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1. Introduction. An inverse semigroup is called E-unitary if the equations ea = e =
e2 together imply a2 = a. In a previous paper [4], the author showed that any E-unitary
inverse semigroup is isomorphic to a semigroup constructed from a triple (G, 26, "3/)
consisting of a down-directed partially ordered set 26, an ideal and subsemilattice % of 2£
and a group G acting on 26, on the left, by order automorphisms in such a way that
36 = G<&. This semigroup is denoted by P{G, 26, %; it consists of all pairs (a,g)e<!S/xG
such that g^a e % under the multiplication

(a, g)(b, h) = (aAgb, gh).

The aim of this paper is to give necessary and sufficient conditions on an inverse
semigroup in order that it should be isomorphic to some P(G, 26, %) with 26 a semilattice.
As well, we consider those congruences p on an inverse semigroup P(G, 26, %) for which
the quotient has the form P(H, % V) for some triple H, % Y as above, with °U a
semilattice.

We shall assume familiarity with the construction and properties of P(G, 26, <30 from
[3], [4]. Undefined notation and terminology is that of Clifford and Preston [1]. In
particular, when we are considering a partial order on an inverse semigroup, the partial
order being referred to is the natural partial order; it is defined by

a ^ b if and only if a = eb for some e2 = eeS.

Throughout the paper, when the terminology "triple {G,26,^/)" is used, it means that
26 is a down-directed partially ordered set with "2/ an ideal and subsemilattice of 26, and
that G is a group acting on 26 by order automorphisms in such a way that 26 = Gty.

DEFINITION 1.1. Let S be an inverse semigroup. Then we say that S is an E-unitary
inverse semigroup over a semilattice if S = P(G, 26, "3/) for some triple (G, 26, "30 with SC a
semilattice.

In terms of Definition 1.1, the aim of this paper is therefore to characterize fi-unitary
inverse semigroups over a semilattice.

2. The general case

DEFINITION 2.1. Let S be a partially ordered set and let 0:S-> T be a mapping of S
into a set T. Then 6 is an m-map if, for each teT, the set {seS:s6 = t} has a maximum
member.
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2 D. B. McALISTER

Let S be an inverse semigroup. Then Munn [7] has shown that the relation a on S
defined by

(a, b)e<r if and only if ea = eb for some e2 = e e S

is the smallest congruence p on S for which Sip is a group.
The following results about a will be used without comment in several places in the

remainder of the paper.

LEMMA 2.2. (A) Let S be an inverse semigroup and let e, f be idempotents in S. Let a be
the minimum group congruence on S. Then

is the minimum group congruence on eSf. Similarly

is the minimum group congruence on Se.
(B) If I is a non-empty ideal of S then aC\{IxI) is the minimum group congruence on

I.
(C) Let (G, %, <2/) be a triple and let S be an inverse subsemigroup of P(G, %, <2/). Let

a = («> g)> b - (v, h) belong to S. Then

(a,b)eo~ if and only if g = h.

Proof. (A) Let yef denote the restriction of y - cfi to a homomorphism of eSf into
G = SI a: Then, since for each a e S,

ay = eyayfy = (eaf)y,

because ey = fy = 1 (the identity of G), yef is a homomorphism of eSf onto G. Thus cref is
a group congruence on eSf.

On the other hand, suppose that p is a group congruence on eSf and let (a, b) 6 o-ej.
Then au = bu for some idempotent ueS. This implies

a(euf) = (au)ef = (bu)ef = b(euf)

since idempotents commute. But, since eufe eSf and p is a group congruence on eSf, it
follows from these equalities that (a, b) e p. Hence aef g p. In the same way it can be
shown that cre is the minimum group congruence on Se.

(B) The proof of this is similar.
(C) Suppose that (a, b)ea. Then ae = be for some idempotent e = {f, l ) e S ; thus

g-h. On the other hand, suppose that g = h. Let e = b'^aoT^b e S. Then ae = be and so
(a,b)e<r.

Let S be an inverse semigroup and let e, / be idempotents of S. Then we shall follow
the notation introduced in Lemma 2.2 and denote by yef the restriction of a* to eSf and
by -ye the restriction of o^ to Se; each is a homomorphism onto G = S/a.

