E-UNITARY INVERSE SEMIGROUPS OVER SEMILATTICES

by D. B. McALISTER†

(Received 18 December, 1975)

1. Introduction. An inverse semigroup is called E-unitary if the equations $ea = e = e^2$ together imply $a^2 = a$. In a previous paper [4], the author showed that any E-unitary inverse semigroup is isomorphic to a semigroup constructed from a triple $(G, \mathcal{X}, \mathcal{Y})$ consisting of a down-directed partially ordered set \mathcal{X} , an ideal and subsemilattice \mathcal{Y} of \mathcal{X} and a group G acting on \mathcal{X} , on the left, by order automorphisms in such a way that $\mathcal{X} = G\mathcal{Y}$. This semigroup is denoted by $P(G, \mathcal{X}, \mathcal{Y})$; it consists of all pairs $(a, g) \in \mathcal{Y} \times G$ such that $g^{-1}a \in \mathcal{Y}$, under the multiplication

$$(a, g)(b, h) = (a \wedge gb, gh).$$

The aim of this paper is to give necessary and sufficient conditions on an inverse semigroup in order that it should be isomorphic to some $P(G, \mathcal{X}, \mathcal{Y})$ with \mathcal{X} a semilattice. As well, we consider those congruences ρ on an inverse semigroup $P(G, \mathcal{X}, \mathcal{Y})$ for which the quotient has the form $P(H, \mathcal{U}, \mathcal{V})$ for some triple H, \mathcal{U} , \mathcal{V} as above, with \mathcal{U} a semilattice.

We shall assume familiarity with the construction and properties of $P(G, \mathcal{X}, \mathcal{Y})$ from [3], [4]. Undefined notation and terminology is that of Clifford and Preston [1]. In particular, when we are considering a partial order on an inverse semigroup, the partial order being referred to is the natural partial order; it is defined by

$$a \le b$$
 if and only if $a = eb$ for some $e^2 = e \in S$.

Throughout the paper, when the terminology "triple $(G, \mathcal{X}, \mathcal{Y})$ " is used, it means that \mathcal{X} is a down-directed partially ordered set with \mathcal{Y} an ideal and subsemilattice of \mathcal{X} , and that G is a group acting on \mathcal{X} by order automorphisms in such a way that $\mathcal{X} = G\mathcal{Y}$.

DEFINITION 1.1. Let S be an inverse semigroup. Then we say that S is an E-unitary inverse semigroup over a semilattice if $S \cong P(G, \mathcal{X}, \mathcal{Y})$ for some triple $(G, \mathcal{X}, \mathcal{Y})$ with \mathcal{X} a semilattice.

In terms of Definition 1.1, the aim of this paper is therefore to characterize E-unitary inverse semigroups over a semilattice.

2. The general case

1

DEFINITION 2.1. Let S be a partially ordered set and let $\theta: S \to T$ be a mapping of S into a set T. Then θ is an m-map if, for each $t \in T$, the set $\{s \in S : s\theta = t\}$ has a maximum member.

† This research was partially supported by NSF Grant GP 27917.

Glasgow Math. J. 19 (1978) 1-12.

Let S be an inverse semigroup. Then Munn [7] has shown that the relation σ on S defined by

$$(a, b) \in \sigma$$
 if and only if $ea = eb$ for some $e^2 = e \in S$

is the smallest congruence ρ on S for which S/ρ is a group.

The following results about σ will be used without comment in several places in the remainder of the paper.

LEMMA 2.2. (A) Let S be an inverse semigroup and let e, f be idempotents in S. Let σ be the minimum group congruence on S. Then

$$\sigma_{e,f} = \sigma \cap (eSf \times eSf)$$

is the minimum group congruence on eSf. Similarly

$$\sigma_e = \sigma \cap (Se \times Se)$$

is the minimum group congruence on Se.

- (B) If I is a non-empty ideal of S then $\sigma \cap (I \times I)$ is the minimum group congruence on I.
- (C) Let $(G, \mathcal{X}, \mathcal{Y})$ be a triple and let S be an inverse subsemigroup of $P(G, \mathcal{X}, \mathcal{Y})$. Let a = (u, g), b = (v, h) belong to S. Then

$$(a, b) \in \sigma$$
 if and only if $g = h$.

Proof. (A) Let $\gamma_{e,f}$ denote the restriction of $\gamma = \sigma^{\natural}$ to a homomorphism of eSf into $G = S/\sigma$. Then, since for each $a \in S$,

$$a\gamma = e\gamma a\gamma f\gamma = (eaf)\gamma$$
,

because $e\gamma = f\gamma = 1$ (the identity of G), $\gamma_{e,f}$ is a homomorphism of eSf onto G. Thus $\sigma_{e,f}$ is a group congruence on eSf.

On the other hand, suppose that ρ is a group congruence on eSf and let $(a, b) \in \sigma_{e,f}$. Then au = bu for some idempotent $u \in S$. This implies

$$a(euf) = (au)ef = (bu)ef = b(euf)$$

since idempotents commute. But, since $euf \in eSf$ and ρ is a group congruence on eSf, it follows from these equalities that $(a, b) \in \rho$. Hence $\sigma_{e,f} \subseteq \rho$. In the same way it can be shown that σ_e is the minimum group congruence on Se.

