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Abstract

Background. A blunted hypothalamic–pituitary–adrenal (HPA) axis response to acute stress
is associated with psychiatric symptoms. Although the prefrontal cortex and limbic areas are
important regulators of the HPA axis, whether the neural habituation of these regions during
stress signals both blunted HPA axis responses and psychiatric symptoms remains unclear. In
this study, neural habituation during acute stress and its associations with the stress cortisol
response, resilience, and depression were evaluated.
Methods. Seventy-seven participants (17–22 years old, 37 women) were recruited for a
ScanSTRESS brain imaging study, and the activation changes between the first and last stress
blocks were used as the neural habituation index. Meanwhile, participants’ salivary cortisol
during test was collected. Individual-level resilience and depression were measured using
questionnaires. Correlation and moderation analyses were conducted to investigate the asso-
ciation between neural habituation and endocrine data and mental symptoms. Validated ana-
lyses were conducted using a Montreal Image Stress Test dataset in another independent
sample (48 participants; 17–22 years old, 24 women).
Results. Neural habituation of the prefrontal cortex and limbic area was negatively correlated
with cortisol responses in both datasets. In the ScanSTRESS paradigm, neural habituation was
both positively correlated with depression and negatively correlated with resilience. Moreover,
resilience moderated the relationship between neural habituation in the ventromedial pre-
frontal cortex and cortisol response.
Conclusions. This study suggested that neural habituation of the prefrontal cortex and limbic
area could reflect motivation dysregulation during repeated failures and negative feedback,
which might further lead to maladaptive mental states.

Introduction

A blunted stress response is a lower level of cardiovascular or endocrine response during acute
stress (Howden et al., 2015; Jansen et al., 1998). Researchers found that this blunted response,
especially to psychological stressors, is associated with various mental and behavioral disor-
ders, such as a lower level of resilience and a higher level of depression (Adinoff,
Junghanns, Kiefer, & Krishnan-Sarin, 2005; Carroll, Phillips, Hunt, & Der, 2007). Since the
brain is the core regulator of the stress response (Dedovic, Duchesne, Andrews, Engert, &
Pruessner, 2009; Kogler et al., 2015), understanding the blunted hypothalamic–pituitary–
adrenal (HPA) axis reactivity at the neural level could not only provide insight into the
mechanisms of the maladaptive stress response and its relationship with mental health but
also offer potential treatment options (McCarty, 2016).

The HPA axis activation begins with the paraventricular nucleus of the hypothalamus
releasing the corticotropin-releasing hormone (CRH) and ends with the adrenal cortex produ-
cing glucocorticoid hormones (mainly cortisol in humans) into blood (Koning, Buurstede,
Van Weert, & Meijer, 2019; López, Akil, & Watson, 1999). Glucocorticoid hormones act on
the body via mineralocorticoid receptors (MRs) and glucocorticoid receptors (GRs) (Kim,
Han, & Iremonger, 2019), which regulate various stress processes, such as threat detection,
emotion regulation, and cognitive control (Carroll, Ginty, Whittaker, Lovallo, & de Rooij,
2017; Pruessner et al., 2008). It has been found that a repeated psychological stressor would
lead to a decreased cortisol response (Cyr & Romero, 2009), and further influence the risk
of various mental and behavioral disorders (Peters & McEwen, 2015).
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Both MRs and GRs are widely distributed in the brain, particu-
larly in the prefrontal cortex and limbic area (e.g. hippocampus,
amygdala) (Kim, Pellman, & Kim, 2015). Animal studies have
demonstrated that cell loss in the hippocampus can affect HPA
axis function (Bratt et al., 2001), while human studies have
found that higher hippocampus and amygdala volume levels
can predict a more robust HPA axis activity (Pagliaccio et al.,
2014; Pruessner, Pruessner, Hellhammer, Bruce Pike, & Lupien,
2007). Functional neuroimaging studies have also shown that
insufficient activity in the hippocampus, amygdala, and ventro-
medial prefrontal cortex (vmPFC) is negatively correlated with
the endocrine stress response ( Ginty, Gianaros, Derbyshire,
Phillips, & Carroll, 2013; Lederbogen et al., 2011; Pruessner
et al., 2008). Importantly, researchers found that the neural
response to repeated stimuli will exhibit habituation patterns
too. This neural habituation phenomenon was first discovered
with sensory stimuli (Wilson, Babb, Halgren, Wang, &
Crandall, 1984), then with emotional stimuli (Stevens et al.,
2017). Recent evidence further documented neural habituation
during acute stress. First, CRH neuronal activity robustly habitu-
ates to repeated presentations of the same stressors (Kim et al.,
2019). Furthermore, a number of neuroimaging studies found
that habituation in the prefrontal cortex and limbic system was
more pronounced than that in other areas (Plichta et al., 2014;
Sladky et al., 2012). Lastly, a study that used aversive images to
induce stress found neural habituation in the hippocampus and
insula (Sinha, Lacadie, Todd Constable, & Seo, 2016).