THEOREM 2.3. Let (G, 3£, % be a triple and set S = P(G, % %. Then 3£ is a semilattice
if and only if, for each pair of idempotents e, fe S, ye/-eSf-+ S/a is an mrmap.
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E-UNITARY INVERSE SEMIGROUPS OVER SEMILATTICES 3

Proof. Since #f = G<& and G acts by order automorphisms, it is easy to see that S£ is a
semilattice if and only if a Ae exists for each a eS£, e e f t

Suppose that S£ is a semilattice. Let e = (u, 1), / = (u, 1) with u, u e "3/, and pick geG.
Then s e eSf is such that so* = g if and only if s = (b, g) for some fe < u with g-1b s y. If
this is the case, then b£ u, gv and, by hypothesis, uAgv exists. Hence b^uAgv so that
(6, g) < (M A gu, g) e eSf; but (u A gv, g)o* = g. Thus

(u A gu, g) = max{s e eSf: so* = g}

and, since g was arbitrarily chosen in G, yef is consequently an m-map.
Conversely, suppose that each ye4 is an m-map and let aeS£, ee^J; then a = gf for

some ge G, / e 'S'. By hypothesis, the set

has a maximum member (c, g). Since (c, g)e(e, l)S(f, 1), c^e, g~lc^f, so that c^e , a.
On the other hand, if fc<e, a then (fc, g)e(e, l)S(f, 1). But (ft, g)o* = g, so that
(6, g) £ (c, g); that is fesc, Hence c = e A a exists and #? is consequently a semilattice.

COROLLARY 2.4. An inverse semigroup S is an E-unitary inverse semigroup over a
semilattice if and only if S is E-unitary and each yef is an m-map.

DEFINITION 2.5 [6]. An inverse semigroup S is F-inverse if and only if cr̂ iS—» S/a is
an m-map.

McFadden and O'Carroll [6] showed that an F-inverse semigroup has an identity. On
the other hand, it is shown in [4] that an inverse monoid is E-unitary over a semilattice if
and only if it is F-inverse. This result is expressed in the context of this paper by the next
theorem.

THEOREM 2.6. Let S be an inverse semigroup. Then the following statements are
equivalent:

(i) S is F-inverse;
(ii) S has an identity and each ye-f:eSf—> SI a is an m-map;
(iii) S^P(G, %, <30 for some triple (G, S£, "30 with % a semilattice and °H a principal

ideal of X.

Proof, (i) => (ii). As pointed out above, McFadden and O'Carroll [6] have shown that
any F-inverse semigroup has an identity; the identity is the element e =
max{s € S: so** = 1}, where 1 denotes the identity of SI a:

Let u, v be idempotents of S and, for geG, let h = max{seS:sab = g}. Then
uhve uSv and (uhv)o^ = g. If se uSv is such that so* = g then s^h and so s = usvsuhv.
Hence uhv = max{s e uSv: so** = g}; it follows that yuv is an m-map.

(ii) 4> (iii). Since S has an identity, it follows from Corollary 2.4 that we need only
verify that S is E-unitary. Suppose that fa=f = f2 for some asS. Then ao^ = 1 so that
a<max{jeS:so-ee = 1}, where e is the identity of S. But e is a maximal element of
S = eSe so that e = max{s e S: so** = 1}; thus a s e. This implies a = aa~le = aa~l, so that a
is idempotent. Hence S is E-unitary.
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(iii) => (i). Suppose S = P(G, S£, <3/) with % a semilattice and "3/ a principal ideal of %,
and let c be the maximum element of <&. Then, as in the proof of Theorem 2.3, (c A ge, g)
is the maximum element s of S with scrt| = g. Hence, S is F-inverse.

Theorem 2.6 shows that, in the presence of an identity, the condition

each yef is an m-map

ensures that S is E-unitary. This is not the case in general.

