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Statistics of the zeros of zeta functions in

families of hyperelliptic curves over a finite field

Dmitry Faifman and Zeév Rudnick

Abstract

We study the fluctuations in the distribution of zeros of zeta functions of a family
of hyperelliptic curves defined over a fixed finite field, in the limit of large genus.
According to the Riemann hypothesis for curves, the zeros all lie on a circle. Their
angles are uniformly distributed, so for a curve of genus g a fixed interval I will contain
asymptotically 2g|I| angles as the genus grows. We show that for the variance of number
of angles in I is asymptotically (2/π2) log(2g|I|) and prove a central limit theorem:
the normalized fluctuations are Gaussian. These results continue to hold for shrinking
intervals as long as the expected number of angles 2g|I| tends to infinity.

1. Introduction

Let C be a smooth, projective, geometrically connected curve of genus g > 1 defined over a finite
field Fq of cardinality q. The zeta function of the curve is defined as

ZC(u) := exp
∞∑
n=1

Nn
un

n
, |u|< 1/q (1.1)

where Nn is the number of points on C with coefficients in an extension Fqn of Fq of degree n.
The zeta function is a rational function of the form

ZC(u) =
PC(u)

(1− u)(1− qu)

where PC(u) ∈ Z[u] is a polynomial of degree 2g, with P (0) = 1, satisfies the functional equation

PC(u) = (qu2)gPC

(
1
qu

)
and has all its zeros on the circle |u|= 1/

√
q (this is the Riemann hypothesis for curves [Wei48]).

Moreover, there is a unitary symplectic matrix ΘC ∈USp(2g), defined up to conjugacy, so that

PC(u) = det(I − u√qΘC).

The eigenvalues of ΘC are of the form e2πiθC,j , j = 1, . . . , 2g.
Our goal is to study the statistics of the set of angles {θj,C} as we draw C at random from

a family of hyperelliptic curves of genus g defined over Fq where q is assumed to be odd. The
family, denoted by H2g+2,q, is that of curves having an affine equation of the form y2 =Q(x),
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with Q ∈ Fq[x] a monic, square-free polynomial of degree 2g + 2. The corresponding function
field is called a real quadratic function field. The measure on H2g+2,q is simply the uniform
probability measure on the set of such polynomials Q.

A fundamental statistic is the counting function of the angles. Thus for an interval1

I = [−β/2, β/2] (which may vary with the genus g or with q), let

NI(C) = #{j : θj,C ∈ I}.

The angles are uniformly distributed as g→∞ (see Proposition 5.1): for fixed I,

NI(C)∼ 2g|I| .

We wish to study the fluctuations of NI as we vary C in H2g+2,q. This is in analogy to the work
of Selberg [Sel44, Sel46a, Sel46b], who studied the fluctuations in the number N(t) of zeros of
the Riemann zeta function ζ(s) up to height t. By the Riemann–von Mangoldt formula,

N(t) =
t

2π
log

t

2πe
+

7
8

+ S(t) +O

(
1
t

)
with S(t) = (1/π) arg ζ(1/2 + it). Selberg showed that the variance of S(t), for t picked uniformly
in [0, T ], is (1/2π2) log log T , and that the moments of S(t)/

√
(1/2π2) log log t are those of a

standard Gaussian.
Katz and Sarnak [KS99a] showed that for fixed genus, the conjugacy classes {ΘC : C ∈

H2g+2,q} become uniformly distributed in USp(2g) in the limit q→∞ of large constant field
size. In particular the statistics of NI are the same as those of the corresponding quantity
for a random matrix in USp(2g). That is, if U ∈USp(2g) is a unitary symplectic matrix, with
eigenvalues e2πiθj(U), j = 1, . . . , 2g, set

N̂I(U) = #{j : θj(U) ∈ I}.

Then the work of Katz and Sarnak [KS99a] gives

lim
q→∞

ProbH2g+2,q(NI(C) = k) = ProbUSp(2g)(N̂I(U) = k). (1.2)

In the limit of large matrix size, the statistics of N̂I(U) and related quantities, such as the
logarithm of the characteristic polynomial of U , have been found to have Gaussian fluctuations in
various ensembles of random matrices [BF97, CL95, DE01, HKO01, Joh97, KS00, Pol89, Sos00,
Wie02]. In particular, when averaged over USp(2g), the expected value of N̂I is 2g|I|, the variance
is (2/π2) log(2g|I|) and the normalized random variable (N̂I − 2g|I|)/

√
(2/π2) log(2g|I|) has a

normal distribution as g→∞. Moreover this holds for shrinking intervals, that is if we take the
length of the interval |I| → 0 as g→∞ as long as the expected number of angles tends to infinity,2

that is as long as 2g|I| →∞. Thus (1.2) implies that for the iterated limit limg→∞(limq→∞) we
get a Gaussian distribution:

lim
g→∞

(
lim
q→∞

ProbH2g+2,q

(
a <

NI(C)− 2g|I|√
(2/π2) log(2g|I|)

< b

))
=

1√
2π

∫ b

a
e−x

2/2 dx.

In this paper we will study these problems for a fixed constant field Fq in the limit of large
genus g→∞, that is without first taking q→∞, which was crucial to the approach of Katz
and Sarnak. We will show that as g→∞, for both the global regime (|I| fixed) and the

1 Due to the functional equation, it suffices to restrict the discussion to symmetric intervals.
2 This is sometime called the ‘mesoscopic’ regime.

