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1. Introduction. An inverse semigroup is called E-unitary if the equations ea = e =
e? together imply a®=a. In a previous paper [4], the author showed that any E-unitary
inverse semigroup is isomorphic to a semigroup constructed from a triple (G, Z, %)
consisting of a down-directed partially ordered set &, an ideal and subsemilattice ¥ of &
and a group G acting on &, on the left, by order automorphisms in such a way that
& = G%. This semigroup is denoted by P(G, %, %); it consists of all pairs (a, g)e ¥ X G
such that g~'a € @, under the multiplication

(a, g)(b, h)=(a ngb, gh).

The aim of this paper is to give necessary and sufficient conditions on an inverse
semigroup in order that it should be isomorphic to some P(G, &, %) with £ a semilattice.
As well, we consider those congruences p on an inverse semigroup P(G, &, %) for which
the quotient has the form P(H, %, V) for some triple H, U, ¥ as above, with U a
semilattice.

We shall assume familiarity with the construction and properties of P(G, Z, %) from
(3], [4). Undefined notation and terminology is that of Clifford and Preston [1]. In
particular, when we are considering a partial order on an inverse semigroup, the partial
order being referred to is the natural partial order; it is defined by

a<b ifandonlyif a=eb forsome e*=eeS.

Throughout the paper, when the terminology “triple (G, &, %)” is used, it means that
& is a down-directed partially ordered set with % an ideal and subsemilattice of %, and
that G is a group acting on & by order automorphisms in such a way that ¥ = G%.

Dermnrrion 1.1. Let $ be an inverse semigroup. Then we say that S is an E-unitary
inverse semigroup over a semilattice if S = P(G, &, %¥) for some triple (G, Z, ¥) with £ a
semilattice.

In terms of Definition 1.1, the aim of this paper is therefore to characterize E-unitary
inverse semigroups over a semilattice.

2. The general case

DEerintTiON 2.1. Let S be a partially ordered set and let :S — T be a mapping of S
into a set T. Then 6 is an m-map if, for each te T, the set {s€ S:56 =t} has a maximum
member.
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Let S be an inverse semigroup. Then Munn [7] has shown that the relation & on S
defined by
(a,b)ec ifandonlyif ea=eb forsome e’=eeS

is the smallest congruence p on S for which S/p is a group.
The following results about o will be used without comment in several places in the
remainder of the paper.

LEMMA 2.2. (A) Let S be an inverse semigroup and let e, f be idempotents in S. Let a be
the minimum group congruence on S. Then

0. = o N{(eSf X eSf)
is the minimum group congruence on eSf. Similarly
o, =g N(SexSe)

is the minimum group congruence on Se.
(B) If Iis a non-empty ideal of S then o N (I XI) is the minimum group congruence on

L
(C) Let (G, %, %) be a triple and let S be an inverse subsemigroup of P(G, %, ¥). Let
a=(u,g), b=(v, h) belong to S. Then

(a,b)ea ifandonlyif g=h.

Proof. (A) Let v,; denote the restriction of y=0" to a homomorphism of eSf into
G = S/o. Then, since for each a€ S,

ay = eyayfy = (eaf),
because ey = fy =1 (the identity of G), v, is a homomorphism of eSf onto G. Thus o, is
a group congruence on eSf.

On the other hand, suppose that p is a group congruence on eSf and let (a, b)€ o,
Then au = bu for some idempotent u € S. This implies

a(euf) = (au)ef = (bu)ef = b(euf)

since idempotents commute. But, since eufe eSf and p is a group congruence on eSf, it
follows from these equalities that (a, b)e p. Hence o,;< p. In the same way it can be
shown that o, is the minimum group congruence on Se.

(B) The proof of this is similar.

(C) Suppose that (a, b)e a. Then ae=be for some idempotent e =(f,1)€S; thus
g = h. On the other hand, suppose that g=h. Lete=b"'aa™'be S. Then ae = be and so
(a,b)eo.

Let S be an inverse semigroup and let e, f be idempotents of S. Then we shall follow
the notation introduced in Lemma 2.2 and denote by v, the restriction of o to eSf and
by v, the restriction of ¢ to Se; each is a homomorphism onto G = S/o.