EXAMPLE 2.7. Let M2 be the Brandt semigroup ̂ °({1},{1, 2}, {1, 2}, A). Then M2has the
multiplication table

0
a

a'1

e
f

0

0
0
0
0
0

a

0
0
/
a
0

a"1

0
e
0
0

a"1

e

0
0

a"1

e
0

/

0
a
0
0
/

with a = (1,2), a"1 = (2,1), e = (1,1), / = (2,2).
In M2, eSc = {e, 0}, eSf = {a, 0}, fSe = {a~\ 0}, fSf = {/, 0} and all other uSv with u2 = u,

u2 = u are {0}. Hence each yuv is an m-map. But S = M2 is not E-unitary.
In a sense, M2 is the only counterexample to the hypothesis:

if each yef is an m-map, then S is E-unitary.

Before verifying this, we prove a lemma.

DEFINITION 2.8 [9]. Let S be an inverse semigroup. Then S is E-reflexive if and only
if, for a, beS, ab is idempotent if and only if ba is idempotent.

LEMMA 2.9. Let S be an inverse semigroup. Then the following statements are
equivalent:

(i) there exists aeS such that a2<a;
(ii) S contains an isomorphic copy of M2;

(iii) S is not E-reflexive.

Proof, (i) => (ii). Suppose a2<a. Then a2 = a2a~2a so that a3 = a2a~2a • a = a2. This
implies that a2 is idempotent and a2 = a~2. Consider the subsemigroup T of S generated
by a and a"1. Then, since T is a homomorphic image of the free inverse semigroup on
one generator, it follows from [2] that each element of T is of the form a'a~sal with r,
t^s. Because a2 = a3 = a~3 = a~2, one sees that T has at most five members, a, a"1,
e = aa~x, f=a~1a and 0 = a2. Indeed, all five are distinct since, otherwise, a would
belong to some subgroup of S and this would contradict a2<a. Thus T has the
multiplication table in Example 2.7. That is, T=M2.

(ii) =>(iii). Suppose M2c,S and let a = (1,2), b = (1,1). Then ab = 0 is idempotent
but ba-a is not.

(iii) => (i) Let c, d e S be such that cd is idempotent but a = dc is not. Then a2 = a3 so
that a2 < a.
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THEOREM 2.10. Let S be an inverse semigroup. Then S is an E-unitary inverse
semigroup over a semilattice if and only if S is E-reflexive and each yef:eSf-* SI a is an
m-map.

Proof. Suppose that S is .E-reflexive and that each ye4 is an m-map. Let ea = e = e2.
Then, since a is a maximal member ot aa~1Sa~1a,

a=max{beaa~1Sa~1a:bo^= 1}.

Thus a2^ a so that, by Lemma 2.9, a2 = a. Hence S is E-unitary and so, by Corollary 2.4,
S = P(G, % <&) where Sf is a semilattice.

Conversely, let S = P{G,%,%), where S£ is a semilattice. Then, since Af2 is not
E-unitary, S does not contain M2. Thus, by Lemma 2.9, S is E-reflexive. Further,
Theorem 2.3 shows that each ycJ is an m-map.

It is an easy matter to see that if an inverse semigroup T is E-reflexive and each
yef:eTf—* T/a is an m-map, then the same is true for each ideal of T. In particular, if an
inverse semigroup S is embedded as an ideal in an F-inverse semigroup T then S is
E-unitary over a semilattice. Example 2.13 shows that the converse need not be the case.

LEMMA 2.11. Let (G, %T) be a triple and let <& be an ideal of % thus of % and set
3£= C3/. Suppose that 2enT=<&. Then (G, 3f, <8/) is a triple and P(G, %, <&) is an ideal of
P(G, % Y);ifaU is a semilattice, so is %.

Conversely, if S is an ideal of P(G, % Y) then <% = {a e V:(a, 1)e S} is an ideal of Y
such that G%f\T=%. Further, S = P(G, Gflf, 0).

Proof. This is straightforward.

THEOREM 2.12. Let S be an inverse semigroup. Then the following statements are
equivalent:

(1) each ye:Se~* S/o- is an m-map, for e2 = eeS;
(2) the translational hull ft(S) of S is F-inverse;
(3) S can be embedded as an ideal in an F-inverse semigroup.

Proof. (1)=>(2). Suppose that (1) holds. We first show that S is E-unitary. Suppose
that ea = e = e2. Then aeSa^a is such that atrkl = l. By hypothesis, the set
{s € Sa~*a: so* = 1} has a maximum member t; thus a, a'1 a ̂  t. But a, a~la are maximal
in Sa~*a, from which it follows that t = a = a'1 a. Thus a2= a and so S is E-unitary.