82

https://doi.org/10.1112/S0010437X09004308 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X09004308


Statistics for zeros of hyperelliptic zeta functions

mesoscopic regime (|I| → 0 while 2g|I| →∞), the expected value of NI is 2g|I|, the variance is
asymptotically (2/π2) log(2g|I|) and that the fluctuations are Gaussian, that is, for fixed a < b,

lim
g→∞

ProbH2g+2,q

(
a <

NI − 2g|I|√
(2/π2) log(2g|I|)

< b

)
=

1√
2π

∫ b

a
e−x

2/2 dx. (1.3)

Our argument hinges upon the fact that PC(u) is the L-function attached to a quadratic
character of Fq[x]. Thus for Q monic, square free, of degree 2g + 2 the quadratic character χQ
is defined in terms of the quadratic residue symbol as χQ(f) =Q/f (see § 2.2). The associated
L-function is

L(u, χQ) =
∏
P

(1− χQ(u)udeg P )−1

the product taken over all monic irreducible polynomials P ∈ Fq[x]. Then

PC(u) = (1− u)−1L(u, χQ)

as was found in Artin’s thesis [Art24]. Thus one may tackle the problem using Selberg’s original
arguments [Sel44] adapted to the function field setting;3 this was carried out in the M.Sc. thesis
of the first-named author [Fai08]. Instead we follow a quicker route, via the explicit formula,
used in forthcoming work by Hughes, Ng and Soundararajan.

An important challenge is to investigate the local regime, when the length of the interval
is of order 1/2g as g→∞. Due to the central limit theorem for random matrices, we may
rewrite (1.3) as

lim
g→∞

ProbH2g+2,q

(
a <

NI − 2g|I|√
(2/π2) log(2g|I|)

< b

)
= lim
g→∞

ProbUSp(2g)

(
a <

N̂I − 2g|I|√
(2/π2) log(2g|I|)

< b

)
(1.4)

and ask if (1.4) remains valid also for shrinking intervals of the form I = (1/2g)J where J
is fixed, when the result is no longer a Gaussian. An equivalent form of (1.4) was conjectured
in [KS99b].

2. Background on Dirichlet characters and L-functions

2.1 L-functions over the rational function field
We review some generalities about Dirichlet L-functions for the rational function field; see [Ros02]
for details.

The norm of a nonzero polynomial f ∈ Fq[x] is defined as ‖f‖= qdeg f . The zeta function of
the rational function field is

ζq(s) :=
∏
P

(1− ‖P‖−s)−1, <(s)> 1

the product over all irreducible monic polynomials (‘primes’) in Fq[x]. In terms of the more
convenient variable

u= q−s

3 The paper [Sel44] is under the Riemann hypothesis; [Sel46a, Sel46b] are unconditional.
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the zeta function becomes

Z(u) =
∏
P

(1− udeg P )−1, |u|< 1/q.

By the fundamental theorem of arithmetic in Fq[x], Z(u) can be expressed as a sum over all
monic polynomials,

Z(u) =
∑

f monic

udeg f ,

and hence

Z(u) =
1

1− qu
.

Given a monic polynomial Q ∈ Fq[x], a Dirichlet character modulo Q is a homomorphism

χ : (Fq[x]/QFq[x])×→ C×.

A character modulo Q is primitive if there is no proper divisor Q̃ of Q and some character χ̃
mod Q̃ so that χ(n) = χ̃(n) whenever gcd(n, Q) = 1.

For a Dirichlet character χ modulo Q of Fq[x], we form the L-function

L(u, χ) =
∏
P

(1− χ(P )udeg P )−1 (2.1)

(convergent for |u|< 1/q), where P runs over all monic irreducible polynomials. It can be
expressed as a series

L(u, χ) =
∑
f

χ(f)udeg f (2.2)

where the sum is over all monic polynomials. If χ is nontrivial, then it is easy to show that∑
deg f=n

χ(f) = 0, n > deg Q

and hence the L-function is in fact a polynomial of degree at most deg Q− 1.
One needs to distinguish ‘even’ characters from the rest, where ‘even’ means χ(cH) = χ(H),

for all c ∈ F×q . The analogue for ordinary Dirichlet characters is χ(−1) = 1. For even characters,
the L-function has a trivial zero at u= 1.

We assume from now on that deg Q> 0 and that χ is primitive. One then defines a ‘completed’
L-function

L∗(u, χ) = (1− λ∞(χ)u)−1L(u, χ)
where λ∞(χ) = 1 if χ is ‘even’, and is zero otherwise. The completed L-function L∗(u, χ) is then
a polynomial of degree

D = deg Q− 1− λ∞(χ)
and satisfies the functional equation

L∗(u, χ) = ε(χ)(q1/2u)DL∗
(

1
qu
, χ−1

)
with |ε(χ)|= 1. We express L∗(u, χ) in term of its inverse zeros as

L∗(u, χ) =
D∏
j=1

(1− αj,χu). (2.3)
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The Riemann hypothesis in this setting, proved by Weil [Wei48], is that all |αj,χ|=
√
q. We may

thus write
αj,χ =

√
qe2πiθj,χ (2.4)

for suitable phases θj,χ ∈ R/Z. As a consequence, for any nontrivial character, not necessarily
primitive, the inverse zeros of the L-function all have absolute value

√
q or 1.

Lemma 2.1. Let χ be a nontrivial Dirichlet character modulo f . Then for n < deg f ,∣∣∣∣ ∑
deg B=n

χ(B)
∣∣∣∣ 6 (deg f − 1

n

)
qn/2

(the sum over all monic polynomials of degree n).

Proof. Indeed, all we need to do is compare the series expansion (2.2) of L(u, χ), which is a
polynomial of degree at most deg f − 1, with the expression in terms of the inverse zeros:∑

06n<deg f

( ∑
deg B=n

χ(B)
)
un =

deg f−1∏
j=1

(1− αju)

to get ∑
deg B=n

χ(B) = (−1)n
∑

S⊂{1,...,deg f−1}
#S=n

∏
j∈S

αj

and then use |αj | 6
√
q. 2

Note that for n > deg f the character sum vanishes.