- (B) The proof of this is similar.
- (C) Suppose that $(a, b) \in \sigma$. Then ae = be for some idempotent $e = (f, 1) \in S$; thus g = h. On the other hand, suppose that g = h. Let $e = b^{-1}aa^{-1}b \in S$. Then ae = be and so $(a, b) \in \sigma$.

Let S be an inverse semigroup and let e, f be idempotents of S. Then we shall follow the notation introduced in Lemma 2.2 and denote by $\gamma_{e,f}$ the restriction of σ^{\natural} to eSf and by γ_e the restriction of σ^{\natural} to Se; each is a homomorphism onto $G = S/\sigma$.

THEOREM 2.3. Let $(G, \mathcal{X}, \mathcal{Y})$ be a triple and set $S = P(G, \mathcal{X}, \mathcal{Y})$. Then \mathcal{X} is a semilattice if and only if, for each pair of idempotents $e, f \in S$, $\gamma_{e,f} : eSf \rightarrow S/\sigma$ is an m-map.

Proof. Since $\mathcal{X} = G\mathcal{Y}$ and G acts by order automorphisms, it is easy to see that \mathcal{X} is a semilattice if and only if $a \land e$ exists for each $a \in \mathcal{X}$, $e \in \mathcal{Y}$.

Suppose that \mathscr{Z} is a semilattice. Let e = (u, 1), f = (v, 1) with $u, v \in \mathscr{Y}$, and pick $g \in G$. Then $s \in eSf$ is such that $s\sigma^{\natural} = g$ if and only if s = (b, g) for some $b \le u$ with $g^{-1}b \le v$. If this is the case, then $b \le u$, gv and, by hypothesis, $u \land gv$ exists. Hence $b \le u \land gv$ so that $(b, g) \le (u \land gv, g) \in eSf$; but $(u \land gv, g)\sigma^{\natural} = g$. Thus

$$(u \land gv, g) = \max\{s \in eSf : s\sigma^{\natural} = g\}$$

and, since g was arbitrarily chosen in G, $\gamma_{e,f}$ is consequently an m-map.

Conversely, suppose that each $\gamma_{e,f}$ is an *m*-map and let $a \in \mathcal{X}$, $e \in \mathcal{Y}$; then a = gf for some $g \in G$, $f \in \mathcal{Y}$. By hypothesis, the set

$$\{s \in (e, 1)S(f, 1): s\sigma^{\natural} = g\}$$

has a maximum member (c, g). Since $(c, g) \in (e, 1)S(f, 1)$, $c \le e$, $g^{-1}c \le f$, so that $c \le e$, a. On the other hand, if $b \le e$, a then $(b, g) \in (e, 1)S(f, 1)$. But $(b, g)\sigma^{\natural} = g$, so that $(b, g) \le (c, g)$; that is $b \le c$. Hence $c = e \land a$ exists and \mathscr{X} is consequently a semilattice.

COROLLARY 2.4. An inverse semigroup S is an E-unitary inverse semigroup over a semilattice if and only if S is E-unitary and each $\gamma_{e,f}$ is an m-map.

DEFINITION 2.5 [6]. An inverse semigroup S is F-inverse if and only if $\sigma^{\natural}: S \to S/\sigma$ is an m-map.

McFadden and O'Carroll [6] showed that an F-inverse semigroup has an identity. On the other hand, it is shown in [4] that an inverse monoid is E-unitary over a semilattice if and only if it is F-inverse. This result is expressed in the context of this paper by the next theorem.

THEOREM 2.6. Let S be an inverse semigroup. Then the following statements are equivalent:

- (i) S is F-inverse;
- (ii) S has an identity and each $\gamma_{e,f}: eSf \rightarrow S/\sigma$ is an m-map;
- (iii) $S \cong P(G, \mathcal{X}, \mathcal{Y})$ for some triple $(G, \mathcal{X}, \mathcal{Y})$ with \mathcal{X} a semilattice and \mathcal{Y} a principal ideal of \mathcal{X} .
- *Proof.* (i) \Rightarrow (ii). As pointed out above, McFadden and O'Carroll [6] have shown that any F-inverse semigroup has an identity; the identity is the element $e = \max\{s \in S : s\sigma^{\natural} = 1\}$, where 1 denotes the identity of S/σ .
- Let u, v be idempotents of S and, for $g \in G$, let $h = \max\{s \in S : s\sigma^{\natural} = g\}$. Then $uhv \in uSv$ and $(uhv)\sigma^{\natural} = g$. If $s \in uSv$ is such that $s\sigma^{\natural} = g$ then $s \leq h$ and so $s = usv \leq uhv$. Hence $uhv = \max\{s \in uSv : s\sigma^{\natural} = g\}$; it follows that $\gamma_{u,v}$ is an m-map.
- (ii) \Rightarrow (iii). Since S has an identity, it follows from Corollary 2.4 that we need only verify that S is E-unitary. Suppose that $fa = f = f^2$ for some $a \in S$. Then $a\sigma^{\natural} = 1$ so that $a \leq \max\{s \in S : s\sigma_{e,e} = 1\}$, where e is the identity of S. But e is a maximal element of S = eSe so that $e = \max\{s \in S : s\sigma^{\natural} = 1\}$; thus $a \leq e$. This implies $a = aa^{-1}e = aa^{-1}$, so that a is idempotent. Hence S is E-unitary.