We may therefore suppose that S = P(G, % % for some triple (G, %, <$/). Let %* and
<$/* denote the set of all non-empty order ideals of 2£ and % respectively, under inclusion,
and let G act on %* by gA={ga:aeA} for each AeS?*. Let 2£,* = G<y*. Then
(G,2f*, <%/*) is a triple and we may regard S as being embedded in P(G,S*, <$/*) by
(a, g)•-»(a, g), where, for ae3£, a = { x e 3 ? : x s a } . Assume that this has been done. Then
it is shown in [5, Section 3] that fl(S) is isomorphic to the idealizer of S in P(G, 2£*, <&*).
Further, it is shown there that S = P(G,2£*, ^/*) is an F-inverse semigroup in which, for
each geG, (Jg, g) is the maximum element ( of S with toM=g; here I =<SfC\g<S/.
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It follows from these remarks and Lemma 2.2 that in order to show that il(S) is
F-inverse, it suffices to show that (Ig, g) is in il(S) for each g e G. It is shown in [5,
Theorem 3.9] that Cl(S) consists of all pairs (A, g)eP(G,%*, <3/*) such that, for each
e e % {x € A: x ^ e} has a maximum member.

Let e e % g G G. Then, by hypothesis, the set {s G S(e, 1): so* = g"1} has a maximum
member t = (g~1c, g"1) for some CG<3/. Since teS(e, 1), r ' r s f e 1); that is, c^e. Hence
cG{xG<&ng<3/: x<e}. On the other hand, if x G <& n g<3/, x < e then (g^x, g'^eSie, 1)
and (g^x, g~1)oA=g~1. This means that (g-1x, g ^ ^ C g " 1 ^ g"1) so that g - ' x ^ g ' V and
so i < c . It follows that c = max{xGlg:x^e}. Hence (Ig, g) G £l(S) and then (/g, g) =
max{s G H(S): sa = g}. Consequently ft(S) is F-inverse.

(2) 4> (3) is immediate, since S is an ideal of il(S).
(3) => (1). Suppose that S is an ideal of an F-inverse semigroup T. By Theorem 2.6

we may assume T = P(G, % V), where % is a semilattice and T is a principal ideal with
greatest element v. Let e = (f, 1 ) G S and pick gG G. Then g'1 v /^ f ^ f so that g"' t)A/€^,
where <3/ = {UG % :(u, 1)GS}, and gCg^t; A / ) > U SO that g ( g ' 1 u / ) e r n G « / = ?', by
Lemma 2.11. Now by Lemma 2.11, S = P(G,G%<S/). Hence (g~1uA/, g~')eS and so,
consequently, (g^uA/ , g"1)"1 = («Agf,g)eS. Indeed, since g (gf/\v)</, (DAg/, g)GSe
and (uAgf, g V ^ g .

On the other hand, suppose that (a, g)GSe. Then g - 1 a ^ / and a e ^ s f so that
a^v. Hence a<v/\gf and consequently (a,g)^(uAgf,g). It follows that (vAgf, g) =
max{sGSe:scrt'=g}; hence cre is an m-map.

EXAMPLE 2.13. LetQ+ be the set of positive rationals under the reverse of the usual
ordering and let Y = { X G Q + : X 2 > 2 } . Then the group G of positive rationals acts on Q+

by multiplication. Let S = P(G, Q+, Y) and let e = (2,1) G S, g = ^G G. Then (/, g) G Se for
all / G Y . Thus, as ordered sets,

{seSe:so* = g} = Y.

But Y has no maximum member (V2 is irrational) so that ae is not an m-map. Hence S
cannot be embedded as an ideal in an F-inverse semigroup.

From the characterization of fl(S) in [5, Theorem 3.9], one can show that fl(S) = S1.

3. Some special cases. In this section, we consider some special cases in which it is
possible to improve on the result in Theorem 2.10.

PROPOSITION 3.1. Let S be an inverse semigroup and suppose that the semilattice of
idempotents of S is up-directed. Then S is an E-unitary inverse semigroup over a semilattice
if and only if eSe is F-inverse for each e2 = e e S.

