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Abstract. The goal of this paper is to characterize the operating functions

on modulation spaces Mp,1(R) and Wiener amalgam spaces W p,1(R). This

characterization gives an affirmative answer to the open problem proposed

by Bhimani (Composition Operators on Wiener amalgam Spaces, arXiv:

1503.01606) and Bhimani and Ratnakumar (J. Funct. Anal. 270 (2016),

pp. 621–648).

§1. Introduction

Wiener [15] studied the class A(T) of all continuous functions on the torus

T with the absolutely convergent Fourier series, and proved that F (z) = 1/z

operates on A(T). Lévy [9] gave an extension of this result by showing that

an analytic function operates on A(T), which is called the Wiener–Lévy

Theorem. After that, there are many papers about operating functions on

the same function spaces with respect to Fourier series by Helson, Kahane,

Katznelson, Rudin, and so forth (see [6, 10]).

In this paper, we give the characterization of operating functions on

modulation spaces Mp,1(R) and Wiener amalgam spaces W p,1(R). The

modulation spaces Mp,q and the Wiener amalgam spaces W p,q are two

function spaces introduced by Feichtinger [4]. The precise definition of these

spaces will be given in Section 2, but the main idea of these spaces is

to consider the space variable and the variable of its Fourier transform

simultaneously. Let F be a complex-valued function on R2 and X =Mp,1(R)

or W p,1(R). If F (Ref, Imf) ∈X for every f ∈X, then we say that F

operates on X.

Concerning modulation spaces, Wiener amalgam spaces and operating

functions, the following theorem is known.
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Theorem A. (Bhimani [2], Bhimani and Ratnakumar [3]) Let 1 6 p <

∞ and F be a complex-valued function on R2. Suppose X =Mp,1(R) or

W p,1(R). If F operates on X, then F is a real analytic function on R2 with

F (0) = 0. Conversely, if F is a real analytic on R2 with F (0) = 0, then F

operates on M1,1(R)(=W 1,1(R)).

We remark that Theorem A answers negatively the open problem

posed by Ruzhansky–Sugimoto–Wang [11] about the general power type

nonlinearity of the form |u|αu. In [2] and [3], they also propose an open

problem: is the condition in Theorem A sufficient or not for p > 1? This

paper gives an affirmative answer to this problem. Our result is as follows.

Theorem 1.1. Let 1 6 p <∞ and F be a real analytic function on R2

with F (0) = 0. Suppose X =Mp,1(R) or W p,1(R). Then F operates on X.

Since F (s, t) = 1
(1+s2)(1+t2)

is a real analytic function on R2, we obtain

F (Ref, Imf) ∈X for all f ∈X by Theorem 1.1.

Combining Theorems A and 1.1, we have the following characterization

of operating functions on Mp,1(R) and W p,1(R).

Corollary 1.2. Let 1 6 p <∞ and F be a complex-valued function on

R2. Suppose X =Mp,1(R) or W p,1(R). Then F operates on X if and only

if F is a real analytic function with F (0) = 0.

§2. Preliminaries

The following notation will be used throughout this article. We write

S(R) to denote the Schwartz space of all complex-valued rapidly decreasing

infinitely differentiable functions on R and S ′(R) to denote the space of

tempered distributions on R, that is, the topological dual of S(R). The

Fourier transform is defined by f̂(ξ) =
∫
R f(x)e−ix·ξdx and the inverse

Fourier transform by f∨(x) = (2π)−1f̂(−x). We also write C∞c (R) to denote

the set of all complex-valued infinitely differentiable functions on R with

compact support.

2.1 Real analytic function

A complex-valued function F on R2 is said to be real analytic on R2 if

for each (s0, t0) ∈ R2, F has a power series expansion

F (s, t) =

∞∑
m,n=0

amn(s− s0)m(t− t0)n

which converges absolutely in a neighborhood of (s0, t0).
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2.2 Short-time Fourier transform

Let f ∈ S ′(R) and g ∈ S(R). Then the short-time Fourier transform Vgf

of f with respect to the window g is defined by

Vgf(x, ξ) = 〈f(t), g(t− x)eit·ξ〉=

∫
R
f(t)g(t− x)e−it·ξ dt.

2.3 Modulation spaces

Let 1 6 p, q 6∞ and g ∈ S(R) \ {0}. Then the modulation space

Mp,q(R) =Mp,q consists of all f ∈ S ′(R) such that the norm

‖f‖Mp,q(R) =

(∫
R

(∫
R
|Vgf(x, ξ)|pdx

)q/p
dξ

)1/q

is finite (with usual modifications if p=∞ or q =∞).