2.2 Quadratic characters
We assume from now on that q is odd. Let P (x) ∈ Fq[x] be monic and irreducible. The quadratic
residue symbol (f/P ) ∈ {±1} is defined for f coprime to P by(

f

P

)
≡ f (‖P‖−1)/2 mod P.

For arbitrary monic Q, the Jacobi symbol f/Q is defined for f coprime to Q by writing Q=
∏
Pj

as a product of monic irreducibles and setting(
f

Q

)
=
∏(

f

Pj

)
.

If f, Q are not coprime we set (f/Q) = 0. If c ∈ F∗q is a scalar then(
c

Q

)
= c((q−1)/2) deg Q. (2.5)

The law of quadratic reciprocity asserts that if A, B ∈ Fq[x] are monic and coprime then(
A

B

)
=
(
B

A

)
(−1)((q−1)/2) deg A deg B =

(
B

A

)
(−1)((‖A‖−1)/2)·((‖B‖−1)/2). (2.6)

This relation continues to hold if A and B are not coprime as both sides vanish.
Given a square-free Q ∈ Fq[x], we define the quadratic character χQ by

χQ(f) =
(
Q

f

)
.

85

https://doi.org/10.1112/S0010437X09004308 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X09004308


D. Faifman and Z. Rudnick

If deg Q is even, this is a primitive Dirichlet character modulo Q. Note that by virtue of (2.5), χQ
is an even character (that is trivial on scalars) if and only if deg Q is even.

It is important for us that the numerator PC(u) of the zeta function (1.1) of the hyperelliptic
curve y2 =Q(x) coincides with the completed Dirichlet L-function L∗(u, χQ) associated with the
quadratic character χQ.

2.3 The explicit formula
Lemma 2.2. Let h(θ) =

∑
|k|6K ĥ(k)e(kθ) be a trigonometric polynomial, which we assume is

real valued and even: h(−θ) = h(θ) = h(θ). Then for a primitive character χ we have

D∑
j=1

h(θj,χ) = D

∫ 1

0
h(θ) dθ + λ∞(χ)

1
πi

∫ 1

0
h(θ)

d

dθ
log
(

1− e2πiθ
√
q

)
dθ

−
∑
f

ĥ(deg f)
Λ(f)
‖f‖1/2

(χ(f) + χ(f)). (2.7)

Proof. By computing the logarithmic derivative u(L′/L) in two different ways, either using the
Euler product (2.1) or the zeros (2.3) we get an identity, for n > 0,

−
D∑
j=1

αnj,χ =
∑

deg f=n

Λ(f)χ(f) + λ∞(χ)

where Λ(f) = deg P if f = P k is a prime power, and Λ(f) = 0 otherwise. Therefore we get an
explicit formula in terms of the phases θj,χ,

−
D∑
j=1

e2πinθj,χ =
λ∞(χ)
q|n|/2

+
∑

deg f=|n|

Λ(f)
‖f‖1/2

{
χ(f) n < 0,
χ(f) n > 0,

which is valid for n both positive and negative.
Now let h(θ) =

∑
|k|6K ĥ(k)e(kθ) be a trigonometric polynomial, which we assume is real

valued and even: h(−θ) = h(θ) = h(θ). Then the Fourier coefficients are also real and even:

ĥ(−k) = ĥ(k) = ĥ(k). Using the Fourier expansion of h we get

D∑
j=1

h(θj) = Dĥ(0) +
∑
j

K∑
k=1

ĥ(k)(e(kθj) + e(−kθj))

= D

∫ 1

0
h(θ) dθ −

K∑
k=1

ĥ(k)
(

2
λ∞(χ)
qk/2

+
∑

deg f=k

Λ(f)
‖f‖1/2

(χ(f) + χ(f))
)

= D

∫ 1

0
h(θ) dθ − 2λ∞(χ)

K∑
k=1

ĥ(k)
qk/2

−
∑
f

ĥ(deg f)
Λ(f)
‖f‖1/2

(χ(f) + χ(f)).

Note that since h is real valued,
K∑
k=1

ĥ(k)
qk/2

=
∫ 1

0
h(θ)

q−1/2e2πiθ

1− q−1/2e2πiθ
=

1
2πi

∫ 1

0
h(θ)

d

dθ
log

1
1− (e2πiθ/

√
q)
dθ

which gives the claim. 2
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For the quadratic character χQ, with Q square-free of degree 2g + 2, we get λ∞ = 1, D = 2g,
and the explicit formula reads

2g∑
j=1

h(θj,Q) = 2g
∫ 1

0
h(θ) dθ +

1
πi

∫ 1

0
h(θ)

d

dθ
log
(

1− e2πiθ
√
q

)
dθ

− 2
∑
f

ĥ(deg f)
Λ(f)
‖f‖1/2

χQ(f). (2.8)

3. Averaging over H2g+2,q

Let Hd,q ⊂ Fq[x] be the set of all square-free monic polynomials of degree d. The cardinality
of Hd,q is

#Hd,q =


(

1− 1
q

)
qd d > 2,

q d= 1,

as may be seen by expressing the generating function
∑∞

d=0 Hd,qud in terms of the zeta
function Z(u) of the rational function field:

Z(u) = Z(u2)
∞∑
d=0

Hd,qud.

In particular we have

#H2g+2,q =
(

1− 1
q

)
q2g+2. (3.1)

We denote by 〈•〉 the mean value of any quantity defined on H2g+2,q, that is

〈F 〉 :=
1

#H2g+2,q

∑
Q∈H2g+2,q

F (Q).

Lemma 3.1. If f ∈ Fq[x] is not a square then

〈χQ(f)〉 6 2deg f−1

(1− 1/q)qg+1
.