(iii) \Rightarrow (i). Suppose $S = P(G, \mathcal{X}, \mathcal{Y})$ with \mathcal{X} a semilattice and \mathcal{Y} a principal ideal of \mathcal{X} , and let e be the maximum element of \mathcal{Y} . Then, as in the proof of Theorem 2.3, $(e \land ge, g)$ is the maximum element s of S with $s\sigma^{\natural} = g$. Hence, S is F-inverse.

Theorem 2.6 shows that, in the presence of an identity, the condition

each
$$\gamma_{e,f}$$
 is an m-map

ensures that S is E-unitary. This is not the case in general.

Example 2.7. Let M_2 be the Brandt semigroup $\mathcal{M}^0(\{1\},\{1,2\},\{1,2\},\Delta)$. Then M_2 has the multiplication table

with a = (1, 2), $a^{-1} = (2, 1)$, e = (1, 1), f = (2, 2).

In M_2 , $eSe = \{e, 0\}$, $eSf = \{a, 0\}$, $fSe = \{a^{-1}, 0\}$, $fSf = \{f, 0\}$ and all other uSv with $u^2 = u$, $v^2 = v$ are $\{0\}$. Hence each $\gamma_{u,v}$ is an m-map. But $S = M_2$ is not E-unitary.

In a sense, M_2 is the only counterexample to the hypothesis:

if each $\gamma_{e,f}$ is an m-map, then S is E-unitary.

Before verifying this, we prove a lemma.

DEFINITION 2.8 [9]. Let S be an inverse semigroup. Then S is E-reflexive if and only if, for $a, b \in S$, ab is idempotent if and only if ba is idempotent.

LEMMA 2.9. Let S be an inverse semigroup. Then the following statements are equivalent:

- (i) there exists $a \in S$ such that $a^2 < a$;
- (ii) S contains an isomorphic copy of M_2 ;
- (iii) S is not E-reflexive.
- **Proof.** (i) \Rightarrow (ii). Suppose $a^2 < a$. Then $a^2 = a^2 a^{-2}a$ so that $a^3 = a^2 a^{-2}a \cdot a = a^2$. This implies that a^2 is idempotent and $a^2 = a^{-2}$. Consider the subsemigroup T of S generated by a and a^{-1} . Then, since T is a homomorphic image of the free inverse semigroup on one generator, it follows from [2] that each element of T is of the form $a^r a^{-s} a^t$ with r, $t \le s$. Because $a^2 = a^3 = a^{-3} = a^{-2}$, one sees that T has at most five members, a, a^{-1} , $e = aa^{-1}$, $f = a^{-1}a$ and $0 = a^2$. Indeed, all five are distinct since, otherwise, a would belong to some subgroup of S and this would contradict $a^2 < a$. Thus T has the multiplication table in Example 2.7. That is, $T \cong M_2$.
- (ii) \Rightarrow (iii). Suppose $M_2 \subseteq S$ and let a = (1, 2), b = (1, 1). Then ab = 0 is idempotent but ba = a is not.
- (iii) \Rightarrow (i) Let c, $d \in S$ be such that cd is idempotent but a = dc is not. Then $a^2 = a^3$ so that $a^2 < a$.

THEOREM 2.10. Let S be an inverse semigroup. Then S is an E-unitary inverse semigroup over a semilattice if and only if S is E-reflexive and each $\gamma_{e,f}: eSf \to S/\sigma$ is an m-map.

Proof. Suppose that S is E-reflexive and that each $\gamma_{e,f}$ is an m-map. Let $ea = e = e^2$. Then, since a is a maximal member of $aa^{-1}Sa^{-1}a$,

$$a = \max\{b \in aa^{-1}Sa^{-1}a : b\sigma^{\natural} = 1\}.$$

Thus $a^2 \le a$ so that, by Lemma 2.9, $a^2 = a$. Hence S is E-unitary and so, by Corollary 2.4, $S \cong P(G, \mathcal{X}, \mathcal{Y})$ where \mathcal{X} is a semilattice.

Conversely, let $S \cong P(G, \mathcal{X}, \mathcal{Y})$, where \mathcal{X} is a semilattice. Then, since M_2 is not E-unitary, S does not contain M_2 . Thus, by Lemma 2.9, S is E-reflexive. Further, Theorem 2.3 shows that each γ_{ef} is an m-map.

It is an easy matter to see that if an inverse semigroup T is E-reflexive and each $\gamma_{e,f}: eTf \to T/\sigma$ is an m-map, then the same is true for each ideal of T. In particular, if an inverse semigroup S is embedded as an ideal in an F-inverse semigroup T then S is E-unitary over a semilattice. Example 2.13 shows that the converse need not be the case.

LEMMA 2.11. Let $(G, \mathcal{U}, \mathcal{V})$ be a triple and let \mathcal{V} be an ideal of \mathcal{V} , thus of \mathcal{U} , and set $\mathcal{Z} = G\mathcal{V}$. Suppose that $\mathcal{Z} \cap \mathcal{V} = \mathcal{V}$. Then $(G, \mathcal{Z}, \mathcal{V})$ is a triple and $P(G, \mathcal{Z}, \mathcal{V})$ is an ideal of $P(G, \mathcal{U}, \mathcal{V})$; if \mathcal{U} is a semilattice, so is \mathcal{Z} .