Notably, although previous studies have documented the crit-
ical role of the prefrontal cortex and limbic activity in ensuring a
sufficient endocrine response, whether neural habituation during
the task could affect the HPA axis response is still unclear. Given
that habituation represents a reduced response to certain stimuli
(Rankin et al., 2009), we hypothesized that neural habituation
in these areas might interfere with the endocrine system and result
in a blunted endocrine response. Further, depression and chronic
stress are common mental disorders associated with a blunted
endocrine response (Carroll et al., 2007; Ren et al., 2022).
Therefore, we also hypothesized that neural habituation would
positively correlate with depression and chronic stress.

Conversely, resilience refers to the ability to overcome adver-
sity and stress to promote adaptive behaviors and positive health
outcomes (Holz, Tost, & Meyer-Lindenberg, 2020; Rutter, 2006).
The prefrontal cortex is the critical component in generating
resilience coping (Maier & Watkins, 2010). Previous studies
have documented that increased vmPFC activity during stress
positively correlates with resilience (Sinha et al., 2016).
Therefore, we hypothesized that neural decline in the prefrontal
cortex caused by habituation would be negatively associated
with resilience. Moreover, evidence also showed that the low emo-
tional resilience group would exhibit a blunted endocrine stress
response. In contrast, the high resilience group will not be related
to the endocrine response (Krkovic, Clamor, & Lincoln, 2018),
indicating that resilience may moderate the relationship between
neural activity and endocrine stress response. This hypothesis
would be also tested in this study.

An adapted version of the ScanSTRESS paradigm (Lederbogen
et al., 2011), which adopts uncontrollability and social evaluative
threat to induce acute stress (Lederbogen et al., 2011), was used to
induce stress. During this paradigm, stress contexts were induced
four times, and both whole-brain-wise and region-of-interest
(ROI)-wise analyses were conducted to explore neural habituation
during stress induction. Furthermore, we used the amplitude

difference between the first and last stimulation blocks to estimate
the individual level of neural habituation (Plichta et al., 2014).
Subjective and endocrine stress reactivities were also measured
repeatedly throughout the experiment, and the levels of depres-
sion and resilience were also collected. The relationships between
neural habituation, cortisol response, depression, and resilience
were also estimated. Finally, we used the Montreal Image Stress
Test (MIST) to validate the neural habituation hypothesis
(Dedovic et al., 2005) and its relationship with a blunted endo-
crine response. In this dataset, chronic stress was used to validate
the relationship between neural habituation and mental health.

Materials and methods

Participants

Seventy-seven participants were recruited online for the
ScanSTRESS study (mean age, 19.10 years; range 17–22; 37
women). All participants were healthy college students.
Exclusion criteria were head injury, a history of alcoholism, or
drug abuse. Female participants were tested during their luteal
phase (around 10 days before menstruation) and did not use
oral contraceptives leading up to the experiment (Roche, King,
Cohoon, & Lovallo, 2013; Sharma et al., 2020).

ScanSTRESS paradigm and experimental procedure

There were two conditions in this paradigm: a stressful ‘perform-
ance phase’ and a control ‘relaxation phase’ (Nowak et al., 2020).
Under stressful conditions, social evaluative threat and uncon-
trollability were used to induce acute stress (Fig. 1a). These two
components were removed in the control condition (Fig. 1b).
There were two runs in this paradigm; each run contained four
blocks, two of which were stressful (each block contained a serial
subtraction task and a mental rotation task) and the other was
relaxed (each block contained a figure matching and a number
matching task, Fig. 1c). To mediate the effect of the cortisol
rhythm on the experimental results, participants were required
to arrive at the laboratory in the mid-afternoon, between 12:00
and 15:00 hours. Subjective stress reports and salivary cortisol
data were collected repeatedly from the scanner five times
throughout the experiment (Fig. 1d).