Proof. We use the Mobius function to pick out the square free monic polynomials via the formula∑
A2|Q

µ(A) =

{
1 Q square-free,
0 otherwise,

where we sum over all monic polynomials whose square divides Q. Thus the sum over all square-
free polynomials is given by∑

Q∈H2g+2,q

χQ(f) =
∑

deg Q=2g+2

∑
A2|Q

µ(A)
(
Q

f

)

=
∑

deg A6g+1

µ(A)
(
A

f

)2 ∑
deg B=2g+2−2 deg A

(
B

f

)
.
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To deal with the inner sum, note that (•/f) is a nontrivial character since f is not a square, so
we can use Lemma 2.1 to get∣∣∣∣ ∑

deg B=2g+2−2 deg A

(
B

f

)∣∣∣∣ 6 ( deg f − 1
2g + 2− 2 deg A

)
qg+1−deg A (3.2)

if 2g + 2− 2 deg A< deg f , and the sum is zero otherwise. Hence we have∣∣∣∣ ∑
Q∈H2g+2,q

χQ(f)
∣∣∣∣ 6

∑
deg A6g+1

∣∣∣∣ ∑
deg B=2g+2−2 deg A

(
B

f

)∣∣∣∣
6

∑
g+1−(deg f/2)<deg A6g+1

(
deg f − 1

2g + 2− 2 deg A

)
qg+1−deg A

= qg+1
∑

g+1−(deg f/2)<j6g+1

(
deg f − 1

2g + 2− 2j

)
6 2deg f−1qg+1.

Dividing by #H2g+2,q = q2g+2(1− (1/q)) proves the lemma. 2

Lemma 3.2. Let P1, . . . , Pk be prime polynomials. Then〈
χQ

( k∏
j=1

P 2
j

)〉
= 1 +O

( k∑
j=1

1
‖Pj‖

)
.

Proof. We have χQ(
∏k
j=1 P

2
j ) = 1 if gcd(

∏k
j=1 Pj , Q) = 1, and χQ(

∏k
j=1 P

2
j ) = 0 otherwise. Since

for primes P1, . . . , Pk the condition gcd(
∏k
j=1 Pj , Q) 6= 1 is equivalent to Pj dividingQ for some j,

we may write

χQ

( k∏
j=1

P 2
j

)
= 1−

{
1 there exists Pj |Q,
0 otherwise,

and hence 〈
χQ

( k∏
j=1

P 2
j

)〉
= 1− 1

#H2g+2,q
#{Q ∈H2g+2,q : ∃Pj |Q}.

Replacing the set of square-free Q by arbitrary monic Q of degree 2g + 2 gives

#{Q ∈H2g+2,q : ∃Pj |Q} 6 #{deg Q= 2g + 2 : ∃Pj |Q} 6
k∑
j=1

q2g+2

‖Pj‖

so that recalling H2g+2,q = (1− (1/q))q2g+2, we have

1− 1
(1− (1/q))

k∑
j=1

1
‖Pj‖

6

〈
χQ

( k∏
j=1

P 2
j

)〉
6 1.

Thus 〈
χQ

( k∏
j=1

P 2
j

)〉
= 1 +O

( k∑
j=1

1
‖Pj‖

)
as claimed. 2
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For a polynomial Q ∈ Fq[x] of positive degree, set

η(Q) =
∑
P |Q

1
‖P‖

the sum being over all monic irreducible (prime) polynomials dividing Q.

Lemma 3.3. The mean values of η and η2 are uniformly bounded as g→∞:

〈η〉 6 1, 〈η2〉 6 1
(1− (1/q))3

.

Proof. We consider the first moment: we have

〈η(Q)〉 =
1

#H2g+2,q

∑
Q∈H2g+2,q

∑
P |Q

1
‖P‖

=
1

#H2g+2,q

∑
deg P62g+2

1
‖P‖

#{Q ∈H2g+2,q : P |Q}.

We bound the number of square-free Q divisible by P by the number of all Q of degree 2g + 2
divisible by P , which is q2g+2/‖P‖, to find

〈η(Q)〉 6
1

(1− (1/q))q2g+2

∑
deg P62g+2

1
‖P‖

#{deg Q= 2g + 2 : P |Q}

6
1

(1− (1/q))q2g+2

∑
deg P62g+2

q2g+2

‖P‖2
6

1
1− q−1

∑
f

1
‖f‖2

= 1

(the last sum is over all monic polynomials) proving that 〈η(Q)〉 is uniformly bounded.
For the second moment of η, we have

〈η2〉 =
1

#H2g+2,q

∑
Q∈H2g+2,q

(∑
P |Q

1
‖P‖

)2

=
1

#H2g+2,q

∑
deg P1,deg P262g+2

1
‖P1‖ · ‖P2‖

#{Q ∈H2g+2,q : P1|Q, P2|Q}.

For square-free Q, if two primes P1|Q and P2|Q then necessarily P1 6= P2 and then Q is divisible
by both if and only it is divisible by their product, hence

#{Q ∈H2g+2,q : P1|Q, P2|Q} = #{Q ∈H2g+2,q : P1P2|Q}
6 #{Q : deg Q= 2g + 2, P1P2 |Q}

=


q2g+2

‖P1P2‖
deg(P1P2) 6 2g + 2,

0 otherwise,

and hence the contribution of such pairs is bounded by

1
(1− (1/q))q2g+2

∑
P1

∑
P2

q2g+2

‖P1‖2‖P2‖2
6

1
(1− (1/q))

(∑
f

1
‖f‖2

)2

=
1

(1− (1/q))3
.

