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1. Introduction

A C*-algebra A is said to be approximately finite dimensional (AF) if it is the inductive
limit of a sequence of finite dimensional C*-algebras (see [2], [5]). It is said to be
nuclear if, for each C*-algebra B, there is a unique C*-norm on the ""-algebraic tensor
product A (g) B [11]. Since finite dimensional C*-algebras are nuclear, and inductive
limits of nuclear C*-algebras are nuclear [16], every AF C*-algebra is nuclear. The
family of nuclear C*-algebras is a large and well-behaved class (see [12]). The AF
C*-algebras form a particularly tractable sub-class which has been completely classified
in terms of the invariant KQ [7], [5].

Choi [4] showed that a C*-subalgebra of a nuclear C*-algebra can fail to be nuclear.
Since the larger algebra in Choi's example is not AF, there remained the question as to
whether a C*-subalgebra of an AF C*-algebra is ncessarily nuclear (see [6, Problem 10]
and [12, Problem 3]). Blackadar [1] has recently answered this question negatively by
showing that every non-type I C*-algebra [13] contains a non-nuclear C*-subalgebra.
Nevertheless, in special circumstances it is possible to give a positive answer. In
Theorem 3 we show that if D is a C*-subalgebra of a uniformly hyperfinite C*-algebra
A (see below) and if D contains a suitable maximal abelian self-adjoint subalgebra
(masa) of A then D is not only nuclear but even AF. In Remark 4 we indicate how this
result may be generalized to the case where A is a unital AF C*-algebra.

2. Preliminaries

A C*-algebra A is said to be uniformly hyperfinite (UHF) if it is the norm-closure of
the union of an ascending sequence of subalgebras each of which is *-isomorphic to
a full complex matrix algebra and contains the identity of A [9]. Thus any UHF
C*-algebra is automatically AF. If A is a UHF C*-algebra then it is *-isomorphic to
an infinite tensor product (X)iS1 A{ where i4j = MB(0 (the C*-algebra of all n(i)xn(i)
complex matrices) for some positive integer n(i) [14, Section 4]. A masa B of a UHF
C*-algebra A is said to be a standard diagonal if there exists a *-isomorphism 6 of A
onto (X),-gi Ah where each At = Mm for some n(i), such that 0(B) = (X)i^1 B, where each
Bt is a masa of A, (see [10] for a more general notion). It is well-known that (X),gi Bt is
indeed a masa of (X),gi Ax (see [17, Corollary 11] for a more general result).

Lemma 1. Let A = (^)i^1Ai, where each Ai = Mn(i)for some n(i), and let B = (^)i^1Bi
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where each B( is a masa of Ah so that Bt = Ce'/' + • • • + Cej$0 for some maximal orthogonal
family {e(i\. • •, 4?o} of minimal nonzero projections in At.

For each i, let Rt be the projection of norm one from At onto 2?, given by

Ri(a)=Iefaeip (aeA,).

Let Ci = A1®---®Ai(S)(0j>iBj). For n>i let P{n> = id1<g) • --® •
<8>Rn <8>id. Then there exists a projection of norm one P,. = id1 ® • • • ® id,- ® ((X}j>,̂ R,) of A
onto Ci such that

(i) P,(x) = \imP\-\x) (xeA),

(ii) Pi = PiPi+l for each i,

(iii) for any C*'-algebra C satisfying BsCS/1, P^Q^C,

(iv) x = limP,(x) (xeA).

Proof. The construction of P; is routine so we merely sketch the argument. Let a e A
and let a = liman where aneAt <£>••• <g> An(g)Cl. For m>n>i,

So (P\n)(an))nzi is a Cauchy sequence in Ct. The limit is independent of (an) and is
denoted by P;(a). It is straightforward to check that Pt is a projection of norm one from
A onto C,.

Since P|n)(a)^P,(a) whenever aeA^ ® ••• ® Ak® Cl for some fe, (i) follows from the
fact that ||Pin)|| = l for all n>i.