Data acquisition

Salivary cortisol data acquisition and analyses
Saliva samples were collected using a sampling device (Salivette,
Sarstedt, Germany), and all saliva samples were stored at −20 °C
until analysis. Cortisol concentrations were analyzed using an
enzyme-linked immunosorbent assay kit (IBL-Hamburg,
Hamburg, Germany). The sensitivity of the cortisol assay was
0.005 μg/dL. Following the previously reported methods of calcu-
lation (Calvi et al., 2017), the interassay coefficient of variation for
the cortisol assay was 11.92%, which is acceptable (below 15%).

Subjective reports
Participants self-reported their feelings of stress on a 7-point
Likert scale ranging from 1 (not at all) to 7 (total).
Self-reported measurements were collected five times along with
salivary cortisol collection.
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Connor–Davidson Resilience scale
The Connor–Davidson Resilience scale (CD-RISC) was developed
as a measure of ‘bounce-back’ and adaptability by the original
authors (Vaishnavi, Connor, & Davidson, 2007), with a 5-point
Likert scale ranging from 0 (not at all) to 4 (almost always).

Center for Epidemiologic Studies Depression scale
The Center for Epidemiologic Studies Depression Scale (CES-D)
was designed to measure depression mood in general populations
(Radloff, 1977). There are 20 items on the CES-D, including 4
negative and 16 positive items. Participants were required to esti-
mate the frequency of symptoms in the last week on a 4-point
Likert scale from 0 (rarely or none of the time) to 3 (most or
all the time).

Functional magnetic resonance imaging (MRI) data acquisition
Functional and anatomical whole-brain images were acquired
using a 3T Siemens Trio MRI scanner (Munich, Germany).

A total of 331 volume functional images were acquired from
each participant using a T2-weighted gradient echo-planar
imaging sequence during the task [repetition time (TR), 2000
ms; echo time (TE), 30 ms; matrix, 64 × 64; spatial resolution,
3 × 3 × 3 mm3; field of view (FOV), 192 × 192 mm2].
High-resolution T1-weighted three-dimensional (3D) fast-field
echo sequences were obtained for anatomical reference (slices,
176; TR, 1900 ms; TE, 2.52 ms; slice thickness, 1 mm; FOV, 256
mm × 256 mm; voxel size, 1 mm × 1mm × 1mm).

Functional MRI data analysis

Preprocessing
Functional MRI data were processed with MATLAB (Natick, MA)
using the DPABI toolbox (Yan, Wang, Zuo, & Zang, 2016). First,
3D images were transformed into four-dimensional images,
which were then sliced time-corrected in milliseconds for each
slice individually. Subsequently, all images were realigned to

Figure. 1. ScanSTRESS paradigm and an overview of the experimental procedure. (a) In the stressful ‘performance phase’, participants were asked to solve chal-
lenging cognitive tasks (serial subtraction and mental rotation) under time pressure; in addition, two juries (a man and a woman) is presented on the screen to
increase the social evaluative threat. Time limits were adapted to the individual’s performance resulting in frequent failure; if the participants could not answer the
question in time or correctly, there would be negative feedback shown on the screen as ‘work faster’ or ‘error’ insistently. In the meantime, one of the juries would
press a red button in his/her hand and another jury would record the participant’s failure; this could also increase participants’ feelings of social threat. (b) In the
control ‘relaxation phase’, participants went through similar although much easier tasks (find the matched figure or number) with abundant time, and the negative
feedback from the screen and the juries were removed. Furthermore, the juries were instructed to look away to remove the social evaluative threat. (c) The order for
conditions is counter-balanced, in the first run, the stimuli were given in the ‘control–stressful–control–stressful’ order; in the second run, the stimuli were given in
the ‘stressful–control–stressful–control’ order. (d) After arriving at the laboratory, the participants were asked to rest for 30 min before entering the MRI scanner.
During the scanning, a T1 image was acquired first, followed by a resting-state image. Immediately, the ScanSTRESS paradigm was used to induce a stress response
for 22 min. Then, there was another resting-state scan and structural scan; lastly, participants were debriefed for 10 min before they left the laboratory. During this
period, participants provided five saliva samples. The experimenter paused the scan to collect the second, third, and fourth samples. Participants were temporarily
removed from the scanner for saliva sampling, after which they returned and completed head localization again. The first and fifth samples were collected outside
the MRI scanner.
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correct for the head motion for acquisition, co-registered with
individual participants’ T1-weighted images, spatially normalized
to the Montreal Neurological Institute template using the Dartel
segments, and smoothed using a 4-mm full-width at half-
maximum Gaussian kernel.