Conversely, if S is an ideal of $P(G, \mathcal{U}, \mathcal{V})$ then $\mathcal{Y} = \{a \in \mathcal{V} : (a, 1) \in S\}$ is an ideal of \mathcal{V} such that $G\mathcal{Y} \cap \mathcal{V} = \mathcal{Y}$. Further, $S = P(G, G\mathcal{Y}, \mathcal{Y})$.

Proof. This is straightforward.

THEOREM 2.12. Let S be an inverse semigroup. Then the following statements are equivalent:

- (1) each $\gamma_e: Se \to S/\sigma$ is an m-map, for $e^2 = e \in S$;
- (2) the translational hull $\Omega(S)$ of S is F-inverse;
- (3) S can be embedded as an ideal in an F-inverse semigroup.

Proof. (1) \Rightarrow (2). Suppose that (1) holds. We first show that S is E-unitary. Suppose that $ea = e = e^2$. Then $a \in Sa^{-1}a$ is such that $a\sigma^{\natural} = 1$. By hypothesis, the set $\{s \in Sa^{-1}a : s\sigma^{\natural} = 1\}$ has a maximum member t; thus $a, a^{-1}a \leq t$. But $a, a^{-1}a$ are maximal in $Sa^{-1}a$, from which it follows that $t = a = a^{-1}a$. Thus $a^2 = a$ and so S is E-unitary.

We may therefore suppose that $S = P(G, \mathcal{Z}, \mathcal{Y})$ for some triple $(G, \mathcal{Z}, \mathcal{Y})$. Let \mathcal{Z}^* and \mathcal{Y}^* denote the set of all non-empty order ideals of \mathcal{Z} and \mathcal{Y} , respectively, under inclusion, and let G act on \mathcal{Z}^* by $gA = \{ga : a \in A\}$ for each $A \in \mathcal{Z}^*$. Let $\mathcal{Z}^* = G\mathcal{Y}^*$. Then $(G, \mathcal{Z}^*, \mathcal{Y}^*)$ is a triple and we may regard S as being embedded in $P(G, \mathcal{Z}^*, \mathcal{Y}^*)$ by $(a, g) \mapsto (\bar{a}, g)$, where, for $a \in \mathcal{Z}$, $\bar{a} = \{x \in \mathcal{Z} : x \leq a\}$. Assume that this has been done. Then it is shown in [5, Section 3] that $\Omega(S)$ is isomorphic to the idealizer of S in $P(G, \mathcal{Z}^*, \mathcal{Y}^*)$. Further, it is shown there that $\hat{S} = P(G, \mathcal{Z}^*, \mathcal{Y}^*)$ is an F-inverse semigroup in which, for each $g \in G$, (I_g, g) is the maximum element t of \hat{S} with $t\sigma^{\sharp} = g$; here $I_g = \mathcal{Y} \cap g\mathcal{Y}$.

It follows from these remarks and Lemma 2.2 that in order to show that $\Omega(S)$ is F-inverse, it suffices to show that (I_g, g) is in $\Omega(S)$ for each $g \in G$. It is shown in [5, Theorem 3.9] that $\Omega(S)$ consists of all pairs $(A, g) \in P(G, \mathcal{Z}^*, \mathcal{Y}^*)$ such that, for each $e \in \mathcal{Y}$, $\{x \in A: x \le e\}$ has a maximum member.

Let $e \in \mathcal{Y}$, $g \in G$. Then, by hypothesis, the set $\{s \in S(e, 1): s\sigma^{\natural} = g^{-1}\}$ has a maximum member $t = (g^{-1}c, g^{-1})$ for some $c \in \mathcal{Y}$. Since $t \in S(e, 1), t^{-1}t \leq (e, 1)$; that is, $c \leq e$. Hence $c \in \{x \in \mathcal{Y} \cap g\mathcal{Y}: x \leq e\}$. On the other hand, if $x \in \mathcal{Y} \cap g\mathcal{Y}, x \leq e$ then $(g^{-1}x, g^{-1}) \in S(e, 1)$ and $(g^{-1}x, g^{-1})\sigma^{\natural} = g^{-1}$. This means that $(g^{-1}x, g^{-1}) \leq (g^{-1}c, g^{-1})$ so that $g^{-1}x \leq g^{-1}c$ and so $x \leq c$. It follows that $c = \max\{x \in I_g : x \leq e\}$. Hence $(I_g, g) \in \Omega(S)$ and then $(I_g, g) = \max\{s \in \Omega(S): s\sigma = g\}$. Consequently $\Omega(S)$ is F-inverse.

- $(2) \Rightarrow (3)$ is immediate, since S is an ideal of $\Omega(S)$.
- (3) \Rightarrow (1). Suppose that S is an ideal of an F-inverse semigroup T. By Theorem 2.6 we may assume $T = P(G, \mathcal{U}, \mathcal{V})$, where \mathcal{U} is a semilattice and \mathcal{V} is a principal ideal with greatest element v. Let $e = (f, 1) \in S$ and pick $g \in G$. Then $g^{-1}v \wedge f \leq f$ so that $g^{-1}v \wedge f \in \mathcal{Y}$, where $\mathcal{Y} = \{u \in \mathcal{U} : (u, 1) \in S\}$, and $g(g^{-1}v \wedge f) \geq v$ so that $g(g^{-1}v \wedge f) \in \mathcal{V} \cap G\mathcal{Y} = \mathcal{Y}$, by Lemma 2.11. Now by Lemma 2.11, $S = P(G, G\mathcal{Y}, \mathcal{Y})$. Hence $(g^{-1}v \wedge f, g^{-1}) \in S$ and so, consequently, $(g^{-1}v \wedge f, g^{-1})^{-1} = (v \wedge gf, g) \in S$. Indeed, since $g^{-1}(gf \wedge v) \leq f$, $(v \wedge gf, g) \in Se$ and $(v \wedge gf, g) \sigma^{\dagger} = g$.