Thus we see 〈η2〉 6 (1− (1/q))−3 which is again uniformly bounded. 2
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4. Beurling–Selberg functions

Let I = [−β/2, β/2] be an interval, symmetric about the origin, of length 0< β < 1, and K > 1
an integer. Beurling–Selberg polynomials I±K are trigonometric polynomials approximating the
indicator function 1I satisfying (see the beautiful exposition in [Mon94, ch. 1.2]):

• I±K are trigonometric polynomials of degree 6K;

• monotonicity,

I−K 6 1I 6 I+
K ; (4.1)

• the integral of I±K is close to the length of the interval,∫ 1

0
I±K(x) dx=

∫ 1

0
1I(x) dx± 1

K + 1
; (4.2)

• I±K(x) are even.4

As a consequence of (4.2), the non-zero Fourier coefficients of I±K satisfy

|Î±K(k)− 1̂I(k)| 6 1
K + 1

(4.3)

and in particular

|Î±K(k)| 6 1
K + 1

+ min
(
β,

π

|k|

)
, 0< |k| 6K. (4.4)

Proposition 4.1. Let I = [−β/2, β/2] be an interval and K > 1 an integer so that Kβ > 1.
Then ∑

n>1

Î±K(2n) =O(1) (4.5)

∑
n>1

nÎ±K(n)2 =
1

2π2
log Kβ +O(1) (4.6)

where the implied constants are independent of K and β.

Proof. To bound the sum (4.5), we may use (4.3) to write

Î±K(2n) =
sin 2πnβ

2πn
+O

(
1
K

)
and hence ∑

n>1

Î±K(2n) =
∑

16n6K/2

sin 2πnβ
2πn

+O(1).

We treat separately the range n < 1/β and 1/β < n <K. To bound the sum over n < 1/β,
use sin 2πnβ� nβ and hence∑

16n<1/β

sin 2πnβ
2πn

�
∑

16n<1/β

nβ

n
=O(1).

4 This is because we take the interval I = [−β/2, β/2] which is symmetric about the origin.
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For the sum on n > 1/β, we apply summation by parts. The partial sums of sin 2πnβ are
N∑
n=1

sin 2πnβ =
cos πβ − cos(2N + 1)πβ

2 sin πβ
=O

(
1
β

)
. (4.7)

Therefore ∑
1/β<n<K/2

sin 2πnβ
2πn

� 1
βK

+ 1 +
1
β

∫ K

1/β

1
t2
dt=O(1)

and hence
∑

n>1 Î
±
K(2n) =O(1).

To prove (4.6), we use (4.3) to write∑
n>0

nÎ±K(n)2 =
1
π2

∑
n6K

(sin πnβ)2

n
+O(1).

We split the sum into two parts: the sum over 1 6 n 6 1/β, where we use |sin πnβ| � nβ
to see that it gives a bounded contribution, and the sum over 1/β < n 6K, where we use
sin(y)2 = (1/2)(1− cos(2y)) to get∑

n>0

nÎ±K(n)2 =
1

2π2

∑
1/β<n6K

1
n
− 1

2π2

∑
1/β<n6K

cos 2πnβ
n

+O(1)

=
1

2π2
log Kβ − 1

2π2

∑
1/β<n6K

cos 2πnβ
n

+O(1).

To bound
∑

1/β<n6K(cos 2πnβ/n), apply summation by parts using∑
16n6N

cos 2πnβ =
sin(2N + 1)πβ − sin πβ

2 sin πβ
� 1

β
, 0< β < 1

to find that it gives a bounded contribution. Hence∑
n>0

nÎ±K(n)2 =
1

2π2
log Kβ +O(1)

as claimed. 2

5. Counting functions

Let χ be a primitive Dirichlet character. We denote by NI(χ) the number of angles θj,χ of the
L-function L∗(u, χ) (see (2.4)) in the interval I = [−β/2, β/2]. Define SI(χ) by

NI(χ) = 2g|I|+ 2
π

arg
(

1− eiπ|I|
√
q

)
+ SI(χ).

Set

N±K(χ) =
D∑
j=1

I±K(θj,χ).

Here K will depend on deg Q. This will be our approximation to the counting function NI(χ).
Then by virtue of (4.1),

N−K(χ) 6NI(χ) 6N+
K(χ). (5.1)
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Using the explicit formula (2.7), we find

N±K(χ) =:D
(
β ± 1

K + 1

)
+ λ∞(χ)

1
πi

∫ 1

0
I±K(θ)

d

dθ
log
(

1− e2πiθ
√
q

)
dθ + S±K(χ) (5.2)

where S±K(χ) is

S±K(χ) :=−
∑

deg f6K

Î±K(deg f)
Λ(f)
‖f‖1/2

{χ(f) + χ(f)} (5.3)

the sum taken over all prime powers f ∈ Fq[x] (of degree 6K).

Note that since ‖1I − I±K‖L1 = 1/(K + 1), we have

1
πi

∫ 1

0
I±K(θ)

d

dθ
log
(

1− e2πiθ
√
q

)
dθ =

1
πi

∫ β/2

−β/2

d

dθ
log
(

1− e2πiθ
√
q

)
dθ +O

(
1
K

)
=

2
π

arg
(

1− eiπβ
√
q

)
+O

(
1
K

)
. (5.4)

5.1 Quadratic characters

For the case at hand, of quadratic characters, we write NI(Q) for NI(χQ), with similar meaning
for SI(Q), N±K(Q) and S±K(Q). We have

S±K(Q) := S±K(χQ) =−2
∑

deg f6K

Î±K(deg f)
Λ(f)
‖f‖1/2

χQ(f). (5.5)

We may now deduce that the zeros are uniformly distributed.

Proposition 5.1. Every fixed (symmetric) interval I = [−β/2, β/2] contains asymptotically
2g|I| angles θj,Q, in fact

NI(Q) = 2g|I|+O

(
g

log g

)
.

Proof. Indeed from (5.1) it suffices to show that for the smooth counting functions N±K(χQ) we
have

N±K(χQ) = 2g|I|+O

(
g

log g

)
.

Now from (5.2), (5.4) it follows that

N±K(χQ) = 2g|I|+O

(
g

K

)
+O(1) + |S±K(Q)|.