Clearly Pt = PtPi+i on each algebra At ® •••® Ak® Cl, and so (ii) holds by
continuity.

Let c e C . Since B ^ c , it follows from the definition of the Rk's that P{C\c)eC. Hence
(iii) follows from (i).

Since Pt{a)^a whenever aeAv ® ••• ® / l t ® Cl for some k, (iv) follows from the fact
that ||P,|| = 1 for all i.

Proposition 2. Let A = Mn ® B where B is a unital abelian AF C*'-algebra. Let
{et,...,en} be a maximal orthogonal family of minimal nonzero projections in Mn. Suppose
that D is a C*-subalgebra of A such that D ^ e , ® B ( l ^ i ^ n ) . Then D is an AF C*-
algebra.

Proof. For l ^ i g n let Jt be the norm-closure of D(e,® \)D, so that J, is a norm-
closed two sided ideal of D. Let

® l) = Ce,® B.

Since J,-(e, ® 1)J, = Z)(e,-® 1)D, D,- is a full hereditary C*-subalgebra of J ; (see [3]).
Since Jt is separable, Jt ® JT s D£ ® JT [3, Theorem 2.8] (where Jf" denotes the algebra
of compact linear operators on a Hilbert space of countably infinite dimension). Thus
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J; ® JT is AF. If e is a minimal nonzero projection in JT then
Ji = (\ ® e){Ji® tf){\ ® e) which is AF since it is a hereditary subalgebra of the AF
algebra J , ® J f (see [8, Theorem 3.1], where a more general notion of "AF" is
considered, and [5, Lemma 9.4]).

Since (J1+J2)/J1^J2/(J1nJ2), (Ji + J2)/Ji is AF. It follows from the work of
Brown and Elliott [5, Theorem 9.9] that Jl+J2 is AF. Proceeding in the obvious way,
one obtains that Jt+J2+ ••• +Jn = D is AF.

3. The main result

Theorem 3. Let A be a UHF algebra and let D be a C*-subalgebra of A which
contains a standard diagonal B of A. Then D is an AF C*-algebra (and hence is nuclear).

Proof. We may assume B = (^)i^lBi^D^A = 0i^1Ai where B, is a masa of ^, =
Let P;(i^ 1) be as in Lemma 1. Let £>, = ?;(£). By (iii),

Thus Dt = D nCh a (necessarily liminary) C*-subalgebra of the liminary C*-algebra C;.
Since B s D n C i + 1 = Di + 1, it follows from (ii) and (iii) that Dt = Pt{Dt+l)^Dl+l. It
follows from (iv) that D = norm-closure (U.ai^i). Since D, is liminary and hence nuclear
[16], the nuclearity of D is now apparent. However we shall show that D is actually AF.

By Proposition 2, D, is AF (i ̂  1). Since D is separable, it follows from [2, Theorem
2.2] that D is AF.

Remark 4. We indicate how the above result may be extended to the case where A
is a unital AF C*-algebra. Let {At} be an increasing sequence of unital finite
dimensional subalgebras. To construct a standard diagonal in A, one chooses a
sequence of masas BjS/1, inductively as in [15]; given Bf, let B1+1 be generated by B,
and a masa in the relative commutant of A-t in Ai+1. Let B denote the closure of uB,
and note that B is a hyperfinite diagonal in A (see [10, Section 6.16]).

As in Lemma 1 above, there is for each i a conditional expectational, P,:/l-»Cj (where
C; is the subalgebra generated by B and /4,), satisfying properties (ii), (iii), (iv), (see [10,
Proposition 6.15]). Hence, if D is a subalgebra of A which contains B, then it is
generated by the family of subalgebras {D n C,}. Since D n Ct is an AF C*-algebra (Cf

may be expressed as a finite direct sum of C*-algebras of the form considered in
Proposition 2), D is an AF C*-algebra, as well.
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