TueoreM 2.3. Let (G, &, %) be a triple and set S = P(G, Z, %). Then Z is a semilattice
if and only if, for each pair of idempotents e, f€ S, v,;:eSf — S/o is an m-map.
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Proof. Since = G% and G acts by order automorphisms, it is easy to see that £ is a
semilattice if and only if a A e exists for each a€ &, ec ¥.

Suppose that & is a semilattice. Let e =(u, 1), f= (v, 1) with u, ve %, and pick ge G.
Then s € eSf is such that so® = g if and only if s =(b, g) for some b=u with g"'b=<v. If
this is the case, then b=u, gv and, by hypothesis, u A gv exists. Hence b =u gv so that
(b, g)<(ungv, g)ceSf; but (un gy, glo"=g. Thus

(u A gv, g) =max{s € eSf:s0" = g}

and, since g was arbitrarily chosen in G, v, is consequently an m-map.
Conversely, suppose that each v,; is an m-map and let a€ %, ec ¥; then a = gf for
some ge G, fe %. By hypothesis, the set

{se(e, 1)S(f, 1):50%=g}

has a maximum member (c, g). Since (¢, g)e(e, 1)S(f, 1), c<e, g7'c={, so that c =g, a.
On the other hand, if b=<e, a then (b,g)e(e, 1)S(f,1). But (b, g)lo"=g, so that
(b, g)=(c, g); that is b=c. Hence ¢ =ea exists and & is consequently a semilattice.

CoROLLARY 2.4. An inverse semigroup S is an E-unitary inverse semigroup over a
semilattice if and only if S is E-unitary and each v, is an m-map.

DEerFINITION 2.5 [6). An inverse semigroup S is F-inverse if and only if ¢®:S — S/o is
an m-map.

McFadden and O’Carroll [6] showed that an F-inverse semigroup has an identity. On
the other hand, it is shown in [4] that an inverse monoid is E-unitary over a semilattice if
and only if it is F-inverse. This result is expressed in the context of this paper by the next
theorem.

THEOREM 2.6. Let S be an inverse semigroup. Then the following statements are
equivalent:
(i) S is F-inverse;
(ii) S has an identity and each v.;:eSf— Slo is an m-map;
(iii) S=P(G, &, ¥) for some triple (G, &, ¥) with £ a semilattice and ¥ a principal
ideal of %.

Proof. (i) = (ii). As pointed out above, McFadden and O’Carroll [6] have shown that
any F-inverse semigroup has an identity; the identity is the element e=
max{s € S:s0"= 1}, where 1 denotes the identity of S/o.

Let u, v be idempotents of S and, for ge G, let h=max{se S:sc*=g}. Then
uhv € uSv and (uhv)o®=g. If s € uSv is such that so®=g then s <h and so s = usv < uhv.
Hence uhv =max{s € uSv:so®= g}; it follows that v, , is an m-map.

(i)) = (111). Since S has an identity, it follows from Corollary 2.4 that we need only
verify that S is E-unitary. Suppose that fa =f=f? for some a€ S. Then ao®=1 so that
a<max{s€ S:so,, =1}, where e is the identity of S. But e is a maximal element of
S = eSe so that e =max{s € S:s0°= 1}; thus a < e. This implies a =aa ‘e =aa™’, so that a
is idempotent. Hence S is E-unitary.
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(iil) = (i). Suppose S =P(G, Z, ¥) with & a semilattice and ¥ a principal ideal of Z,
and let e be the maximum element of %. Then, as in the proof of Theorem 2.3, (e A ge, g)
is the maximum element s of S with so”=g. Hence, S is F-inverse.

Theorem 2.6 shows that, in the presence of an identity, the condition
each v, is an m-map
ensures that S is E-unitary. This is not the case in general.

ExampLE 2.7. Let M, be the Brandtsemigroup #£°({1}, {1, 2}, {1, 2}, A). Then M, hasthe
multiplication table

0 a at e f
0 0 0 0 0 0
a 0 0 e 0 a
a0 f 0 a7 0
e 0 a 0 e 0
flo o a' o f

with a=(1,2),a'=(2,1), e=(1, 1), f=(2,2).