Neural habituation analysis
Each run included two regressors (stressful and control condi-
tions), and six movement parameters were included as additional
covariates. To estimate the general effects of stress induction, con-
trast images of stress v. control over two sessions were analyzed
using a one-sample t test (Henze et al., 2020). In addition, to
test the neural habituation between blocks under different condi-
tions, the interaction between stress and block was calculated using
a 2 × 4 analysis of variance (ANOVA) with stress and block as
within-subject variables.

To further calculate the level of brain changes over the entire
stress induction period, we modeled each stress block separately
and extracted a total of four brain response estimates per partici-
pant. Based on the whole-brain-wise ANOVA, ROIs were identi-
fied using masks from the automated anatomical labeling (AAL)
template, and the selected ROIs were primarily located in the
medial prefrontal cortex–limbic areas. Mean amplitude levels
within each block were extracted using the selected ROI template
as a mask, and the amplitude difference between the first and last
stimulation blocks was measured to estimate neural habituation
during stress induction (Blackford, Allen, Cowan, & Avery,
2013; Plichta et al., 2014).

Statistical analysis

All statistical analyses were performed using SPSS (version 22). As
subjective and endocrine stress reactivities were measured repeat-
edly throughout the experiment, we calculated the areas under the
curve with respect to ground (AUCg) and areas under the curve
with respect to increases (AUCi) to reflect the level of the stress
response, as recommended by previous researchers (Pruessner,
Kirschbaum, Meinlschmid, & Hellhammer, 2003). Specifically,
AUCg is an index of total subjective or cortisol response during
stress, while AUCi is an index of subjective or cortisol response
with respect to increase (online Supplementary Fig. S1).
Participants were categorized as responders if an increase in the
cortisol level was detected (⩾1 nmol/L) either immediately or
20 min after stress relative to baseline (Hamer, O’Donnell,
Lahiri, & Steptoe, 2010), afterward, the neural habituation pattern
differences between cortisol responders and non-responders were
explored. A correlation analysis between neural habituation and
cortisol response was tested to analyze the relationship between
neural habituation and cortisol response. Furthermore, a correl-
ation analysis between neural habituation, depression, and resili-
ence was conducted. We also defined moderate models with
neural habituation as the independent variable, stress reactivity
as the dependent variable, and resilience as the moderating vari-
able. All p values in statistical analysis were corrected using the
false-discovery rate (FDR) approach.

Validation analysis

The low stability between different stress paradigms has long been
criticized (Cao et al., 2021). Therefore, we used an independent
sample under the MIST paradigm to validate the results (48 par-
ticipants; 17–22 years old, 24 women). Information about the

MIST paradigm has been previously reported in another article
(Ren et al., 2022). Similar to the ScanSTRESS paradigm, the
MIST paradigm also uses social evaluative threat and uncontroll-
ability to induce acute stress. During stress induction, salivary
cortisol was collected seven times, and the daily stress inventory
was used as an index of chronic stress to reflect mental health
levels (online Supplementary I and Fig. S2). The analysis proce-
dures were the same as those in ScanSTRESS.

Results

Study population

Three participants were excluded because of head motion execu-
tion (Zuo et al., 2014), and another two participants were
excluded because of outliers (more than 3 standard deviations
outside the mean) in the cortisol data (Gump et al., 2008).
A total of 72 participants (32 women) were included in the
final analysis.

