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T h e problem of t he existence, evolution, and stabil i ty of spat ia l s t ruc tures in convection 
is of considerable impor tance t o astrophysics as well as t o geophysical hydrodynamics . T h e 
Boussinesq approximat ion will be used because t he considered mot ions in s tars are suffi-
ciently slow. T h e sys tem of hydrodynamic equat ions describing convection in a ro ta t ing 
inhomogeneous medium has t he form: 

Here Dt is t he to ta l t ime derivative, U t h e velocity, Ρ , T , and C t he deviat ions of t he 
pressure, t e m p e r a t u r e , and helium abundance (by mass) from the basic equil ibr ium values, 
p m , i / m , \ m , and Vm t he values averaged over t he considered layer of t he density, viscosity, 
the rmal and hel ium diffusivities, βχ and ßc t he averaged coefficients of t he the rma l and 
hel ium expansions , g and Ω the gravi ta t ional acceleration and angular velocity, VT^ and 
VCb t he values of the basic equilibrium t empera tu re and hel ium gradients , and VTad t he 
adiabat ic t empe ra tu r e gradient . 

An analysis of f inite-amplitude convection in a ro ta t ing non-uniform s ta r has been per-
formed by Dolginov and Klyachkin (1987, 1988, 1989) using bifurcation theory me thods 
applied t o Eq . (1). It was shown t h a t for a wide range of physical pa ramete r s such as 
ro ta t ion r a t e and degree of chemical inhomogeneity (VCb) convection arises when t h e init ial 
t e m p e r a t u r e gradient exceeds a critical value (supercri t ical bifurcation). Fur the rmore t he 
existence of convective mot ions for values of t he basic t e m p e r a t u r e gradient less t h a n the 
critical value (subcri t ical bifurcation) was found to be possible in t h e case of slow rota t ion 
and a sufficiently large downwards directed hel ium gradient . In bo th cases t h e convection 
occurs as waves in t h e form of b a n a n a cells elongated along t h e meridian with an equator ia l 
ampl i tude m a x i m u m . These waves are propagat ing only azimuthally, b o t h along and oppo-
site t o t h e direction of ro ta t ion . T h e presence of a chemical inhomogenei ty in t h e considered 
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layer is very important for the physics of the convection processes. It leads not only to a 
change of the critical temperature gradient, but also to the appearance of slow gyroscopic 
waves (of Rossby type), with two double-diffusion modes determined by the competition 
between the thermal and helium diffusions. 

It has however not been known whether the spatial structures are stable and how their 
evolution may be influenced by nonlinear interaction and energy transfer between the dif-
ferent generated modes. For a more detailed analysis of convection in the weakly nonlinear 
regime we will therefore use the method of amplitude equation, which is based on multi-
ple scalings in space and time. As the propagation of waves is one-dimensional, only the 
azimuthal coordinate φ is scaled. Let us choose the scaling 

Π = et, τ-2 = e2t, φι = εφ, φ2 = ε2 φ, 

where β is a measure of supercriticality defined by Rt = Rq-t e2R2. Here Rt is the thermal 
Rayleigh number, which is proportional to the basic temperature gradient, while Ro is the 
critical value of Rt, as obtained with a linear approximation. We seek a solution of Eq. (1) 
in the form of an expansion in ε, which is a measure of the convection amplitude. 

(V, W, T, C) = Σ en(Vn, Wn, Tn, Cn), 
n = l 

where V and W are the poloidal and toroidal velocity potentials ( U = [curl 2 rV+curl r ^ ] r 0

_ 1 , 
with ro = R/h being the inner radius of the considered spherical shell in units of its depth). 
According to DiPrima et al. (1971), the multi-scaling method can be used for a Hopf bi-
furcation in the bounded spatial domain, if the wave number spectrum is sufficiently dense: 
Ak ε2 < 1. For a spherical shell, Ak = Tq1 , and therefore the amplitude equation can 
correctly describe the convection process in a thin (ro > 1) spherical layer. Physically it 
means that in spite of small supercriticality a great number of different spatial harmonics 
take part in the nonlinear interaction. As a result of the condition that Eq. system (1) 
has solutions in the 0(e3) approximation (for details, see Klyachkin, 1989), the amplitude 
equation follows: 