To bound S±K(Q), use (5.5) and (4.4) in the form Î±K(deg f)Λ(f) =O(1) to deduce that

S±K(Q)�
∑

deg f6K

1√
‖f‖
� qK/2

and hence

|N±K(χQ)− 2g|I|| � g

K
+ qK/2.

Taking K ≈ logq g − logq log g gives the result. 2
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6. Expected value

We first bound the expected value of SI .

Proposition 6.1. Assume that either the interval I = [−β/2, β/2] is fixed or that it shrinks to
zero with g→∞ in such a way that gβ→∞. Then

〈SI〉=O(1).

Proof. Using (5.1), (5.2) and (5.4), we find that for any K,

〈S−K〉 6 〈S〉+O

(
g

K

)
6 〈S+

K〉.

Taking K ≈ g/100 gives the remainder term above is bounded. So it remains to bound the
expected value of S±K for such K.

Recall that S±K is a sum over prime powers. We separate out the contribution of even powers,
which is not oscillatory, from that of the odd powers:

S±K = even + odd.

We claim that the even powers give

even =−2
∑
n>1

Î±K(2n) +O(η(Q)) (6.1)

where

η(Q) =
∑
P |Q

1
‖P‖

,

the sum over prime divisors of Q.
To see (6.1), note that for an even power of a prime, say f = g2, we have χQ(f) = 1 if

gcd(g, Q) = 1 and 0 otherwise. Writing the even powers of a prime as f = g2, and noting that
Λ(f) = Λ(g), we have

even = −2
∑

gcd(g,Q)=1

Î±K(2 deg g)Λ(g)
‖g‖

= −2
∑
n>1

Î±K(2n)
qn

∑
deg g=n

Λ(g) +O

(∑
P |Q

1
‖P‖

)
where the remainder term is a sum over all prime divisors of Q. By the prime number theorem,∑

deg g=n Λ(g) = qn and hence

−2
∑

gcd(g,Q)=1

Î±K(2 deg g)Λ(g)
‖g‖

=−2
∑
n>1

Î±K(2n), (6.2)

proving (6.1).
It now follows that expected value of the even powers is bounded: indeed, the sum∑
n>1 Î

±
K(2n) is bounded by Proposition 4.1 (note that our choice K ≈ g/100 and the condition

gβ→∞ guarantees Kβ→∞, hence Proposition 4.1 is applicable). As for the term η(Q) =∑
P |Q 1/‖P‖, it is not bounded individually, but its mean is bounded by Lemma 3.3.
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The expected value of the odd powers is

〈odd〉=−2
∑

deg f odd

Î±K(deg f)Λ(f)√
‖f‖

〈χQ(f)〉.

To estimate the expected value of the odd powers, we use Lemma 3.1 and (4.4) in the form
Î±K(deg f)Λ(f) =O(1) to find

〈odd〉 �
∑

deg f6K

1√
‖f‖

2deg f

qg+1
�

(2
√
q)K

qg+1
,

which for K ≈ g/100 is bounded. 2

Hence we see that 〈
SI√

(2/π2) log(gβ)

〉
→ 0, g→∞. (6.3)

7. A sum over primes

Consider the sum over primes

T±K (Q) :=−2
∑
P

Î±K(deg P ) deg P√
‖P‖

χQ(P ).

This will be our approximation to SI . From now on assume that

K ≈ g

log log(gβ)

which will guarantee log Kβ ∼ log gβ and K = o(g).

Theorem 7.1. Assume that g→∞ and either 0< β < 1 is fixed or β→ 0 while βg→∞. Take
K ≈ g/log log(gβ). Then:

(i) 〈|T±K |
2〉 ∼ 2

π2
log βg;

(ii) 〈|T+
K − T

−
K |

2〉=O(1); (7.1)

(iii) 〈|S±K − T
±
K |

2〉=O(1). (7.2)

The rest of this section is devoted to the proof of Theorem 7.1.

7.1 Computing 〈(T±K )2〉
We have

〈(T±K )2〉= 4
∑
P1,P2

Î±K(deg P1)Î±K(deg P2)
deg P1 deg P2√
‖P1‖‖P2‖

〈χQ(P1P2)〉.

The sum is over deg P1, deg P2 6K < g. Consider the contribution of pairs such that P1P2 is not
a perfect square (the ‘off-diagonal pairs’). We may use Lemma 3.1 to bound their contribution by

� 1
qg+1

( ∑
deg P6K

|Î±K(deg P )| deg P 2deg P√
|P |

)2

.
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Using (4.4) in the form |Î±K(k)| � 1/|k| gives that the inner sum is bounded by

�
∑

deg P6K

2deg P√
|P |

deg P
deg P

� (2
√
q)K .

Hence the off-diagonal contribution is bounded by

� (4q)K

qg+1
,

which is negligible since we take K = o(g).
Consider the contribution of pairs such that P1 · P2 is a square. Since P1 and P2 are primes,

this forces P1 = P2. These contribute

4
∑
P

(deg P )2

‖P‖
Î±K(deg P )2〈χQ(P )2〉

= 4
∑
P

(deg P )2

‖P‖
Î±K(deg P )2 +O

(∑
P

(deg P )2

‖P‖2
Î±K(deg P )2

)
(7.3)

by Lemma 3.2.
Using the prime number theorem #{P : deg P = n}= qn/n+O(qn/2) gives

4
∑
P

(deg P )2

‖P‖
Î±K(deg P )2 = 4

∑
16n6K

(
n+O

(
n2

qn/2

))
Î±K(n)2 +O(1)

= 4
∑

16n6K

nÎ±K(n)2 +O(1).

By Proposition 4.1 we find

4
∑
P

(deg P )2

‖P‖
Î±K(deg P )2 =

2
π2

log Kβ +O(1) (7.4)

(note that if gβ→∞ then Kβ ≈ gβ/log log(gβ)→∞). To bound the remainder term in (7.3)
use (4.4) in the form Î±K(deg P ) deg P =O(1) to find that the sum is at most

∑
P 1/‖P‖2 =O(1).