Subjective, endocrine, and neural responses to stress

Regarding the behavioral and endocrine levels, time was deter-
mined to be a significant intra-subject variable in subjective stress
self-reports (F(4, 68) = 42.33, p < 0.001, ηp

2 = 0.713). The post-hoc
analysis revealed that participants’ subjective stress levels
increased significantly after stress induction [ ptime2−time1 < 0.001,
95% confidence interval (CI) 0.955–1.539], attained the highest
levels of subjective stress after stress induction ( ptime3−time2 <
0.001, 95% CI 0.275–0.780), and then decreased significantly
after stress induction ( ptime3−time4 < 0.001, 95% CI 1.370–2.019).
Time was also found to be a significant variable for salivary cor-
tisol levels (F(4, 68) = 3.30, p =0.016, ηp

2 = 0.162). Post-hoc analysis
revealed that participants’ salivary cortisol levels increased signifi-
cantly after stress induction ( ptime2−time1 < 0.05, 95% CI 0.007–
0.066, ptime3−time1 < 0.05, 95% CI 0.006–0.076), remained a high
level after stress induction, and then decreased significantly
( ptime4−time5 < 0.05, 95% CI 0.015–0.056). The overall change in
stress reactivity is shown in Fig. 2a.

The whole-brain analysis (two-tailed combined FDR-corrected
q < 0.05; Fig. 2b) revealed similar activation and deactivation pat-
terns seen in previous studies (Akdeniz et al., 2014; Sandner et al.,
2020), indicating that acute stress-induced activation in the dorsal
anterior cingulate cortex (ACC), dorsolateral prefrontal cortex
(dlPFC), and temporal areas and deactivation in the vmPFC, pos-
terior cingulate cortex, and insula. Detailed information is pro-
vided in online Supplementary Table S1.

Behavioral correlations

Correlation analysis showed that depression was positively corre-
lated with the total subjective stress feelings during stress
(SSAUCg, r = 0.27, p = 0.021, 95% CI 0.043–0.492) and negatively
correlated with cortisol secretion with respect to increase
(CortiAUCi, r =−0.23, p = 0.051, 95% CI −0.467 to 0.044).
There was no correlation between stress response and age and
any of the other variables (online Supplementary Table S2).

Neural habituation during repeated stress induction

ANOVA at the whole-brain level (two-tailed combined
FDR-corrected q < 0.05) revealed a significant interaction between
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stress and block within the prefrontal and limbic areas, including
the dlPFC, vmPFC, anterior cingulate cortex, insula, hippocam-
pus, and amygdala (Fig. 3a). The detailed information is pre-
sented in online Supplementary Table S3. In addition, the
activation value in each block was extracted using the F test
map as a mask, and the neural activity declined significantly dur-
ing the four stress blocks while remaining stable during the four
control blocks (Fig. 3b). Group-level analysis revealed that com-
pared to responders, non-responders showed a greater neural
decline during stress induction (online Supplementary Fig. S3).
Finally, activation changes between the first and last stress blocks
were used as the neural habituation index.

Correlation between neural habituation, endocrine stress
response, and mental health

Twenty-two ROIs located in the prefrontal cortex and limbic areas
were selected from the AAL template, and the Fmap derived from
the ANOVA was also defined as an ROI. Correlation results
showed that neural habituation at the whole-brain level as well
as the ROI level was accompanied by a blunted total cortisol
secretion during stress (CortiAUCg). Besides, CortiAUCi is nega-
tively correlated with ROI which is located in the dlPFC and
vmPFC. Lastly, neural habituation of some ROIs located in the
prefrontal cortex was negatively correlated with resilience, and
neural habituation of ROIs located in the limbic area was posi-
tively correlated with depression (Fig. 4).

Moderation analysis

With neural habituation (whole-brain level and 22 ROIs) as the
independent variable, cortisol response (CortiAUCg and
CortiAUCi) as the dependent variable, and resilience as the mod-
erate variable, results showed that the level of resilience tend to
moderate the relationship between the dlPFC and vmPFC neural
habituation and blunted stress response (online Supplementary
Table S4). Only one model with vmPFC [right middle frontal
gyrus (MFG), orbital part (orb)] habituation as the independent

variable could survive the FDR correction, indicating that
CortiAUCi was significantly lower in the high vmPFC habituation
group among participants with low resilience (B =−3. 458, p <
0.001), but not among those with high resilience (B = 1.960, p =
0.054) (FDR-corrected q < 0.05; online Supplementary Fig. S4).