ΘΑ/θτ2 =aA- -y\A\2A + β d2Ajdx\ (2) 

It is a complex (ß = ßr+ißi, 7 = 7 r+ i7 / )» one-dimensional Ginzburg-Landau equation. Here 
A = A(r2,x\,x2) is a slowly varying complex amplitude, x\ = ε(φ — cgi), x2 = ε2(φ — cgt), 
and cg is the group speed of the most unstable mode. The velocity, temperature, and helium 
concentration depend both on the slow variables (reflecting the mutual interdependence of 
the modes) and on the rapid variables (reflecting the spatial and temporal dependence of 
the most unstable mode). For example 

Τχ = ReTi Α ( τ 2 ι χ ι , χ 2 ) Ρ* (cos θ) exip [ί(£φ + u>t)] sin π (r - r 0 ) , 

where ΤΊ is a constant, chosen from the normalization condition. The coefficients α, β, and 
7 are uniquely connected with the controlling parameters describing the rotation, degree of 
chemical inhomogeneity of the medium, and its physical characteristics: viscosity, thermal 
and helium diffusivities. These expressions for α, β, and 7 have been given in Klyachkin 
(1989). The obvious solutions of Eq. (2) are monochromatic, finite-amplitude rotating waves. 
It is known that chaotic solutions of Eq. (2) are possible. The condition for such solutions 
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not to appear is also the condition for asymptotically reaching the monochromatic regime 
(Doering et al., 1988), as well as the condition for modulational stability of the spatially 
homogeneous solutions (A = A ( r 2 ) ) . This condition has the form βτητ + βιηι > 0. It is 
satisfied for given values of a , and 7 when rotation is not very rapid, and in the parameter 
domain corresponding to supercritical bifurcation in convection. For such parameter values 
convective motions appearing in the form of slow gyroscopic waves with retrograde propa-
gation represent stable solutions. It is thus not surprising that gyroscopic waves have been 
found in numerical treatments of convection in a rotating, chemically homogeneous spherical 
shell in the mean-field approximation (Durney, 1970). 

In the domain where subcritical bifurcation takes place, the coefficient ητ < 0, and accord-
ing to Doering et al. (1988) an explosive growth of the solution in a finite time is possible 
in this case. Phenomenologically this growth can be limited by adding a term with a higher 
degree of nonlinearity (Landau and Lifshits, 1986): 

dA/dr2 =aA- Ί\Α\2Α - μ\Α\4Α + ßd2A/dxl (3) 

The evident solutions of Eq. (3), finite-amplitude waves, can possess both small and large 
amplitudes when the wave number is fixed. The analysis shows that all small-amplitude solu-
tions are modulationally unstable. The spatially homogeneous (A = A ( r 2 ) ) large-amplitude 
solutions are modulationally stable if 

(ßrfir + βιμι)(ΐΙ + 4 μ Γ α ) 1 / 2 + βι(ηιμτ - Ίτμι) > 0. 

For spatially inhomogeneous solutions A = a e x p [i(kxi + u;r 2 )], the neutral curves of mod-
ulational stability relative to perturbations with wave number k have the form (for details, 
see Klyachkin, 1989) 

4k2 ß2

r = [\ß\2k2 + 2a2(ßrlr + βιΊι) + ±α\βτμτ + βιμι)] 

{ l + [ßik2 + 7/α2 + 2μια
4]2[βΓΡ -h ήτα2

 + 2 μ Γ α 4 ] " 2 } ~ \ (4) 

Here 

a2 = [ - 7 r ± ν ^ + 4 μ Γ ( α - / ? Γ * 2 ) J ^ r ) " 1 . 

Criterion (4) is identical for μ = 0 with the analogous one obtained by Doering et al. (1988). 
Let us finally point out that Eqs. (2) and (3) do not describe the processes taking place 

near the multiple bifurcation line of codimension 2 or the multiple bifurcation point of 
codimension 3, which occur when a definite relation between rotation, external heating, 
and degree of chemical inhomogeneity exists. 

The author is grateful to Prof. A.Z. Dolginov for fruitful discussions and valuable com-
ments. 
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