On the other hand, suppose that $(a, g) \in Se$. Then $g^{-1}a \le f$ and $a \in \mathcal{Y} \subseteq \mathcal{V}$ so that $a \le v$. Hence $a \le v \land gf$ and consequently $(a, g) \le (v \land gf, g)$. It follows that $(v \land gf, g) = \max\{s \in Se : s\sigma^{\natural} = g\}$; hence σ_e is an m-map.

EXAMPLE 2.13. Let \mathbb{Q}^+ be the set of positive rationals under the reverse of the usual ordering and let $\mathbb{Y} = \{x \in \mathbb{Q}^+ : x^2 > 2\}$. Then the group G of positive rationals acts on \mathbb{Q}^+ by multiplication. Let $S = P(G, \mathbb{Q}^+, \mathbb{Y})$ and let $e = (2, 1) \in S$, $g = \frac{1}{3} \in G$. Then $(f, g) \in Se$ for all $f \in \mathbb{Y}$. Thus, as ordered sets,

$${s \in Se : s\sigma^{\natural} = g} \cong Y.$$

But \mathbb{Y} has no maximum member ($\sqrt{2}$ is irrational) so that σ_e is not an *m*-map. Hence S cannot be embedded as an ideal in an F-inverse semigroup.

From the characterization of $\Omega(S)$ in [5, Theorem 3.9], one can show that $\Omega(S) = S^1$.

3. Some special cases. In this section, we consider some special cases in which it is possible to improve on the result in Theorem 2.10.

PROPOSITION 3.1. Let S be an inverse semigroup and suppose that the semilattice of idempotents of S is up-directed. Then S is an E-unitary inverse semigroup over a semilattice if and only if eSe is F-inverse for each $e^2 = e \in S$.

Proof. Suppose that S is E-unitary over a semilattice and let $e^2 = e \in S$. Then, by Theorem 2.3, $\gamma_{e,e}: eSe \to G = S/\sigma$ is an m-map. Since eSe is an inverse semigroup, it follows, from Lemma 2.2(A), that eSe is F-inverse. On the other hand, suppose that each eSe is F-inverse. We show first that S cannot contain M_2 . Thus, by Lemma 2.9, S is E-reflexive.

For any $a \in S$, there exists $e^2 = e$ such that $e \ge aa^{-1}$, $a^{-1}a$. Then a, a^{-1} belong to eSe which is E-unitary, being F-inverse. Since M_2 is not E-unitary, it follows that $T = \langle a, a^{-1} \rangle$ is not isomorphic to M_2 . Hence S does not contain any copy of M_2 .

Next, let u, v be idempotents and let $e^2 = e \ge u$, v. Then $uSv \subseteq eSe$ and, by hypothesis, eSe is F-inverse. Let $g \in G = S/\sigma$. Then, as in the proof of Theorem 2.6,

$$u(\max\{s \in eSe : s\sigma^{\natural} = g\})v = \max\{s \in uSv : s\sigma^{\natural} = g\}.$$

Hence $\gamma_{u,v}$ is an m-map for all idempotents $u, v \in S$.

It now follows from Theorem 2.10 that S is E-unitary over a semilattice.

The results in the next two propositions are similar to Proposition 3.1. However, they depend on the algebraic structure of the semigroup S rather than on the order structure of the idempotents of S.

PROPOSITION 3.2. Let S be an inverse semigroup which is a semilattice of groups. Then S is an E-unitary inverse semigroup over a semilattice if and only if eSe is F-inverse for each $e^2 = e \in S$.

Proof. As with Proposition 3.1, the condition is necessary. On the other hand, suppose that eSe is F-inverse for each $e^2 = e \in S$. Then, since S cannot contain M_2 , we need only show that each $\gamma_{u,v}$ is an m-map. But uSv = uvSuv since idempotents are central, and then, by definition, $\sigma_{u,v} = \sigma_{uv,uv}$, so that the hypothesis in the statement of the proposition implies that each $\gamma_{u,v}$ is an m-map.

PROPOSITION 3.3. Let S be a simple E-unitary inverse semigroup. Then $S \cong P(G, \mathcal{X}, \mathcal{Y})$ for some triple $(G, \mathcal{X}, \mathcal{Y})$, with \mathcal{X} a semilattice, if and only if, for some idempotent $e \in S$, eSe is F-inverse.

Proof. We need only show that the condition is sufficient. Suppose eSe is F-inverse for some idempotent e and let u, v be idempotents of S. Since S is simple, there exist b, c such that $bb^{-1} = u$, $b^{-1}b \le e$, $cc^{-1} = v$, $c^{-1}c \le e$. Suppose that $x \in uSv$ is such that $x\sigma^{\natural} = g \in G$. Then $b^{-1}xc$ is in eSe since

$$b^{-1}xcc^{-1}x^{-1}b \le b^{-1}b \le e$$
 and $c^{-1}x^{-1}bb^{-1}xc \le c^{-1}c \le e$.

