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ON ESSENTIAL EXTENSIONS OF RINGS

E.R. PUCZYLOWSKI

This paper concerns the problem of description of the set of

rings containing a given ring as an essential ideal. The

results obtained are applied to some problems of ring theory

and radicals.

All rings in this paper are associative. To denote that J is an

ideal of a ring A we write J < A . Recall that an ideal J of A is

said to be essential or that the extension J <] A is essential, if for

every non-zero ideal J of A , J n J ̂  0 . Given a ring J we write

El = {B\B S A/I for some essential extension J <a A} . Clearly if

I s I' then El = El' .

It appears that many ring theoretic problems concern in fact a

description of El . Among them are those on the possession by I of a

unity and on describing atoms in the lattice of radicals. In this paper

we study El , extending, in particular, results in both those areas. For

some important results we give simpler proofs. In the second part of the

paper special attention is paid to applications to radicals, which

actually inspired the studies.

1.

A key role in this paper is played by the following elementary

Received 19 May 1986.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/87
$A2.00 + 0.00 379

https://doi.org/10.1017/S0004972700013368 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700013368


380 E. R. Puczy^owski

lemma.

LEMMA 1. Sicppose that I is a subring of a ring P and

simultaneously J < R . Given p e P , r e R and a regular element

i e I of P the following conditions are equivalent

i) pi = ri ,•

ii) ip = ir ;

Hi) pi' = ri' for each i' el;

iv) i'p = i'r for every i' e I .

Proof. Since J is an ideal of R , we have for every i' e I

both ri' e I and i'r e I . Now if pi = ri then i'pi = i'ri . Hence,

since i is regular in P , i'p = i'r . Thus i) implies iv) . Obviously

ii) is a special case of iv) . Symmetric arguments give the other

implications. Q

It is clear that the element p of Lemma 1 belongs to the idealiser

IdpT = {x e P | xl £ I , Ix c_ J} of J in P . The idealiser IdJ

is the largest subring of P containing J as an ideal.

Taking in Lemma 1 P = I and p = 0 one obtains that for every

r e R 3 ri = 0 if and only if ir = 0 . This implies that

R(i) = {r e R | ir = 0} is an ideal of R . Since i is a regular

element of I, I n R(i) = 0 . Thus we have

COROLLARY 2. If I o R and I contains a regular element i then

I is an essential ideal of R if and only if R(i) = 0 .

COROLLARY 3. El = {0} if and only if I is a ring with unity.

Proof. If e is a unity of J and I < R then for every

re R \ I j r - er ̂  0 . Obviously r - er e R(e) and e is a regular

element of I . Thus I is not an essential ideal of R .

Suppose now that El = {0} . Let I be J with a unity adjoined

and let A? be a maximal ideal of J satisfying I n M = 0 . Clearly

J can be treated as an essential ideal of I /M . Thus, since El = {0},

we have 1 = 1 /M ; in particular J is a ring with unity. D

For a given right i?-module M , let L(Mj denote the lattice of

i?-submodules of M . We use w to denote a lattice isomorphism.
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COROLLARY 4. If i is a regular element of I and I is an

essential ideal of R then

a) the mapping f : R •*• I given by f(r) = ir is an embedding of

right R-modules;

b) L((R/I)J ~ L ((iR/il) J , where Z is the ring of integers.

Proof. Obviously Kerf = R(i) , so by Corollary 2, Kerf = 0 .

This proves a). Now L ((R/DJ "» L ((iR/il)J . Since I is an ideal
ii it

of R , every additive subgroup of iR/il is a right J-submodule. Thus

L (dR/H)z) ~ L ( (iR/il) ̂ . D

Corollary 4 gives immediately relations between some properties of

J and B c El such as cardS < card! or, if I is a right chain ring

then the additive group of B is a chain.

The Krull dimension of a right f?-module M is denoted by #dimM_.

PROPOSITION 5. If I contains a regular element i, B e El and

KdimIT is defined, then KdimB^ is also defined and KdimB A KdimI .

Proof. Let I be an essential ideal of R with R/I £ B . By

Corollary 4 b) , Kd±m(inR/ini)r = KdimB„ for n = l,2,... . Since I is

.2 2
an ideal of R and ^ e J J ^ f l £ ^ ^ _ ^ ^ i ? _ = ^ J _ £ . . . is a chain of right

J-submodules of J . Hence KdxmB < KdimI . Q
u 1.