We note that since Vgf(x, ξ) = Vgf(x,−ξ), we have

‖f‖Mp,q = ‖f‖Mp,q , ‖Ref‖Mp,q 6 ‖f‖Mp,q , ‖Imf‖Mp,q 6 ‖f‖Mp,q .

We collect basic properties of modulation spaces in the following lemma

(see [4, 5, 11–14] for more details).

Lemma 2.1.

(1) The space Mp,q(R) is a Banach space, whose definition is independent

of the choice of g. More precisely, we have

‖f‖Mp,q
[g0](R)

6 C‖g‖
M1,1

[g0](R)
‖f‖Mp,q

[g](R)

for f ∈Mp,q(R) and g0, g ∈ S(Rn) \ {0}, where

‖f‖Mp,q
[g]

(R) =
∥∥‖Vgf(x, ξ)‖Lp(Rx)

∥∥
Lq(Rξ)

.

(2) Mp,min{p,p′}(Rn) ↪→ Lp(Rn) ↪→Mp,max{p,p′}(Rn). In particular, we have

M2,2(Rn) = L2(Rn).

(3) Mp,1(R)⊂ C(R), that is, f is continuous on R if f ∈Mp,1(R).

(4) If p1 6 p2 and q1 6 q2, then Mp1,q1(R) ↪→Mp2,q2(R).

(5) (Density and duality) If p, q <∞, then S(R) is dense in Mp,q(R) and

(Mp,q(R))′ =Mp′,q′(R).
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(6) (Multiplication) If 1
p1

+ 1
p2

= 1
p and 1

q1
+ 1

q2
= 1

q + 1, then

‖fg‖Mp,q(R) 6 C‖f‖Mp1,q1 (R)‖g‖Mp2,q2 (R), f, g ∈ S(R).

Moreover, we have

‖fg‖Mp,1(R) 6 C‖f‖Mp,1(R)‖g‖Mp,1(R), f, g ∈Mp,1(R),

that is, Mp,1(R) is a multiplication algebra.

(7) (Convolution) If 1
p1

+ 1
p2

= 1
p + 1 and 1

q1
+ 1

q2
= 1

q , then

‖f ∗ g‖Mp,q(R) 6 C‖f‖Mp1,q1 (R)‖g‖Mp2,q2 (R), f, g ∈ S(R).

(8) (Dilation property) There exists constants C, C ′ > 0 such that

‖fλ‖M∞,1(R) 6 C‖f‖M∞,1(R), f ∈M∞,1(R),

‖(fλ)∧‖M1,∞(R) 6 C ′‖f̂‖M1,∞(R), f̂ ∈M1,∞(R)

for 0< λ6 1. Here we denote fλ(x) = f(λx).

2.4 Wiener amalgam spaces

Let 1 6 p, q 6∞ and g ∈ S(R) \ {0}. Then the Wiener amalgam space

W p,q(R) =W p,q consists of all f ∈ S ′(R) such that the norm

‖f‖W p,q(R) =

(∫
R

(∫
R
|Vgf(x, ξ)|qdξ

)p/q
dx

)1/p

is finite (with usual modifications if p=∞ or q =∞).

We remark that since Vgf(x, ξ) = (2π)−1e−ix·ξVĝf̂(ξ,−x), we have

C1‖f̂‖Mq,p(R) 6 ‖f‖W p,q(R) 6 C2‖f̂‖Mq,p(R)

for some positive constants C1 and C2. This implies that the definition of

W p,q is independent of the choice of g since the modulation space M q,p is

independent of the choice of g. For the same reason, W p,q has the following

properties.

Lemma 2.2. Let 1 6 p, p1, p2, q, q1, q2 6∞ and 1
p + 1

p′ = 1 = 1
q + 1

q′ .

(1) Mp,1(R) ↪→W p,1(R).

(2) W p,1(R)⊂ C(R), that is, f is continuous on R if f ∈W p,1(R).
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(3) If p1 6 p2 and q1 6 q2, then W p1,q1(R) ↪→W p2,q2(R).

(4) (Multiplication) If 1
p1

+ 1
p2

= 1
p and 1

q1
+ 1

q2
= 1

q + 1, then

‖fg‖W p,q(R) 6 C‖f‖W p1,q1 (R)‖g‖W p2,q2 (R), f, g ∈ S(R).