Further $(b^{-1}xc)\sigma^{\natural} = (b^{-1}\sigma^{\natural})g(c\sigma^{\natural}) = h$, say, so that, by the hypothesis on eSe, $b^{-1}xc \le z = \max\{x \in eSe: x\sigma^{\natural} = h\}$. Then $x = bb^{-1}xcc^{-1} \le bzc^{-1}$, and $bzc^{-1} \in uSv$ is such that $(bzc^{-1})\sigma^{\natural} = g$. Hence $bzc^{-1} = \max\{s \in uSv: s\sigma^{\natural} = g\}$, and so $\gamma_{u,v}$ is an m-map.

The requirement, in Proposition 3.3, that S should be E-unitary is necessary as the following example shows.

EXAMPLE 3.4. Let E be the ω -tree with the Hasse diagram shown in Fig. 1 and let $S = T_E$ be the inverse semigroup of order isomorphisms between principal ideals of E. Then E is uniform so that S is bisimple.

For each $a \in E$, denote by ε_a the identity mapping on the principal ideal $\bar{a} = \{x \in E : x \le a\}$. Then

$$\varepsilon_0 T_E \varepsilon_0 = \{ \alpha \in T_E : \Delta \alpha \cup \nabla \alpha \subseteq \bar{0} \}.$$

Figure 1

Thus $\varepsilon_0 S \varepsilon_0$ is the semigroup of isomorphisms between principal ideals of $\{0, 1, \ldots\}$. Consequently $\varepsilon_0 S \varepsilon_0 \cong B$, where B is the bicyclic semigroup. McFadden and O'Carroll [6] have shown that B is F-inverse.

On the other hand, let $\alpha \in T_E$ be defined by $\Delta \alpha = \overline{0}$ and

$$x\alpha = \begin{cases} u & \text{if} \quad x = 0, \\ x & \text{if} \quad x > 0. \end{cases}$$

Then $\alpha^2 = \varepsilon_1 < \alpha$ so that S contains a copy of M_2 . Hence S is not E-unitary.

The last result is different in type from the earlier ones in this section since on this occasion we impose a restriction on the idempotents of S and deduce a result about the maps $\gamma_{e,f}$.

Definition 3.5. A locally finite tree is a partially ordered set X in which the following three conditions are satisfied:

- (i) X is down-directed;
- (ii) if $a, b \le c$ where $a, b, c \in X$, then $a \le b$ or $b \le a$;
- (iii) the set $\{x \in X : a \le x \le b\}$ is finite for all $a, b \in X$ with $a \le b$.

PROPOSITION 3.6. Let S be an inverse semigroup whose idempotents form a locally finite tree. Then the following conditions on S are equivalent:

- (i) S is E-unitary;
- (ii) S is E-unitary over a semilattice;
- (iii) $\Omega(S)$ is F-inverse.

Proof. (i) \Rightarrow (ii). Suppose that S is E-unitary. Then $S \cong P(G, \mathcal{X}, \mathcal{Y})$ for some triple $(G, \mathcal{X}, \mathcal{Y})$, where \mathcal{X} is down-directed and G acts on \mathcal{X} in such a way that $\mathcal{X} = G\mathcal{Y}$. Since $P(G, \mathcal{X}, \mathcal{Y})$ has semilattice of idempotents $\mathcal{Y} \times 1$, \mathcal{Y} is a locally finite tree. In fact, since $\mathcal{X} = G\mathcal{Y}$ and \mathcal{X} is down-directed, it is easy to see that \mathcal{X} is a locally finite tree. Hence \mathcal{X} is a semilattice.

(ii) \Rightarrow (iii). Again, we may suppose that $S = P(G, \mathcal{X}, \mathcal{Y})$ and, as in the proof of Theorem 2.12, it suffices to show that, for each $g \in G$, $e \in \mathcal{Y}$, the set $\{x \in I_g : x \le e\}$ has a maximum member.

For each $x \in I_g$ such that $x \le e$, the set $\{y \in I_g : x \le y \le e\}$ has a maximum member m_x since $\mathscr Y$ is locally finite. Fix such an x and let $z \in I_g$ with $z \le e$. Then either $z \le x$ or x < z. In the first case $z \le x \le m_x$ while, in the second, $x < z \le e$, $z \in I_g$ imply $z \le m_x$. Hence $m_x = \max\{y \in I_g : y \le e\}$. This shows that $(I_g, g) \in \Omega(S)$, so that $\Omega(S)$ is F-inverse.

- (iii) \Rightarrow (i). This is immediate.
- 4. Congruences. In this section, we characterize those congruences on an E-unitary inverse semigroup over a semilattice whose quotient is also of this type.

DEFINITION 4.1 [11]. Let S be an inverse semigroup with semilattice of idempotents E. Then a normal partition on E is an equivalence π on E such that

- (i) if $e \pi f$, $u \in E$ then $eu \pi fu$;
- (ii) if $e \pi f$ then $a^{-1}ea \pi a^{-1}fa$ for all $a \in S$.