Proof. Suppose that S is E-unitary over a semilattice and let e2 = e e S. Then, by
Theorem 2.3, ye e: eSe -» G = S/<x is an m-map. Since eSe is an inverse semigroup, it
follows, from Lemma 2.2(A), that eSe is F-inverse. On the other hand, suppose that each
eSe is F-inverse. We show first that S cannot contain M2. Thus, by Lemma 2.9, S is
E-reflexive.
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For any aeS, there exists e2 = e such that e ̂  aa'1, a~xa. Then a, a"1 belong to eSe
which is E-unitary, being F-inverse. Since M2 is not E-unitary, it follows that T = (a, a"1)
is not isomorphic to M2. Hence S does not contain any copy of M2.

Next, let u, v be idempotents and let e2 = e s: u, v. Then uSv £ cSc and, by hypothesis,
eSe is F-inverse. Let geG = S/cr. Then, as in the proof of Theorem 2.6,

«(max{s e eSe: sa^ = g})v = max{s e uSv: so** = g}.

Hence yUD is an m-map for all idempotents u, veS.
It now follows from Theorem 2.10 that S is E-unitary over a semilattice.
The results in the next two propositions are similar to Proposition 3.1. However, they

depend on the algebraic structure of the semigroup S rather than on the order structure
of the idempotents of S.

PROPOSITION 3.2. Let S be an inverse semigroup which is a semilattice of groups. Then S
is an E-unitary inverse semigroup over a semilattice if and only if eSe is F-inverse for each
e2 = eeS.

Proof. As with Proposition 3.1, the condition is necessary. On the other hand,
suppose that eSe is F-inverse for each e2 = e e S. Then, since S cannot contain M2, we
need only show that each yu_„ is an m-map. But uSv = uvSuv since idempotents are
central, and then, by definition, auv = o-uvuv> so that the hypothesis in the statement of the
proposition implies that each yuv is an m-map.

PROPOSITION 3.3. Let S be a simple E-unitary inverse semigroup. Then S = P(G, #f, ^J)
for some triple (G, 2?, <3/), with % a semilattice, if and only if, for some idempotent eeS, eSe
is F-inverse.

Proof. We need only show that the condition is sufficient. Suppose eSe is F-inverse
for some idempotent e and let u, v be idempotents of S. Since S is simple, there exist b, c
such that bb~l = u, b~xb ^ e, cc~l = v, c~lc < e. Suppose that x e uSv is such that xcfi= g€
G. Then b~lxc is in eSe since

r1xcc"1x"1i<6"1fe<e and c~1x"'ftfc~1xc^c~1c<e.

Further (b~1xc)6a = (b^cfygico*) = h, say, so that, by the hypothesis on eSe, b~lxc ^ z =
max{x e eSe:xoh = h). Then x = bb~lxcc~l ^ bzc'1, and bzc'1 e uSv is such that (bzc~1)oi* =
g. Hence bzc~x = max{s e uSu: so* = g}, and so YUU is an m-map.

The requirement, in Proposition 3.3, that S should be E-unitary is necessary as the
following example shows.

EXAMPLE 3.4. Let E be the w-tree with the Hasse diagram shown in Fig. 1 and let
S = TE be the inverse semigroup of order isomorphisms between principal ideals of E.
Then E is uniform so that S is bisimple.

For each aeE, denote by ea the identity mapping on the principal ideal a =
{xeE:x<a} . Then
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Figure 1

Thus e0Se0 is the semigroup of isomorphisms between principal ideals of {0,1,...}.
Consequently e0Se0 = B, where B is the bicyclic semigroup. McFadden and O'Carroll [6]
have shown that B is F-inverse.

On the other hand, let aeTE be defined by Aa = 0 and

u if x = 0,
x if x > 0 .

Then a2 = e1<a so that S contains a copy of M2. Hence S is not E-unitary.
The last result is different in type from the earlier ones in this section since on this

occasion we impose a restriction on the idempotents of S and deduce a result about the
maps yeJ.