Validation analysis

Stress induction in MIST paradigm resulted in similar subjective
stress feeling and endocrine increases (online Supplementary
Fig. S5) as well as neural activation (online Supplementary
Fig. S6). Participants’ subjective chronic stress levels were nega-
tively correlated with acute endocrine stress responses.
Compared to cortisol responders, non-responders showed more
profound neural habituation (online Supplementary Fig. S7).
Furthermore, when the same ROI was selected, neural habituation
at the whole-brain level and ROI level could signal blunted corti-
sol response (FDR-corrected q < 0.05; Fig. 5). Neural habituation
in the right insula was positively correlated with subjective
chronic stress level ( p = 0.039, uncorrected). Notably, this result
did not survive FDR correction, and it was reported solely for
the purpose of completeness, and should be interpreted with cau-
tion. Neither depression nor resilience was measured in the MIST
paradigm.

Discussion

To our knowledge, this is the first study to explore the neural
mechanism of the acute HPA axis response from a neural habitu-
ation perspective. Our results showed that neural responses in the
limbic area and prefrontal cortex, such as the dlPFC, vmPFC,
hippocampus, and amygdala, showed decreased activity during
repeated stress induction. The level of neural habituation in
these areas could signal a blunted endocrine-stress response.
Moreover, the level of neural habituation was negatively correlated
with the resilience level but positively correlated with the depres-
sion level, highlighting the maladaptive role of the blunted stress
response. Furthermore, the level of resilience could moderate the

Figure. 2. Validation of stress induction in the ScanSTRESS paradigm. (a) Subjective stress report and salivary cortisol secretion during ScanSTRESS. (b) Neural
response to stress induction in the ScanSTRESS paradigm (stress > control, FDR-corrected p < 0.05).
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relationship between neural habituation and blunted stress, which
underlies the mechanism by which resilience can generate pro-
tective effects on stressful events. Notably, the same neural habitu-
ation tendency and relationship to blunted stress response are also
found in the MIST paradigm, which suggests that the neural
habituation level is also positively correlated with the chronic
stress level (which is negatively correlated with the endocrine
response). Overall, our study provides a novel perspective for con-
sidering the neural mechanism of the blunted stress response,
offers a potential bridge between psychiatric disorders and
blunted stress responses, and reveals how resilience could help
the organism fight against the maladaptive response.

Perhaps the most profound and convincing theory for a
blunted stress response is the motivational dysregulation theory,
which considers blunted psychological stress reactivity as a
marker of central motivational dysregulation (Carroll, David
Batty, Mortensen, Deary, & Phillips, 2011; Carroll, Lovallo, &
Phillips, 2009). A review found that all the factors associated
with a blunted stress response, such as addiction (Paris, Franco,
Sodano, Frye, & Wulfert, 2010), depression (Phillips, Hunt, Der,
& Carroll, 2011), and anxiety (Bibbey, Ginty, Brindle, Phillips,
& Carroll, 2016), share a complaint of motivation dysregulation
(Carroll et al., 2017). In the laboratory stress test, motivational
tasks (e.g. public speaking or cognitive tasks) are important com-
ponents of stress induction (Shields, 2017), by manipulating par-
ticipants’ performance on a high error level, giving negative
feedback after each wrong answer, inducing feelings of uncon-
trollability, and threatening the social self (Noack, Nolte,
Nieratschker, Habel, & Derntl, 2019), which could affect motiv-
ation level, and further lead to a significant psychological and
endocrine stress response (Foley & Kirschbaum, 2010).
Empirical research from animal and human studies has shown
that acute stress can disrupt motivation functions related to
reward (Bai, Belin, Zheng, Liu, & Zhang, 2017; Hollon,
Burgeno, & Phillips, 2015). More recently, a study also found
that a threatening stimulus during acute stress can lead to motiv-
ational disengagement, and the level of motivation decline could
signal blunted cardiovascular reactivity (Hase, aan het Rot, de
Miranda Azevedo, & Freeman, 2020).