COROLLARY 6. Let I be a k-algebra over a field k containing a

regular element i . Then

a) if I is a right chain ring then the field k is finite and

prime and if 0 / A e El then A Z k or A = k s where k is the zero

ring on the additive group of k ;

b) if KdimI is defined then every ring of El is finite and

El = {0} provided k is infinite.

Proof. Let J <J R be an essential extension. Observe that

iR/il £ U = {x e I/il \ xl = 0} . Obviously V is a fe-space and every

additive subgroup of I/il is i t s I— submodule. Hence if J is a right

chain ring then dimAI = 1 . In addition k must be a chain Z-module,

which implies cardfe < <= . Thus cardt/ = cardfe < » . NOW by Corollary 4
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a) , cardR/I < cardfc < °° . This proves a) . No infinite field and no

infinite dimensional space over a field have Krull dimension as Z-

modules. Hence if Kdiml.. is defined and U / 0 then k is a finite

field and dim, U < °° . Now Corollary 4 a) implies
K.

card R/I < card k dim, U < °° . •

Corollaries 3 and 6 imply that (see [ H , section 3]) if a fe-algebra

I over an infinite field k contains a regular element and Kdiml is

defined then I has a unity

The following result was proved in [6]. Here we give a direct proof

not using multiplier algebras.

PROPOSITION 7 ([6]). Let L be a left ideal of a ring P and

suppose that L contains an element I regular in P . If L < R and

Rl c_ Pl then there exists a ring homomorphism f : R > IdpL such that

f\L-id.

Proof. The assumption Rl c_ PI says that for every r e R there

exists p e P with rl = pl . Regularity of I implies that p is

uniquely determined; denote this element by f(r) . Thus rl = f(r)l

and by Lemma 1, Ir = lf(r) and f(r) e IdJ^ . If r-jj^P £ R then

f(r1 +r2)l= (r1 +^1 = ̂ 1+ r£l = firjI + ffrjI , so f(rJ + r,,; =

f(r2) + f(r2) . Now lf(r2x-2)l = Ir^l = Ifir^v^ = Ifirjfirjl , so

f(r2r ) = f(r)f(rJ . Hence f is a homomorphism of R into IdpL .

Obviously f\r=id. 0
L

The above result can obviously be applied to principal left ideals

generated by regular elements of P and it was done in [6 ]. The

following lemma shows that it can also be applied to some other left ideals

of P .

LEMMA 8. If L is a left ideal of a ring P with unity and

LP = P then

a) L is a finitely generated right L-module;

b) if L o R then for every I e L , Pl £ Rl .

Proof. Since LP = P and P is a ring with unity, there exist

p ,...,p e P and I ,...yl e L such that 1 = I p + ... + Ip . Hence
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L<^l-V-L+..,+lvLclL+...+lL^L, so l~L+...+lL = L and we— 11 rfn — n n — 1 n

o b t a i n a ) . Now Rl = R(ll) = R(ljp +... + l v )l . S ince f o r a l l

i , p.I e L , we have R(ljpA + ... +1 p I) c Rl (p I) + . . . + Rl (p I) c
•J, J. J. Yl 71 """" J. J. 71 71

) + . . . +L(pnl) = (Dp1)l+ . . . + C£pK^ £ P l . Dpnl

COROLLARY 9. If L is a left ideaZ. of a ring wiifc unify P j

LP = P and L contains a regular element of P then B e EL if and

only if for some subring A of IdpL , L £ A and A/L = B .

Proof. Let L < R be an essential extension with R/L SB. By

Proposition 7 and Lemma 8 there exists a homomorphism f : R — > IdpL such

that f|_ = id . Obviously Kerf n L = 0 , so, since L is an essential

ideal of R , Kerf = 0 . This proves that B is isomorphic to f(R)

which is a subring of Id-L .

Conversely, if A is a subring of Idjj containing L then

L < A . Now if I <a A and I n L = 0 then IL = 0 . Since L contains

a regular element of P , we have 1=0. This proves that the

extension L< A is essential. D

2.

Lemma 8 a) gives a very simple proof of the following result of

Beidar.