DEFINITION 3.5. A locally finite tree is a partially ordered set X in which the following
three conditions are satisfied:

(i) X is down-directed;
(ii) if a, ft ^ c where a, b, ce X, then a < ft or ft < a;
(iii) the set {xeX:a<x<ft} is finite for all a, beX with a<ft.

PROPOSITION 3.6. Let S be an inverse semigroup whose idempotents form a locally finite
tree. Then the following conditions on S are equivalent:

(i) S is E-unitary;
(ii) S is E-unitary over a semilattice;

(iii) fl(S) is F-inverse.

Proof, ( i )^ ( i i ) . Suppose that S is E-unitary. Then S = P(G,%, % for some triple
(G, #f, <3/), where 3? is down-directed and G acts on #f in such a way that %= CO/. Since
P(G, %!, ty) has semilattice of idempotents ^ x 1, <$j is a locally finite tree. In fact, since
8? = G<& and % is down-directed, it is easy to see that 3f is a locally finite tree. Hence d£ is
a semilattice.

(ii) => (iii). Again, we may suppose that S = P(G, #?, <&) and, as in the proof of
Theorem 2.12, it suffices to show that, for each g e G, ee% the set { x e / g : x ^ e } has a
maximum member.
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For each x e Ig such that x ̂  e, the set {y e /g: x ̂  y s e} has a maximum member mx

since <$J is locally finite. Fix such an x and let z e / g with z^e. Then either z ^ x or x<z .
In the first case z ^ x s mx while, in the second, x < z ^ e , zelg imply z^mx. Hence
mx = max{y e /g: y ̂  e}. This shows that (/g, g) e O(S), so that fi(S) is F-inverse.

(iii) 4> (i). This is immediate.

4. Congruences. In this section, we characterize those congruences on an E-unitary
inverse semigroup over a semilattice whose quotient is also of this type.

DEFINITION 4.1 [11]. Let S be an inverse semigroup with semilattice of idempotents
E. Then a normal partition on E is an equivalence ir on E such that

(i) if evf, ueE then euirfu;
(ii) if e IT f then a~1ea n a fa for all aeS.

If p is a congruence on S then vp = p n (E x E) is a normal partition on £ and is called the
normal partition induced by p.

If 7T is a normal partition on E then Reilly and Scheiblich [11] show that the smallest
congruence pw on S which induces IT is given by the following rule: (a, b)epn if and only
if ea = eb for some e2 = e 6 S such that aa~l ireir bb~l.

The result in the next lemma is due to Reilly and Munn [10]. They derived it by
giving an explicit construction for S/p^ in the form P(G, #f, <S/). We shall derive it as a
direct consequence of Corollary 2.4.

LEMMA 4.2. Let S be an E-unitary inverse semigroup over a semilattice and let n be a
normal partition on the idempotents of S. Then S/p^ is an E-unitary inverse semigroup over a
semilattice.

Proof. We verify that the conditions of Corollary 2.4 hold for T= Slpn. First, suppose
that (e, ea) e pv for some e2 = e. Then fe = fea for some idempotent /. Since S is
E-unitary, this implies that a2 = a. Hence T is E-unitary.

Next, let X be a cr-class of T and let_ e, f be idempotents of T, say with e = epn,
f = fpm e2 = e, f2 = f. Suppose xeXHeTf and let xeeSf be such that xpw = x. By
hypothesis, x ̂  z, where z = max{se eSf:syef = xyeJ}. Hence x<z = zpz. But,_since xyef =
zyef, uz = ux for some u2 = ueS; thus xaz. By the choice of e, /, zeXC\e~Tf. Hence z is
the maximum element of XDeTf. It follows that ygj is an m-map for each pair e,f of
idempotents of T. Therefore, by Corollary 2.4, T is an E-unitary inverse semigroup over
a semilattice.

THEOREM 4.3 [10]. Let S be an inverse semigroup. Then S is an idempotent-separating
homomorphic image of an E-unitary inverse semigroup over a semilattice.

Proof. Let 0:FIx^>S be a homomorphism from a free inverse semigroup onto S.
Then (cf. [8]) FPX is F-inverse and FIX is an ideal of FIX. Hence, by Lemma 2.11, FIX is
E-unitary over a semilattice.
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Let IT = 6 ° 0"1 n (J5 x E) where E is the set of idempotents of FIX. Then TT is a
normal partition and S is an idempotent-separating homomorphic image of Slp^. The
result now follows immediately from Lemma 4.2.