Moreover, we have

‖fg‖W p,1(R) 6 C‖f‖W p,1(R)‖g‖W p,1(R), f, g ∈W p,1(R),

that is, W p,1(R) is a multiplication algebra.

(5) (Dilation property) There exists constant C > 0 such that

‖fλ‖W∞,1(R) 6 C‖f‖W∞,1(R), 0< λ6 1, f ∈W∞,1(R).

Here we denote fλ(x) = f(λx).

We also recall the following characterization of modulation spaces

Mp,1(R) and Wiener amalgam spaces W p,1(R).

Definition 2.3. Let 1 6 p6∞ and f be a function defined on R.

Suppose X =Mp,1(R) or W p,1(R).

(1) Let x0 ∈ R. If there exist a neighborhood V of x0 and a function g ∈X
satisfying f(x) = g(x) for every x ∈ V , then we say f belongs to X

locally at a point x0 ∈ R.

(2) If there exist a compact set K ⊂ R and h ∈X satisfying f(x) = h(x)

for all x ∈ R \K, then we say f belongs to X at ∞.

We denote by Xloc, the space of functions that are locally in X at each

point x0 ∈ R.

Lemma 2.4. (cf. [2, Lemma 4.3], [3, Propositions 3.12 and 3.13], [8])

Let 1 6 p6∞ and f be a function defined on R. Suppose X =Mp,1(R) or

W p,1(R).

(1) f ∈Xloc, if and only if ϕf ∈X for every ϕ ∈ C∞c (R).

(2) f belongs to X at ∞, if and only if there exists a function ϕ ∈ C∞c (R)

such that (1− ϕ)f ∈X.

(3) If f ∈Xloc and f belongs to X at ∞, then f ∈X.

2.5 The space A(T)

Let T = R/2πZ be the torus. Then the space A(T) consists of all

continuous function on T having an absolutely convergent Fourier series,
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that is, the function f for which

‖f‖A(T) :=

∞∑
n=−∞

|f̂(n)|<∞ with f̂(n) =
1

2π

∫ 2π

0
f(t)e−intdt.

Lemma 2.5. [7, pp. 56–57] Let λ ∈ (0, 1) and define the 2π-periodic

function Vλ ∈ C(T) by

Vλ(x) = 2∆2λ(x)−∆λ(x), x ∈ [−π, π],

where ∆λ(x) = max{0, 1− |x|λ }. Moreover, we define

Vx0
λ (x) = Vλ(x− x0)

for x0 ∈ R. Then for every g ∈A(T) with g(x0) = 0, we have ‖Vx0
λ g‖A(T)→ 0

as λ→ 0.

We state the following lemma whose proof is almost a repetition of

arguments in Bényi and Oh [1, Proposition B.1] and Bhimani [2, Proposition

3.3].

Lemma 2.6. Let 1 6 p6∞ and φ ∈ C∞c (R) with supp φ⊂ (kπ, (k +

2)π) for some k ∈ Z. Suppose X =Mp,1(R) or W p,1(R). Then there exist

positive constants C1
φ and C2

φ (which depend on φ but do not depend on k)

such that

‖φf‖A(T) 6 C1
φ‖f‖X , f ∈X,

and

‖φf‖X 6 C2
φ‖f‖A(T), f ∈A(T).

§3. The Proof of Theorem 1.1

We first prove that if F is real analytic, then F (Ref, Imf) ∈Xloc for every

f ∈X.

Proposition 3.1. Let 1 6 p <∞ and F be a complex-valued real ana-

lytic function on R2 with F (0) = 0. If f ∈X, then F (Ref, Imf) belongs to

X locally at x0 for all x0 ∈ R.

Proof. Let f ∈X and x0 ∈ R. Set f(x0) = s0 + it0 with s0, t0 ∈ R. Since

F is real analytic, for some δ > 0

F (s, t) =
∞∑

m,n=0

amn(s− s0)m(t− t0)n
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and
∞∑

m,n=0

|amn| |s− s0|m|t− t0|n <∞

if |s− s0|< δ and |t− t0|< δ.

Let φ ∈ C∞c (R) such that φ(x) = 1 near x0 and supp φ⊂ (x0 − 1
10 , x0 +

1
10), and define gj (j = 1, 2) by

g1(x) = (Ref)(x)− s0, g2(x) = (Imf)(x)− t0.