In M,, eSe = {e, 0}, eSf ={a, 0}, fSe ={a™?*, 0}, fSf ={f, 0} and all other uSv with u*=u,
v?=v are {0}. Hence each y,, is an m-map. But S =M, is not E-unitary.

In a sense, M, is the only counterexample to the hypothesis:

if each v, is an m-map, then § is E-unitary.
Before verifying this, we prove a lemma.

DerintrioN 2.8 [9]. Let S be an inverse semigroup. Then S is E-reflexive if and only
if, for a, be S, ab is idempotent if and only if ba is idempotent.

LemMMa 2.9. Let S be an inverse semigroup. Then the following statements are
equivalent:
(i) there exists a€ S such that a*<a;
(i) S contains an isomorphic copy of M,;
(iii) S is not E-reflexive.

Proof. (i) = (ii). Suppose a®<a. Then a®= a’a~2a so that a®>=a%a"%a - a = a This

implies that a? is idempotent and a®= a2 Consider the subsemigroup T of § generated
by a and a'. Then, since T is a homomorphic image of the free inverse semigroup on
one generator, it follows from [2] that each element of T is of the form a'a~*a' with r,
t=<s. Because a’=a’=a"3=a"? one sees that T has at most five members, a, a~,
e=aa”', f=a"'a and 0=a?’ Indeed, all five are distinct since, otherwise, a would
belong to some subgroup of S and this would contradict a?’<a. Thus T has the
multiplication table in Example 2.7. That is, T=M,.

(ii) = (iii). Suppose M,< S and let a=(1,2), b=(1,1). Then ab=0 is idempotent
but ba = a is not.

(iif) = (i) Let ¢, d € S be such that cd is idempotent but a = dc is not. Then a?=a? so
that a*<a.
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THEOREM 2.10. Let S be an inverse semigroup. Then S is an E-unitary inverse
semigroup over a semijlattice if and only if S is E-reflexive and each v, ;:eSf — S/ is an
m-map.

Proof. Suppose that S is E-reflexive and that each v, is an m-map. Let ea = = €.
Then, since a is a maximal member of aa~'Sa™'a,

a=max{beaa*Sa"'a:bo"=1}.

Thus a*=< a so that, by Lemma 2.9, a®>= a. Hence S is E-unitary and so, by Corollary 2.4,
S=P(G, %, ¥) where ¥ is a semilattice.

Conversely, let S=P(G, Z, ¥), where & is a semilattice. Then, since M, is not
E-unitary, S does not contain M,. Thus, by Lemma 2.9, S is E-reflexive. Further,
Theorem 2.3 shows that each v, is an m-map.

It is an easy matter to see that if an inverse semigroup T is E-reflexive and each
Ye;:€¢Tf — T/o is an m-map, then the same is true for each ideal of T. In particular, if an
inverse semigroup S is embedded as an ideal in an F-inverse semigroup T then S is
E-unitary over a semilattice. Example 2.13 shows that the converse need not be the case.

LemMa 2.11. Let (G, U, V) be a triple and let % be an ideal of V, thus of U, and set
& = GY. Suppose that XNV = %Y. Then (G, &, ¥) is a triple and P(G, Z, ¥) is an ideal of
P(G, U, V); if U is a semilattice, so is ¥.

Conversely, if S is an ideal of P(G, U, V) then ¥ ={a€ ¥ :(a, 1) S} is an ideal of V
such that G¥ NV =%. Further, S = P(G, G¥, %).

Proof. This is straightforward.

THEOREM 2.12. Let S be an inverse semigroup. Then the following statements are
equivalent:

(1) each v,:Se — S/o is an m-map, for e*=ce€ S;

(2) the translational hull Q(S) of S is F-inverse;

(3) S can be embedded as an ideal in an F-inverse semigroup.

Proof. (1)= (2). Suppose that (1) holds. We first show that S is E-unitary. Suppose
that ea=e=e? Then aeSa'a is such that ao®=1. By hypothesis, the set
{s€ Sa~'a:sc® =1} has a maximum member ¢; thus a, a *a <t. But a, a 'a are maximal
in Sa™'a, from which it follows that t=a =a""a. Thus a®>=a and so S is E-unitary.