The following corollary strengthens Theorem 4.2 of [4].

COROLLARY 4.4. Let E be a semilattice. Then E can be embedded as an ideal in a
semilattice F with the following property: each isomorphism between principal ideals of F can
be extended to an automorphism of F.

Proof. This follows from Theorem 4.3, using the argument in [4, Theorem 4.2].

We now turn to consider the idempotent-separating congruences on an inverse
semigroup P = P(G, $f, ty), where %C is a semilattice. The next result is related to some of
those in [10], and the proof is omitted.

LEMMA 4.5. Let (G, 3?, %) be a triple and let N be a normal subgroup of G such that

aeft , nae<& imply a = na for each a e <3/, n e N. (*)

Then the relation pN defined by

(a, g) pN (b, h) if and only if a = b and g~*h e N

is an idempotent-separating congruence on S = P(G,$C, *&) such that SlpN is E-unitary.
Conversely, suppose that p is an idempotent-separating congruence on S such that Sip is

E-unitary. Then
N = {geG:(a, g) p (a, 1) for some ae<3/}

is a normal subgroup of G which satisfies condition (*). Further p = pN.

The next proposition gives necessary and sufficient conditions on N in order that
T = SlpN should be E-unitary over a semilattice. In the proof of the result, we shall
denote the elements of T by [a, g] where (a, g) e S. If [a, g] = (a, g)pft e T, it is easy to see
that the mapping [a, g] -*• Ng is a homomorphism of T onto GIN which induces a. Hence
we may identify T/cr with G/N by means of this mapping.

PROPOSITION 4.6. Let S = P(G, 2C, %, where % is a semilattice, and let N be a normal
subgroup of G which satisfies condition (*). Then T= SlpN is E-unitary over a semilattice if
and only if, for each a, be%?,

{aAnb:ne.N}

has a maximum member.

Proof. First note that, by Lemma 4.5, T is E-unitary. Suppose that, for all a, be26,
{aAnb:neN} has a maximum member. Let u, v be idempotents of T and let X = Nge
Tla; then u = [e, 1], v = [f, 1] for some e, fe'H/. By hypothesis, e = max{cA/ig/:«eN}
exists; say e = e/\nxgf. Then [e, ntg]e uTv and [e, n^]a = Ng.

On the other hand, suppose that [a, h]e uTv is such that [a, h]a^ = Ng. Then, because
pN is idempotent-separating, a<e , h~ra^f and, further, h = ng for some neN. Thus
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f^e so that [a, h]^[e,n1g]. Hence

[e, nxg] = max{f € uTv: to* = Ng}.

Thus, by Corollary 2.4, T is E-unitary over a semilattice.
Conversely, suppose that T is E-unitary over a semilattice and let a = ge, b = hf,

where e, feW and g, fieG. By the hypothesis that T is over a semilattice,

x = max{r e [e, l]T\j, 1]: to* = Ng-1 fc}

exists. Then x = [u, fc], where u:£e, k^u^f and Nk = Ng~1h; thus k = g~1n1h and
u < e A g~lnxhf for some nx e N, so that gu ̂  a A naft.

On the other hand, for any neN, t = [eAg~1nhf,g~1nh] is in [e, 1]T[/, 1] and
to*i = Ng~1h. Hence t<x which, since pN is idempotent-separating, implies e/\g~lnhf-^ u;
that is, a/\nb^gu. But, as we have seen, gu<aAnxfc, so we must have

gu = a A nxfc = max{a A nb: n e N}.

COROLLARY 4.7. Lef S = P(G, %, %, where % is a semilattice, and let N be a normal
subgroup of G such that na = a for each neN, aeSP. Then SlpN is E-unitary over a
semilattice.

It was shown in [5] that every idempotent-separating congruence on S = P(G, % "30,
where 3f is a semilattice, can be extended to an idempotent-separating congruence on
P(G, 36, 3?). It is easy to see that pN can be extended to an E-unitary congruence if and
only if N s { g e G:ga = a for all a&9£).
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