At the neural level, the limbic system and prefrontal cortex,
such as the cingulate gyrus and amygdala, are key regions that
support motivation (Ginty et al., 2013; Phillips, Ginty, &
Hughes, 2013). The dlPFC is vital for purchasing goals and inter-
plays with motivation circuits, such as the ACC and vmPFC, to
construct a network for goal regulation (Lee & Reeve, 2020;
Spielberg et al., 2012). The hippocampus and amygdala are also
essential areas for generating motivation (Cardinal, Parkinson,
Hall, & Everitt, 2002; Jarrard, 1973), and their activation could
ensure a sufficient cortisol response (Khalili-Mahani, Dedovic,
Engert, Pruessner, & Pruessner, 2010). Previous studies have sug-
gested that deactivation in these areas during acute stress could
signal a blunted stress response (Carroll et al., 2017; Phillips
et al., 2013). In the current study, rather than deactivation, the
activity decline in the prefrontal cortex and hippocampus was
accompanied by the blunted endocrine stress response. This
may reflect a reduced effort and motivation in answering the
questions correctly. Taken together, we suggested that neural
habituation during acute stress could reflect a motivation disen-
gagement during repeated failures and negative feedback.

In line with our hypothesis, the results showed that mental
health (depression and chronic stress) related to blunted stress
was positively correlated with neural habituation levels. We vali-
dated these results using two paradigms, respectively. In the
ScanSTRESS study, we found greater right hippocampus and
amygdala habituation in people with a higher level of depression,
whereas in the MIST study, we found greater right insula habitu-
ation in people with a higher level of chronic stress. Depression
and chronic disorders are associated with prefrontal and limbic
system dysregulation (Dwivedi et al., 2015; Ren et al., 2022; Xu
et al., 2021; Yang et al., 2013). For example, the depression level
could alter the prefrontal cortex and limbic system function
both at rest and during a task (Mujica-Parodi, Cha, & Gao,
2017; Pannekoek et al., 2013), especially in reward-related tasks
(Gold, Morey, & McCarthy, 2015; Hu, 2018). In addition, chronic
stress can disrupt the brain functions responsible for motivation
(Evans & Stecker, 2004; Harmon, Greenwald, McFarland,
Beckwith, & Cromwell, 2009). In the current study, we infer
that neural habituation could reflect motivation dysregulation,

Figure. 3. Neural habituation between stressful conditions in the ScanSTRESS paradigm (FDR-corrected p < 0.05). (a) The interaction between block and stress. (b)
Neural habituation during four blocks in the areas investigated.
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which suggests that neural habituation might serve as a general
neural mechanism to explain the relationships between these psy-
chiatric disorders and a blunted stress response.

Interestingly, the results showed that neural habituation in
the prefrontal cortex is negatively correlated with resilience.
Resilience can help individuals regulate negative emotions and
generate adaptive coping behaviors during acute stress (Min,
Yu, Lee, & Chae, 2013; Tugade & Fredrickson, 2007). Animal
and human studies have identified that resilience can affect
reward circuits and protect motivation functions (Der-Avakian,
Mazei-Robison, Kesby, Nestler, & Markou, 2014; Vythilingam
et al., 2009). Besides, since motivation and resilience are highly
synergistic, some researchers have reported that motivation
maintenance ability could be considered a direct indicator of
resilience (Martin, 2002; Resnick, 2011). The prefrontal cortex,
especially the vmPFC, is a key component of stress resilience

(Holz et al., 2020; Sinha et al., 2016). A negative correlation
between prefrontal habituation and resilience may underlie the
protective mechanism of resilience, thus maintaining a relatively
high motivation level despite uncontrollable, unpredictable, and
threatening situations. Furthermore, the results also showed that
resilience moderated the relationship between the vmPFC (right
MFG, orb) habituation and endocrine stress response.
Specifically, vmPFC habituation and a blunted endocrine
response only existed in the low resilience group; interestingly,
the high resilience group showed increased rather than decreased
activity during acute stress. This phenomenon validates the posi-
tive correlation between an increase in vmPFC activity and
resilience in previous research (Sinha et al., 2016), which
means resilience could reduce vmPFC habituation, even regulate
vmPFC activity to increase adversity and provide a sufficient
stress response.