Therefore we find

〈(T±K )2〉=
2
π2

log(Kβ) +O(1).

7.2 Bounding 〈|T +
K − T−K |2〉

Next we compute the variance of the difference 〈|T+
K − T

−
K |2〉. Arguing as above, one sees that

the only terms which may significantly contribute to the average are again the diagonal terms

〈|T+
K − T

−
K |

2〉= 4
∑

deg P6K

(deg P )2

‖P‖
(Î+
K(deg P )− Î−K(deg P ))2〈χQ(P )2〉+ o(1).

Since by (4.3)

|Î+
K(n)− Î−K(n)| 6 2

K + 1
we get

〈|T+
K − T

−
K |

2〉 � 1
K2

∑
deg P6K

(deg P )2

‖P‖
.
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Using the prime number theorem, this is easily seen to be O(1). Hence we find

〈|T+
K − T

−
K |

2〉=O(1).

7.3 Bounding 〈|S±K − T±K |2〉
Next we show that 〈|S±K − T

±
K |2〉=O(1). We have

S±K − T
±
K = −2

∑
f=P j,j>2

Î±K(deg f)
Λ(f)
‖f‖1/2

χQ(f)

= even + odd (7.5)

where the term ‘even’ is a sum over the even powers of primes, and ‘odd’ is the sum over odd
powers of primes where the exponent is at least 3. We will show that the second moments of
both the odd and even terms are bounded.

We first argue that the second moment of the even powers contribute a bounded amount. As
we saw in the proof of Proposition 6.1, see (6.1), we have

even� 1 +
∑
P |Q

1
‖P‖

the sum being over all prime divisors of Q. This is not bounded individually, but its second
moment is bounded by Lemma 3.3.

It remains to bound the contribution of the odd powers. We have

〈|odd|2〉= 4
∑
f1,f2

Î±K(deg f1)Î±K(deg f2)
Λ(f1)Λ(f2)
‖f1f2‖1/2

〈χQ(f1f2)〉

where the sum is over odd higher prime powers, that is over f = P j with j > 3 and odd.
The pairs where f1 · f2 is not a square contribute o(1) by the same argument as above.

Consider the contribution of pairs such that f1 · f2 is a square. If f1 and f2 are odd higher
prime powers but f1 · f2 is a square, then necessarily f1 = P r, f2 = P s with P prime, r, s > 2,
(and r = s mod 2). Necessarily then r + s > 4. The contribution of such pairs can be bounded,
using (4.4) in the form Î±K(deg f)Λ(f) =O(1), by∑

P

∑
r+s>4

1
‖P‖(r+s)/2

�
∑
P

∑
j>4

j

‖P‖j/2
�
∑
P

1
‖P‖2

=O(1).

Hence 〈|odd|2〉=O(1) and therefore

〈|S±K − T
±
K |

2〉=O(1).

8. Higher moments of T±K

In this section we show that all moments of T±K are Gaussian.

Theorem 8.1. Assume the setting of Theorem 7.1 and let r > 2. Then

|〈(T±K )2r−1〉|= o(1)

and

〈(T±K )2r〉=
(2r)!
r!π2r

logr(βK) +O(logr−1(βK)).
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Proof. For the odd moments, we have

〈(T±K )2r−1〉=−22r−1
∑

P1,...,P2r−1

∏
Î±K(deg Pj) deg Pj√

‖
∏
Pj‖

〈
χQ

(∏
Pj

)〉
.

Since
∏
j Pj cannot be a perfect square, we may apply Lemma 3.1 and obtain the bound

|〈(T±K )2r−1〉| � 1
qg+1

( ∑
deg P6K

|Î±K(deg P )| deg P 2deg P√
|P |

)2r−1

.

As was already calculated in § 7.1, the inner sum is bounded by

�
∑

deg P6K

2deg P√
|P |

deg P
deg P

� (2
√
q)K .

Hence

|〈(T±K )2r−1〉| �
(2
√
q)(2r−1)K

qg+1

which vanishes assuming K ≈ g/log log(gβ).
To compute the even moments, write

〈(T±K )2r〉= 22r(T 2r
sq + T 2r

nsq)

where both T 2r
sq and T 2r

nsq have the form∑
P1,...,P2r

∏
Î±K(deg Pj) deg Pj√

‖
∏
Pj‖

〈∏
χQ(Pj)

〉
where T 2r

sq is the sum over prime 2r-tuples {Pj} for which
∏2r
j=1 Pj is a perfect square, and T 2r

nsq

contains the remaining (off-diagonal) terms.
The term T 2r

nsq can be bounded as was done for the odd moments:

T 2r
nsq�

1
qg+1

( ∑
deg P6K

|Î±K(deg P )| deg P 2deg P√
|P |

)2r

�
(2
√
q)2rK

qg+1
.

Now

T 2r
sq =

∑
P1·····P2r=2

∏
Î±K(deg Pj) deg Pj√

‖
∏
Pj‖

〈∏
χQ(Pj)

〉
,

the sum taken over only those primes for which
∏
Pj is a square, which implies all Pj appear in

equal pairs in each summand. Note that in particular all summands are positive. By Lemma 3.2
we may replace 〈

∏
χQ(Pj)〉 with 1 by introducing an error of O(

∑
j 1/‖Pj‖).