We may therefore suppose that S = P(G, &, %) for some triple (G, %, %). Let Z* and
%* denote the set of all non-empty order ideals of & and %, respectively, under inclusion,
and let G act on ¥* by gA={ga:ac A} for each AeZ*. Let Z*=G%*. Then
(G, &*, ¥*) is a triple and we may regard S as being embedded in P(G, Z*, ¥*) by
(a, g)— (a4, g), where, for ae %, a ={x € Z:x = a}. Assume that this has been done. Then
it is shown in [5, Section 3] that ()(S) is isomorphic to the idealizer of S in P(G, &*, ¥*).
Further, it is shown there that § = P(G, Z*, ¥*) is an F-inverse semigroup in which, for
each ge G, (I, g) is the maximum element ¢ of § with to"=g; here I, = ¥ N g%.
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It follows from these remarks and Lemma 2.2 that in order to show that (S) is
F-inverse, it suffices to show that (I, g) is in (S) for each ge G. It is shown in [5,
Theorem 3.9] that Q(S) consists of all pairs (A, g)€ P(G, Z*, ¥*) such that, for each
ecW, {xe A: x=<e} has a maximum member.

Let ec %, ge G. Then, by hypothesis, the set {se S(e, 1): so®= g~'} has a maximum
member t=(g7'c, g”") for some ce ¥. Since t€ S(e, 1), t't=<(e, 1); that is, c <e. Hence
ce{xe¥Ng¥: x<e}. On the other hand, if xe ¥Ng¥, x<e then (g7'x, g7 )e S(e, 1)
and (g7'x, g7")o"=g'. This means that (g7'x, g7")=(g"'c, g*) so that g"'x<g~'c and
so x=<c. It follows that c=max{xel :x<e}. Hence (I, g)e(U(S) and then (I, g)=
max{s € Q(S):so = g}. Consequently (S) is F-inverse.

(2) > (3) is immediate, since S is an ideal of }(S).

(3) > (1). Suppose that S is an ideal of an F-inverse semigroup T. By Theorem 2.6
we may assume T = P(G, U, V), where U is a semilattice and ¥ is a principal ideal with
greatest element v. Let e =(f, 1)€ S and pick g€ G. Then g™ 'vaf=<fsothat g'vafed,
where ¥ ={ue¥U:(u,1)e8S}, and g(g”'vAaf)=v so that g(g"'vAf)e ¥ NGY =9, by
Lemma 2.11. Now by Lemma 2.11, S=P(G, G%, ¥). Hence (g 'vAf,g"")e S and so,
consequently, (g 'vAf,g7") ' =(vAgf, g)€S. Indeed, since g~ (gfAv)<Tf, (vAgf, g)€ Se
and (vAgf, g)o=g

On the other hand, suppose that (a, g)€ Se. Then g'a=<f and ae ¥ < ¥ so that
a<v. Hence a<vAgf and consequently (a, g)<(vAgf, g). It follows that (vAgf, g)=
max{s € Se:so"= g}; hence o, is an m-map.

ExampLe 2.13. Let @* be the set of positive rationals under the reverse of the usual
ordering and let Y ={xcQ*:x?>2}. Then the group G of positive rationals acts on Q*
by multiplication. Let $ = P(G, Q*, ) and let e =(2,1)€ S, g=%1€ G. Then (f, g) € Se for
all feY. Thus, as ordered sets,

{seSe:sc"=g}=Y.

But Y has no maximum member (v2 is irrational) so that o, is not an m-map. Hence S
cannot be embedded as an ideal in an F-inverse semigroup.
From the characterization of (S) in [S, Theorem 3.9], one can show that Q(S) = S*.

3. Some special cases. In this section, we consider some special cases in which it is
possible to improve on the result in Theorem 2.10.

Prorosirion 3.1. Let S be an inverse semigroup and suppose that the semilattice of
idempotents of S is up-directed. Then S is an E-unitary inverse semigroup over a semilattice
if and only if eSe is F-inverse for each e*=e€ S.