If ρ is a congruence on S then $\pi_{\rho} = \rho \cap (E \times E)$ is a normal partition on E and is called the normal partition induced by ρ .

If π is a normal partition on E then Reilly and Scheiblich [11] show that the smallest congruence ρ_{π} on S which induces π is given by the following rule: $(a, b) \in \rho_{\pi}$ if and only if ea = eb for some $e^2 = e \in S$ such that $aa^{-1} \pi e \pi bb^{-1}$.

The result in the next lemma is due to Reilly and Munn [10]. They derived it by giving an explicit construction for S/ρ_{π} in the form $P(G, \mathcal{X}, \mathcal{Y})$. We shall derive it as a direct consequence of Corollary 2.4.

Lemma 4.2. Let S be an E-unitary inverse semigroup over a semilattice and let π be a normal partition on the idempotents of S. Then S/ρ_{π} is an E-unitary inverse semigroup over a semilattice.

Proof. We verify that the conditions of Corollary 2.4 hold for $T = S/\rho_{\pi}$. First, suppose that $(e, ea) \in \rho_{\pi}$ for some $e^2 = e$. Then fe = fea for some idempotent f. Since S is E-unitary, this implies that $a^2 = a$. Hence T is E-unitary.

Next, let \bar{X} be a σ -class of T and let \bar{e} , \bar{f} be idempotents of T, say with $\bar{e} = e\rho_{\pi}$, $\bar{f} = f\rho_{\pi}$, $e^2 = e$, $f^2 = f$. Suppose $\bar{x} \in \bar{X} \cap \bar{e}T\bar{f}$ and let $x \in eSf$ be such that $x\rho_{\pi} = \bar{x}$. By hypothesis, $x \le z$, where $z = \max\{s \in eSf: s\gamma_{e,f} = x\gamma_{e,f}\}$. Hence $\bar{x} \le \bar{z} = z\rho_{\pi}$. But, since $x\gamma_{e,f} = z\gamma_{e,f}$, uz = ux for some $u^2 = u \in S$; thus $\bar{x}\sigma\bar{z}$. By the choice of e, f, $\bar{z} \in \bar{X} \cap \bar{e}T\bar{f}$. Hence \bar{z} is the maximum element of $\bar{X} \cap \bar{e}T\bar{f}$. It follows that $\gamma_{\bar{e},\bar{f}}$ is an m-map for each pair \bar{e},\bar{f} of idempotents of T. Therefore, by Corollary 2.4, T is an E-unitary inverse semigroup over a semilattice.

THEOREM 4.3 [10]. Let S be an inverse semigroup. Then S is an idempotent-separating homomorphic image of an E-unitary inverse semigroup over a semilattice.

Proof. Let $\theta: FI_X \to S$ be a homomorphism from a free inverse semigroup onto S. Then (cf. [8]) FI_X^1 is F-inverse and FI_X is an ideal of FI_X^1 . Hence, by Lemma 2.11, FI_X is E-unitary over a semilattice.

Let $\pi = \theta \circ \theta^{-1} \cap (E \times E)$ where E is the set of idempotents of FI_X . Then π is a normal partition and S is an idempotent-separating homomorphic image of S/ρ_{π} . The result now follows immediately from Lemma 4.2.

The following corollary strengthens Theorem 4.2 of [4].

COROLLARY 4.4. Let E be a semilattice. Then E can be embedded as an ideal in a semilattice F with the following property: each isomorphism between principal ideals of F can be extended to an automorphism of F.

Proof. This follows from Theorem 4.3, using the argument in [4, Theorem 4.2].

We now turn to consider the idempotent-separating congruences on an inverse semigroup $P = P(G, \mathcal{X}, \mathcal{Y})$, where \mathcal{X} is a semilattice. The next result is related to some of those in [10], and the proof is omitted.

LEMMA 4.5. Let $(G, \mathcal{X}, \mathcal{Y})$ be a triple and let N be a normal subgroup of G such that

$$a \in \mathcal{Y}$$
, $na \in \mathcal{Y}$ imply $a = na$ for each $a \in \mathcal{Y}$, $n \in \mathbb{N}$. (*)

Then the relation ρ_N defined by

$$(a, g) \rho_N(b, h)$$
 if and only if $a = b$ and $g^{-1}h \in N$

is an idempotent-separating congruence on $S = P(G, \mathcal{X}, \mathcal{Y})$ such that S/ρ_N is E-unitary.

Conversely, suppose that ρ is an idempotent-separating congruence on S such that S/ρ is E-unitary. Then

$$N = \{g \in G : (a, g) \ \rho \ (a, 1) \ for some \ a \in \mathcal{Y}\}\$$

is a normal subgroup of G which satisfies condition (*). Further $\rho = \rho_N$.

The next proposition gives necessary and sufficient conditions on N in order that $T = S/\rho_N$ should be E-unitary over a semilattice. In the proof of the result, we shall denote the elements of T by [a, g] where $(a, g) \in S$. If $[a, g] = (a, g)\rho_N^{\natural} \in T$, it is easy to see that the mapping $[a, g] \to Ng$ is a homomorphism of T onto G/N which induces σ . Hence we may identify T/σ with G/N by means of this mapping.