PROPOSITION 10 ([Z]). If a left ideal L of a simple ring with

unity is ring-is morphia to a right ideal I of a ring A then the

ideal I is finitely generated.

Proof. By Lemma 8a) L is a finitely generated right L-module.

Hence I is also a finitely generated right J-module and, even more, I

is a finitely generated right .4-module. Q

Using Proposition 10 Beidar answered a question of Sands [J2]

constructing a left stable and hereditary radical which is not right

strong. Now we give another example of such a radical.

Recall that a radical 5 is left strong (stable) ([5,7]) if for

every left ideal £ of a ring R if L e S then L c_S(R) {S(D c_S(R)).

Right strong (stable) radicals are defined dually. A class M of rings
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is hereditary if I <J R and R e M imply I e M .

EXAMPLE 1. Let D be a simple domain with unity containing a right

ideal J which is not finitely generated. The ring J is simple ([5]) .

For, if 0 / J < I then DJI = D . Hence I = ID = I DJI £ J and I = J.

This implies in particular that the class M = {1} u N , where N is the

class of nilpotent rings, is hereditary. Now the lower left stable

radical 5 determined by M is hereditary (see [7D). However the radical

S is not right strong. For I is a non-zero right S-ideal of D , so

if S is right strong, D e S . This implies that D contains subrings

0 / i4, c 4 c . .. c 4 = D with A, e M and such that A. is a left
1 — a — — n i i

ideal of A. ~ for 1 £ i S n- 1 . Since D is a domain, A. = I . Now

A, = i4" <= A A ,. . .4, . so A. = A A ,. . .4., is a left ideal of Z? .
J 1 — n n-1 1 ' I n n-1 1

Hence by Proposition 10, the ideal J is finitely generated, a contradict-

ion.

Remark. Using Proposition 10 and the idea of Example 2 of [8] one

proves easily that the lower radical determined by the class M= {j\ (3

subrings J = J- £ . .. £ J = D) (J. is a left ideal of J. - }

1 < i < n-1)} , where D is the ring of Example 1, is left but not right

hereditary. The first example of such a radical was constructed by Beidar

in [2].

In [ J] Andrunakievich and Ryabukhin asked if there is a simple ring

without unity whose lower radical is an atom in the lattice of all radicals.

The first example of such a ring was pointed out by Gardner in [4]. He

also proved that the lower radical determined by a simple ring A is an

atom in the lattice of radicals when A satisfies the following condition:

if A <3 R and R/A = A then there exists I <i R such that R = A * J .

Obviously the condition is satisfied if and only if A 4 EA . A large

part of this paper was inspired by this result. The foregoing and

Gardner's result give

COROLLARY 11. The lower radical determined by a simple idempotent

ring A is an atom in the lattice of radicals provided one of the

following conditions is satisfied

a) (\_4]) A has a unity;
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b) KdimA. is defined;

a) f[6;U A is a left ideal of a simple ring P with unity, it

contains a regular element of P and Idjl/A is a commutative ring;

d) CL3]J A is a right chain ring;

e) A is a maximal left ideal of a simple ring P with unity

containing a regular element of P but A is not a domain.

Proof. Conditions a), b) and c) are immediate consequences of

Gardner's result and Corollaries 3, 6 and 9 respectively. To prove d)

assume that A is a right chain ring and A e EA . By Corollary 4 a) the

additive group of A is chain. Since A , as a simple ring, is an

algebra over a field F , we have dimjl = 1 . Thus A = F and the result

is a consequence of a). Suppose now that A satisfies condition a). It

is well known ([70]) that IdJ\./A = Endp(P/A) . Since P/A is a simple

P-module, End-(P/A) is a division ring. Thus-Corollary 9 implies that

every ring B e EA is a domain. In particular A £ EA and Gardner's

result completes the proof. 0

Examples of rings without unity elements satisfying the assumptions

of Corollary 11 b), c) and d) were constructed respectively by Robson ([9])/

Leavitt and VanLeeuwen ([6]) and Dubrovin ([3]). To construct an

example for Corollary 11 e) let us take a simple domain D with unity.

Then the ring Do of 2 x2-matrices over D is simple. Let L be a

( "1
maximal left ideal of D . it is clear that A = L _ is a maximal

left ideal of Do containing a regular element of Do and that A is not

a domain.
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