Proof. Suppose that S is E-unitary over a semilattice and let e>=e€ S. Then, by
Theorem 2.3, v, .:eSe - G=S/o is an m-map. Since eSe is an inverse semigroup, it
follows, from Lemma 2.2(A), that eSe is F-inverse. On the other hand, suppose that each
eSe is F-inverse. We show first that S cannot contain M,. Thus, by Lemma 2.9, § is
E-reflexive.
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For any a € S, there exists e = e such that e=aa™", a~'a. Then a, a™* belong to eSe

which is E-unitary, being F-inverse. Since M, is not E-unitary, it follows that T=(a, a™")
is not isomorphic to M,. Hence S does not contain any copy of M,.

Next, let u, v be idempotents and let e>= e = u, v. Then uSv < eSe and, by hypothesis,
eSe is F-inverse. Let ge G = S/a. Then, as in the proof of Theorem 2.6,

u(max{s € eSe: so%= g})v = max{s € uSv:so"=g}.

Hence v,, is an m-map for all idempotents u, veS.

It now follows from Theorem 2.10 that S is E-unitary over a semilattice.

The results in the next two propositions are similar to Proposition 3.1. However, they
depend on the algebraic structure of the semigroup S rather than on the order structure
of the idempotents of S.

ProposITION 3.2. Let S be an inverse semigroup which is a semilattice of groups. Then S
is an E-unitary inverse semigroup over a semilattice if and only if eSe is F-inverse for each
2
e’=ces.

Proof. As with Proposition 3.1, the condition is necessary. On the other hand,
suppose that eSe is F-inverse for each e>=ee S. Then, since S cannot contain M,, we
need only show that each v,, is an m-map. But uSv=uvSuv since idempotents are
central, and then, by definition, o, , = 0, .., SO that the hypothesis in the statement of the
proposition implies that each v, , is an m-map.

ProrosrTioN 3.3. Let S be a simple E-unitary inverse semigroup. Then S=P(G, %, ¥)
for some triple (G, Z, %), with Z a semilattice, if and only if, for some idempotent e € S, eSe
is F-inverse.

Proof. We need only show that the condition is sufficient. Suppose eSe is F-inverse
for some idempotent e and let u, v be idempotents of S. Since S is simple, there exist b, ¢
such that bb™'=u, b™'b=<e, cc™* = v, c"'c <e. Suppose that x € uSv is such that xg®=ge
G. Then b~ 'xc is in eSe since

b7 lxcc™'x 'b=b"'b=e and c 'x'bb lxc=cT'c=e.

Further (b~ 'xc)o® = (b'0%)g(ca”) = h, say, so that, by the hypothesis on eSe, b 'xc<z =
max{x € eSe:xc?=h}. Then x =bb~'xcc™' < bz¢™, and bzc™' € uSv is such that (bzc™")o"=
g Hence bzc™' =max{s € uSv:so®= g}, and so ¥, , is an m-map.

The requirement, in Proposition 3.3, that S should be E-unitary is necessary as the
following example shows.

ExampLE 3.4. Let E be the w-tree with the Hasse diagram shown in Fig. 1 and let
S =T, be the inverse semigroup of order isomorphisms between principal ideals of E.
Then E is uniform so that S is bisimple.

For each acE, denote by g, the identity mapping on the principal ideal a=
{xe E:x=<a}. Then

eoTeeo={a e Tg:Aa UVa c0}.
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0 u

K

Figure 1

Thus &,S¢, is the semigroup of isomorphisms between principal ideals of {0,1,...}.
Consequently £,5¢,= B, where B is the bicyclic semigroup. McFadden and O’Carroll [6]
have shown that B is F-inverse.

On the other hand, let a € T be defined by Ae =0 and

{u if x=0,
xa = .
x if x>0.

Then a’=¢,<a so that S contains a copy of M,. Hence $ is not E-unitary.
The last result is different in type from the earlier ones in this section since on this
occasion we impose a restriction on the idempotents of S and deduce a result about the

maps v,

DerIntTION 3.5. A locally finite tree is a partially ordered set X in which the following
three conditions are satisfied:
(i) X is down-directed;
(ii) if a, b=c where a, b, ce X, then a<b or b=a;
(iii) the set {x e X:a <x=b} is finite for all a, be X with a<b.