The total error produced by this substitution is, keeping in mind that the primes P1, . . . , P2r

must come in identical pairs, bounded by
r∑
j=1

∑
P1,...,Pr

∏r
k=1 Î

±
K(deg Pk)2(deg Pk)2

‖Pj‖2
∏
k 6=j ‖Pk‖

�
∑

P2,...,Pr

∏r
k=2 Î

±
K(deg Pk)2(deg Pk)2∏r

k=2 ‖Pk‖
∑
P1

Î±K(deg P1)2(deg P1)2

‖P1‖2
.
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The inner sum is bounded, and hence the total error introduced is

�
∑

P2,...,Pr

∏r
k=2 Î

±
K(deg Pk)2(deg Pk)2∏r

k=2 ‖Pk‖
� (log(βK))r−1

by (7.4).
So far we showed that

T 2r
sq =

∑
P1·····P2r=2

∏
Î±K(deg Pj) deg Pj√

‖
∏
Pj‖

+O(logr−1(βK)).

Now we show that pairs of equal Pj in∑
P1·····P2r=2

∏
Î±K(deg Pj) deg Pj√

‖
∏
Pj‖

can be taken all distinct, for the remaining terms are bounded by very much less than∑
P1=P2=P3=P4

Î±K(deg P1)4 deg4 P1

‖P1‖2
∑

∏2r
j=5 Pj=2

∏
Î±K(deg Pj) deg Pj√

‖
∏
Pj‖

�
∞∑
j=0

qj

j

j4

q2j
logr−2(βK)� logr−2(βK).

Finally, the sum over distinct pairs is

(2r)!
r!2r

∑
P1,...,Pr distinct

∏
Î±K(deg Pj)2 deg2 Pj

‖
∏
Pj‖

.

Now we remove the restriction that P1, . . . , Pr are distinct, introducing (again) an error of
O(logr−2(βK)), and obtain

T 2r
sq =

(2r)!
r!2r

(∑
P

Î±K(deg P )2 deg2 P

‖P‖

)r
+O(logr−1(βK)).

Summarizing all said above, and using (7.4) yields

T 2r
sq =

(2r)!
r!π2r22r

logr(βK) +O(logr−1(βK))

and

〈(T±K )2r〉=
(2r)!
r!π2r

logr(βK) +O(logr−1(βK))

as claimed. 2

Corollary 8.2. Under the assumption of Theorem 7.1, T±K/
√

(2/π2) log gβ has a standard
Gaussian limiting distribution.

Indeed, the main-term expressions for the moments of T±K imply all moments of
T±K/

√
(2/π2) log gβ are asymptotic to standard Gaussian moments, where the odd moments

vanish and the even moments are
1√
2π

∫ ∞
−∞

x2re−x
2/2 dx= 1 · 3 · · · · · (2r − 1) =

(2r)!
2rr!

.
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9. Conclusion

In this section we prove the claim (1.3) in our introduction. Recall that we wrote

NI(Q) = 2g|I|+ 2
π

arg
(

1− eiπ|I|
√
q

)
+ SI(Q)

and thus (1.3) is equivalent to the following theorem.

Theorem 9.1. Assume either that the interval I = [−β/2, β/2] is fixed, or that its length β
shrinks to zero while gβ→∞. Then

〈|SI |2〉 ∼
2
π2

log gβ

and SI/
√

(2/π2) log βg has a standard Gaussian distribution.

To prove this, it suffices to show that the second moment of the difference SI − T±K is negligible
relative to log(gβ).

Proposition 9.2. Assume that K ≈ g/log log gβ, and that either β is fixed or β→ 0 while
gβ→∞. Then 〈∣∣∣∣ SI − T±K√

(2/π2) log gβ

∣∣∣∣2〉→ 0. (9.1)

Indeed, due to Proposition 9.2, the second moment of SI is close to that of T±K and
the distribution of SI/

√
(2/π2) log βg coincides with that of T±K/

√
(2/π2) log(gβ), that is by

Corollary 8.2 we find that SI/
√

(2/π2) log βg has a standard Gaussian distribution. Thus we
will have proved Theorem 9.1 once we establish Proposition 9.2.

9.1 Proof of Proposition 9.2

Assume that K ≈ g/log log(gβ). Then it suffices to show

〈|SI − T±K |
2〉 �

(
g

K

)2

. (9.2)

We first show

〈|SI − S±K |
2〉 �

(
g

K

)2

. (9.3)

By (5.1), we have

S−K 6 SI +O

(
g

K

)
6 S+

K .

Hence

0 6 SI − S−K +O

(
g

K

)
6 S+

K − S
−
K .

Since we are dealing now with positive quantities, we may take absolute values and get∣∣∣∣SI − S−K +O

(
g

K

)∣∣∣∣ 6 |S+
K − S

−
K |
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and applying the triangle inequality gives

|SI − S−K | 6 |S
+
K − S

−
K |+O

(
g

K

)
,

hence

|SI − S−K |
2 6 2|S+

K − S
−
K |

2 +O

((
g

K

)2)
.

Taking expected values we get

〈|SI − S−K |
2〉 6 2〈|S+

K − S
−
K |

2〉+O

((
g

K

)2)
. (9.4)

To bound 〈|S+
K − S

−
K |2〉, use the triangle inequality to get

|S+
K − S

−
K | 6 |S

+
K − T

+
K |+ |T

+
K − T

−
K |+ |T

−
K − S

−
K |

and hence

|S+
K − S

−
K |

2 6 3(|S+
K − T

+
K |

2 + |T+
K − T

−
K |

2 + |T−K − S
−
K |

2).

Applying (7.1) and (7.2) we find

〈|S+
K − S

−
K |

2〉=O(1). (9.5)

Inserting (9.5) into (9.4) gives

〈|SI − S−K |
2〉 �

(
g

K

)2

and together with (9.5) we get

〈|SI − S+
K |

2〉 �
(
g

K

)2

proving (9.3).
To show (9.2), we use the triangle inequality to get

|SI − T±K | 6 |SI − S
±
K |+ |S

±
K − T

±
K |

hence

〈|SI − T±K |
2〉 6 2〈|SI − S±K |

2〉+ 2〈|S±K − T
±
K |

2〉
which is O((g/K)2) by (9.3) and (7.2). 2
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