical theorem of Ostrowski [6, §25], rediscovered by Nagata [4, Cor., p. 51].

COROLLARY. Let v be a proper real-valued valuation [absolute value] of a field K. The following statements are equivalent:

(1) K is closed in every finite-dimensional separable extension field of K, furnished with a valuation [absolute value] extending v.

(2) v is henselian.

(3) *K* is closed in the separable algebraic closure Ω_s of *K*, furnished with a valuation [absolute value] extending *v*.

(4) Each finite-dimensional separable extension field of K admits only one ring topology inducing on K the topology defined by v.

(5) *K* is separably algebraically closed in K^{\wedge} .

PROOF. Since v is real-valued, (2) of Theorem 2 implies that each finite-dimensional separable extension L of K admits a unique extension of v (with values in the divisible

group generated by the value group of v), and hence that v is henselian. As mentioned earlier, Krasner's Lemma establishes that (2) implies (3).

Although Nagata's example shows that, in general, some requirement is needed concerning the closure of subfields of L containing the separable closure L_s of K for the validity of (1)–(4) of Theorem 1, no requirement is needed for a special class of fields:

THEOREM 3. Let L be an algebraic function field in one variable over a subfield k of prime characteristic, let K be a finite-codimensional subfield of L containing k, let w be a proper valuation of L inducing the improper valuation on k, and let v be its restriction to K. The first seven statements of Corollary 1 of Theorem 1 are equivalent, and if L is a normal extension of K, the eight statements of that Corollary are equivalent.

PROOF. By Theorem 1, it suffices to show that if F is a finite-codimensional subfield of L containing k such that L is a purely inseparable extension of F, then F is closed. Suppose not. The proof that (4) implies (5) in Theorem 1 shows that L admits a locally bounded topology T, inducing on K the topology defined by v, such that the completion L^{\wedge} of L for T contains nonzero nilpotent elements. In particular, k is bounded for T. By a theorem of Weber [8, Satz 4.4], T is "special" (as defined in [8, p. 167]). The completion of L for a special topology is the local direct sum of a family of complete, discretely valued fields relative to their valuation subrings. In particular, L^{\wedge} is algebraically isomorphic to a subring of a cartesian product of fields, and hence has no nonzero nilpotents, a contradiction.

REFERENCES

1. N. Bourbaki, Algèbre Commutative, Ch. 5-6, Hermann, Paris, 1964.

2. M. Krasner, Théorie non abélienne des corps de classes pour les extensions finies et séparables des corps valués complets; principes fondamentaux; espaces de polynomes et transformation T; lois d'unicité, d'ordination et d'existence, C.R. Acad. Sci. Paris **222** (1946), pp. 626–628.

3. L. Nachbin, On strictly minimal topological division rings, Bull. Amer. Math. Soc. 55 (1949), pp. 1128-1136.

4. M. Nagata, On the theory of Henselian rings, Nagoya Math. J. 5 (1953), pp. 45-57.

A. Ostrowski, Über sogenannte perfekte Körper, J. Reine Angew. Math. 147 (1917), pp. 191-204.
A. Ostrowski, Untersuchungen zur arithmetischen Theorie der Körper, Math. Z. 39 (1935), pp. 269-404.

7. T. Rigo and S. Warner, Topologies extending valuations, Canad. J. Math. 30 (1978), pp. 164-169.

8. H. Weber, Topologische Charakterisierung globaler Körper und algebraischer Funktionenkörper in einer Variablen, Math. Z. 169 (1979), pp. 167–177.

DUKE UNIVERSITY DURHAM, NC 27706

1986]