ProposiTION 3.6. Let S be an inverse semigroup whose idempotents form a locally finite
tree. Then the following conditions on S are equivalent:

(i) S is E-unitary;
(ii) S is E-unitary over a semilattice;
(i) Q(S) is F-inverse.

Proof. (i) = (ii). Suppose that S is E-unitary. Then S=P(G, Z, ¥) for some triple
(G, Z, %), where & is down-directed and G acts on & in such a way that £ = G%. Since
P(G, Z, %) has semilattice of idempotents ¥ x 1, ¥ is a locally finite tree. In fact, since
¥ = GY and Z is down-directed, it is easy to see that & is a locally finite tree. Hence & is
a semilattice.

(i) = (iii). Again, we may suppose that S=P(G, %, ¥) and, as in the proof of
Theorem 2.12, it suffices to show that, for each ge G, e %, the set {xel .:x<e} has a
maximum member.

https://doi.org/10.1017/50017089500003311 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089500003311

E-UNITARY INVERSE SEMIGROUPS OVER SEMILATTICES 9

For each x € I, such that x <e, the set {y € I,:x <y =<e¢} has a maximum member m,
since ¥ is locally finite. Fix such an x and let z € I, with z <e. Then either z<x or x<z.
In the first case z=x < m, while, in the second, x<z=<e, z€l, imply z=m,. Hence
m, =max{y € I.:y<e}. This shows that (I, g) € Q(S), so that Q(S) is F-inverse.

(iii) = (i). This is immediate.

4. Congruences. In this section, we characterize those congruences on an E-unitary
inverse semigroup over a semilattice whose quotient is also of this type.

DEerntTION 4.1 [11]. Let S be an inverse semigroup with semilattice of idempotents
E. Then a normal partition on E is an equivalence 7 on E such that

(i) if ewf, ue E then eu  fu;
(ii) if emfthena'eama~'faforallaes.

If p is a congruence on S then 7, = p N (E X E) is a normal partition on E and is called the
normal partition induced by p.

If 7 is a normal partition on E then Reilly and Scheiblich [11] show that the smallest
congruence p, on S which induces = is given by the following rule: (a, b) € p,, if and only
if ea = eb for some e*=e€ S such that aa™' wemwbb™".

The result in the next lemma is due to Reilly and Munn {10]. They derived it by
giving an explicit construction for §/p, in the form P(G, %, %). We shall derive it as a
direct consequence of Corollary 2.4,

LemMMA 4.2. Let S be an E-unitary inverse semigroup over a semilattice and let  be a
normal partition on the idempotents of S. Then S/p,, is an E-unitary inverse semigroup over a
semilattice.

Proof. We verify that the conditions of Corollary 2.4 hold for T = S/p,.. First, suppose
that (e,ea)ep, for some e*=e. Then fe=fea for some idempotent f. Since S is
E-unitary, this implies that a’?=a. Hence T is E-unitary.

_ Next, let X be a o-class of T and let & f be idempotents of T, say with &€= ep,,
f=fo., €=e, f*=f. Suppose ¥€ XNeTf and let xceSf be such that xp, =% By
hypothesis, x =< z, where z max{s € eSf:sy.; = xv.;}. Hence X < Z = zp,. But, since xvy,; =
2%, uz = ux for some u?>=u e §; thus foz. By the choice of ¢, f, Z € XN eTf. Hence Z is
the maximum element of X N &TY. It follows that Y=7 is an m-map for each pair ¢, f of
idempotents of T. Therefore, by Corollary 2.4, T is an E-unitary inverse semigroup over
a semilattice.

TueoreM 4.3 [10). Let S be an inverse semigroup. Then S is an idempotent-separating
homomorphic image of an E-unitary inverse semigroup over a semilattice.

Proof. Let 6:FI, — S be a homomorphism from a free inverse semigroup onto S.
Then (cf. [8]) FIx is F-inverse and FIy is an ideal of FIy. Hence, by Lemma 2.11, FI is
E-unitary over a semilattice.
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Let m=0°0""N(EXE) where E is the set of idempotents of FI,. Then = is a
normal partition and S is an idempotent-separating homomorphic image of S/p,. The
result now follows immediately from Lemma 4.2,

The following corollary strengthens Theorem 4.2 of [4].