Figure. 4. Correlation between neural habituation (first block–last block) and stress reactivity as well as behavioral data in the ScanSTRESS paradigm. Neural
habituation on the whole-brain level as well as regions of interest located in the dorsolateral prefrontal cortex (dlPFC) [including superior frontal gyrus (SFG)
and middle frontal gyrus (MFG)], ventromedial prefrontal cortex (vmPFC) [including the inferior frontal gyrus (IFG), SFG, orbital part (orb), SFGmorb, SFG medial
part (med), IFGorb, and anterior cingulate cortex (ACC)], and limbic area (insula) are accompanied by a blunted CortiAUCg, and neural habituation in the left dlPFC
(SFG) and left vmPFC (IFGorb) are negatively correlated with CortiAUCi. Besides, neural habituation in the right amygdala and right hippocampus is positively
correlated with the level of depression level. Lastly, the neural habituation in left dlPFC (mainly the SFG) and vmPFC (including the left SFGmed, left MFGorb,
and both IFGorbs) is negatively correlated with the level of resilience. CortiAUCg and CortiAUCi indicate the areas under the curve with respect to ground and
areas under the curve with respect to increases for salivary cortisol, respectively. * indicates FDR-corrected q < 0.05.
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In general, our research used a neural habituation perspective
in consideration of the neural activity and motivation function
during stress conditions, which not only provided solid evidence
for the motivational dysregulation theory but also holds great
methodological importance. Importantly, the current study
recommended employing neural habituation rather than mean
amplitude to measure neural activity during stress due to the fol-
lowing reasons. First, since the results showed significant neural
activation differences across different sessions and blocks, using
the mean amplitude to measure the neural activity during stress
may decrease the sensitivity in detecting individual differences
(Plichta et al., 2014). Second, the difficulty of building stable con-
nections between neural systems and other systems, such as endo-
crine and psychological systems, has been reported in previous
research (Henze et al., 2020). This inconsistency hinders research-
ers from unveiling interactions between different systems. Our

results suggest that neural habituation could build stable relation-
ships with the endocrine system. They indicate that neural habitu-
ation could serve as a potential neural marker that bridges the
stress response at the neural, endocrine, physiological, and psy-
chological levels. Third, the inconsistent results between different
stress paradigms is another obstacle in the stress area (Berretz,
Packheiser, Kumsta, Wolf, & Ocklenburg, 2021; Noack et al.,
2019), and low general ability makes it impossible to compare
results between different paradigms. Our results showed consist-
ency across different paradigms, offering an indicator of horizon-
tal contrast between different paradigms. Lastly, when dividing
participants into cortisol responders and non-responders, there
is a huge difference in neural habituation between responders
and non-responders. Besides, the non-responder group contains
more males than females. Former research has reported stronger
endocrine response during stress in female participants (Van

Figure. 5. Correlation analysis between neural habituation and stress reactivity in the MIST. ROIs were selected based on the ScanSTRESS results. Neural habitu-
ation on the whole-brain level, as well as regions of interest located in the dorsolateral prefrontal cortex (dlPFC) [including superior frontal gyrus (SFG) and middle
frontal gyrus (MFG)], ventromedial prefrontal cortex (vmPFC) [including the superior frontal gyrus (SFG) medial part (med), inferior frontal gyrus (IFG) triangular
part (tri), and anterior cingulate cortex (ACC)], and limbic area (Insula), are accompanied by blunted CortiAUCi. Besides, neural habituation in the right insula is
positively correlated with the level of chronic stress ( p = 0.039, uncorrected). CortiAUCg and CortiAUCi indicate the areas under the curve with respect to ground
and areas under the curve with respect to increases for salivary cortisol, respectively. * indicates FDR-corrected q < 0.05, ** indicates FDR-corrected q < 0.01, ***
indicates FDR-corrected q < 0.001.
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Paridon, Timmis, Nevison, & Bristow, 2017; Weekes et al., 2008),
our study may underlie a neural mechanism to explain this gen-
der difference.

This study has some limitations. First, the whole-brain level sig-
nificant change between different sessions in the ScanSTRESS
paradigm was not replicated in the MIST paradigms, potentially
due to differences in task duration and difficulty. Future research
should investigate these factors’ influence on neural habituation
during stress. Second, neural activity increased during control
blocks, which may be due to participants gaining a sense of control
and coping experience from high accuracy during the control task.
Further research is needed to identify the psychological compo-
nents of control blocks. Finally, the study did not measure resili-
ence in the MIST paradigm, which may limit the generalizability
of moderate results. Additionally, measuring hair cortisol levels
could provide more insight into the relationship between neural
habituation and the endocrine stress system in chronic stress.

Conclusions

These findings offer a general neural mechanism for the blunted
endocrine stress response and the relationship between mental
disorders and the blunted stress response, as well as how protect-
ive factors such as resilience could protect against this maladap-
tive process.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0033291723001666
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