PROPOSITION 4.6. Let $S = P(G, \mathcal{X}, \mathcal{Y})$, where \mathcal{X} is a semilattice, and let N be a normal subgroup of G which satisfies condition (*). Then $T = S/\rho_N$ is E-unitary over a semilattice if and only if, for each $a, b \in \mathcal{X}$,

$$\{a \land nb : n \in N\}$$

has a maximum member.

Proof. First note that, by Lemma 4.5, T is E-unitary. Suppose that, for all $a, b \in \mathcal{X}$, $\{a \land nb : n \in N\}$ has a maximum member. Let u, v be idempotents of T and let $X = Ng \in T/\sigma$; then u = [e, 1], v = [f, 1] for some $e, f \in \mathcal{Y}$. By hypothesis, $\bar{e} = \max\{e \land ngf : n \in N\}$ exists; say $\bar{e} = e \land n_1 gf$. Then $[\bar{e}, n_1 g] \in uTv$ and $[\bar{e}, n_1 g] \sigma = Ng$.

On the other hand, suppose that $[a, h] \in uTv$ is such that $[a, h] \sigma^{\natural} = Ng$. Then, because ρ_N is idempotent-separating, $a \le e$, $h^{-1}a \le f$ and, further, h = ng for some $n \in N$. Thus

 $a \le e \land ngf \le \bar{e}$ so that $[a, h] \le [\bar{e}, n_1g]$. Hence

$$[\bar{e}, n_1 g] = \max\{t \in uTv : t\sigma^{\natural} = Ng\}.$$

Thus, by Corollary 2.4, T is E-unitary over a semilattice.

Conversely, suppose that T is E-unitary over a semilattice and let a = ge, b = hf, where e, $f \in \mathcal{Y}$ and g, $h \in G$. By the hypothesis that T is over a semilattice,

$$x = \max\{t \in [e, 1]T[f, 1]: t\sigma^{\natural} = Ng^{-1}h\}$$

exists. Then x = [u, k], where $u \le e$, $k^{-1}u \le f$ and $Nk = Ng^{-1}h$; thus $k = g^{-1}n_1h$ and $u \le e \land g^{-1}n_1hf$ for some $n_1 \in N$, so that $gu \le a \land n_1b$.

On the other hand, for any $n \in \mathbb{N}$, $t = [e \wedge g^{-1}nhf, g^{-1}nh]$ is in [e, 1]T[f, 1] and $t\sigma^{\sharp} = Ng^{-1}h$. Hence $t \leq x$ which, since ρ_N is idempotent-separating, implies $e \wedge g^{-1}nhf \leq u$; that is, $a \wedge nb \leq gu$. But, as we have seen, $gu \leq a \wedge n_1b$, so we must have

$$gu = a \wedge n_1 b = \max\{a \wedge nb : n \in N\}.$$

COROLLARY 4.7. Let $S = P(G, \mathcal{X}, \mathcal{Y})$, where \mathcal{X} is a semilattice, and let N be a normal subgroup of G such that na = a for each $n \in \mathbb{N}$, $a \in \mathcal{X}$. Then S/ρ_N is E-unitary over a semilattice.

It was shown in [5] that every idempotent-separating congruence on $S = P(G, \mathcal{X}, \mathcal{Y})$, where \mathcal{X} is a semilattice, can be extended to an idempotent-separating congruence on $P(G, \mathcal{X}, \mathcal{X})$. It is easy to see that ρ_N can be extended to an E-unitary congruence if and only if $N \subseteq \{g \in G : ga = a \text{ for all } a \in \mathcal{X}\}$.

REFERENCES

- 1. A. H. Clifford and G. B. Preston, *The algebraic theory of semigroups*, Vols. I and II, Math. Surveys of the Amer. Math. Soc. 7 (Providence, R.I., 1961 and 1967).
- 2. C. Eberhart and J. Selden, One parameter inverse semigroups, *Trans. Amer. Math. Soc.* 168 (1972), 53-66.
- 3. D. B. McAlister, Groups, semilattices and inverse semigroups, Trans. Amer. Math. Soc. 192 (1974), 227-244.
- 4. D. B. McAlister, Groups, semilattices and inverse semigroups II, *Trans. Amer. Math. Soc.* 196 (1974), 351–369.
- 5. D. B. McAlister, Some covering and embedding theorems for inverse semigroups, J. Austral. Math. Soc. 22 (1976), 188-211.
- 6. R. McFadden and L. O'Carroll, F-inverse semigroups, Proc. London Math. Soc. (3) 22 (1971), 652-666.
- 7. W. D. Munn, A class of irreducible matrix representations of an arbitrary inverse semigroup, *Proc. Glasgow Math. Assoc.* 5 (1961), 41-48.
- 8. L. O'Carroll, A note on free inverse semigroups, *Proc. Edinburgh Math. Soc.* (2) 19 (1974), 17–23.
- 9. L. O'Carroll, Idempotent determined congruences on inverse semigroups, Semigroup Forum 12 (1976), 233-244.

- 10. N. R. Reilly and W. D. Munn, E-unitary congruences on inverse semigroups, Glasgow Math. J. 17 (1976), 57-75.
- 11. N. R. Reilly and H. E. Scheiblich, Congruences on regular semigroups, *Pacific J. Math.* 23 (1967), 349-360.

DEPARTMENT OF MATHEMATICAL SCIENCES NORTHERN ILLINOIS UNIVERSITY DEKALB, ILLINOIS 60115, U.S.A.