CoRrROLLARY 4.4. Let E be a semilattice. Then E can be embedded as an ideal in a
semilattice F with the following property: each isomorphism between principal ideals of F can
be extended to an automorphism of F.

Proof. This follows from Theorem 4.3, using the argument in [4, Theorem 4.2].

We now turn to consider the idempotent-separating congruernces on an inverse
semigroup P = P(G, &, ¥), where & is a semilattice. The next result is related to some of
those in [10], and the proof is omitted.

LeMMA 4.5. Let (G, Z, W) be a triple and let N be a normal subgroup of G such that
ac¥, nac% imply a= na foreach ae ¥, ne N. (*)
Then the relation py defined by
(a,g)pn(b,h) ifandonlyif a=b and g 'heN

is an idempotent-separating congruence on S = P(G, &, ¥) such that S/py is E-unitary.
Conversely, suppose that p is an idempotent-separating congruence on S such that S/p is
E-unitary. Then
N={geG:(a, g) p (a, 1) for some a e ¥}

is a normal subgroup of G which satisfies condition (*). Further p = py.

The next proposition gives necessary and sufficient conditions on N in order that
T =§/py should be E-unitary over a semilattice. In the proof of the result, we shall
denote the elements of T by [a, g] where (a, g)€ S. If [a, g]=(a, g)pi € T, it is easy to see
that the mapping [a, g] » Ng is a homomorphism of T onto G/N which induces ¢. Hence
we may identify T/o with G/N by means of this mapping.

Prorosition 4.6. Let S=P(G, Z, %), where ¥ is a semilattice, and let N be a normal
subgroup of G which satisfies condition (*). Then T = S/py is E-unitary over a semilattice if
and only if, for each a, be Z,

{annb:ne N}

has a maximum member.

Proof. First note that, by Lemma 4.5, T is E-unitary. Suppose that, for all a, be Z,
{aAnb:ne N} has a maximum member. Let u, v be idempotents of T and let X= Nge
T/o; then u=[e, 1], v=[f, 1] for some e, fe ¥. By hypothesis, &€ =max{eAngf:ne N}
exists; say € =eAn, gf. Then [é, n,gle uTv and [é, n,glo = Ng.

On the other hand, suppose that [a, h]€ uTv is such that [a, h]o" = Ng. Then, because
pn is idempotent-separating, a<e, h™'a=<f and, further, h=ng for some ne N. Thus
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a<enngf=Eé so that [a, h]=<[é€, n,g). Hence
[, n,g]=max{te uTv:to"= Ng}.

Thus, by Corollary 2.4, T is E-unitary over a semilattice.
Conversely, suppose that T is E-unitary over a semilattice and let a =ge, b= hf,
where e, fe¥ and g, h e G. By the hypothesis that T is over a semilattice,

x =max{te[e, 1]T{f, 1]: tc"= Ng~'h}

exists. Then x=[u, k], where u<e, k"'u=<f and Nk=Ng 'h; thus k=g 'n;h and
u=<eng'n.hf for some n, €N, so that gu<aAn,b.

On the other hand, for any neN, t=[eAg 'nhf, g 'nh] is in [e 1]TTf, 1] and
ta® = Ng~'h. Hence t < x which, since py is idlempotent-separating, implies e A g~ nhf < u;
that is, a A nb =< gu. But, as we have seen, gu<aAn,b, so we must have

gu=anrnb=max{annb:neN}

CoroLLARY 4.7. Let S=P(G, Z, ¥), where ¥ is a semilattice, and let N be a normal
subgroup of G such that na=a for each neN, acZ. Then S/py is E-unitary over a
semilattice.

It was shown in [5] that every idempotent-separating congruence on S = P(G, Z, %),
where & is a semilattice, can be extended to an idempotent-separating congruence on
P(G,Z, ). It is easy to see that py can be extended to an E-unitary congruence if and
only if Nc{geG:ga=a forall aec¥}.
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