We note that φgj ∈X and (φgj)(x0) = 0 for j = 1, 2. Thus by Lemma 2.6 we

can easily see φgj ∈A(T). So, by Lemma 2.5 we obtain ‖Vx0
λ φgj‖A(T)→ 0

as λ→ 0. Thus, for any ε ∈ (0, δ) there exists λ0 > 0 such that

‖Vx0
λ φgj‖A(T) <

ε

(1 + C2
φ)(1 + CX)

for λ < λ0, where CX denotes the constant with

‖f · g‖X 6 CX‖f‖X‖g‖X , f, g ∈X.

Hence by Lemma 2.6 again, we obtain

‖φVx0
λ φgj‖X 6 C2

φ‖V
x0
λ φgj‖A(T) <

ε

1 + CX

for λ < λ0. Now we define

G(x) =
∞∑

m,n=0

amn(φVx0
λ φg1)

m(x)(φVx0
λ φg2)

n(x)

for λ < λ0. Since ε < δ and a00 = 0, by Lemmas 2.1 and 2.2 we have

∞∑
m,n=0

‖amn(φVx0
λ φg1)

m(φVx0
λ φg2)

n‖X

6 CX

∞∑
m,n=0

|amn| ‖(φVx0
λ φg1)

m‖X‖φ(Vx0
λ φg2)

n‖X

6 CX

∞∑
m,n=0

|amn|εm+n <∞,
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and thus G ∈X. Moreover, since φ(x) = 1 near x0, we have

φ(x)Vx0
λ (x)φ(x)gj(x) = gj(x)

near x0, and thus

G(x) =

∞∑
m,n=0

amn(Ref(x)− s0)m(Imf(x)− t0)n

= F (Ref, Imf)

near x0. This completes the proof.

Next, we prove that if F is real analytic, then F (Ref, Imf) belongs X at

∞ for every f ∈X. For this, we prepare the following proposition.

Proposition 3.2. Let 1 6 p <∞ and f ∈X. For any ε > 0, there exists

a real-valued function Ψ ∈ C∞c (R) such that

‖(1−Ψ)f‖X < ε.

Proof. Let f ∈X, ε > 0 and φ be a real-valued function in C∞c (R) with

φ(0) = 1. Since S(R) is dense in X, there exists g ∈ S(R) such that

‖f − g‖X <
ε

2(1 + C0‖φ‖X)
,

where C0 is decided later. We also recall the fact that for any g ∈ S(R)(⊂
M1,1(R) =W 1,1(R)), there exists λ0 ∈ (0, 1) such that

‖(1− φλ)g‖M1,1(R) <
ε

2

for λ ∈ (0, λ0), where φλ(x) = φ(λx) (see for example [3, Proposition 3.14]).

Now we define Ψ ∈ C∞c (R) by Ψ(x) = φ(λx). Then we have

‖(1−Ψ)f‖X 6 ‖(1−Ψ)(f − g)‖X + ‖(1−Ψ)g‖X
= ‖f − g −Ψ(f − g)‖X + ‖(1− φλ)g‖X
6 ‖f − g‖X + C‖Ψ‖Y ‖f − g‖X + ‖(1− φλ)g‖M1,1(R)

< (1 + C‖φλ‖Y )‖f − g‖X +
ε

2
,

for λ ∈ (0, λ0), where Y =M∞,1 (if X =Mp,1) or =W∞,1 (if X =W p,1).

By Lemmas 2.1 and 2.2 we have

C‖φλ‖Y 6 C0‖φ‖Y
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for λ ∈ (0, λ0). Hence we have

‖(1−Ψ)f‖X < ε.

Corollary 3.3. Let 1 6 p <∞ and f1, . . . , fN ∈X. For any ε > 0,

there exists a real-valued function Ψ ∈ C∞c (R) such that

‖(1−Ψ)fi‖X < ε, i= 1, . . . , N.

Proposition 3.4. Let 1 6 p <∞ and F be a real analytic function on

R2 with F (0) = 0. If f ∈X, then there exists H ∈X such that

H(x) = F (Ref(x), Imf(x))

except for some compact set in R.

Proof. Let f ∈X. Since F is real analytic, for some δ > 0

F (s, t) =

∞∑
m,n=0

amns
mtn

and
∞∑

m,n=0

|amn| |s|m|t|n <∞

if |s|< δ and |t|< δ. By Corollary 3.3 there exists a real-valued function

Ψ ∈ C∞c (R) such that

‖(1−Ψ)Ref‖X <
δ

1 + CX
, ‖(1−Ψ)Imf‖X <

δ

1 + CX
,

where CX denotes the constant with

‖f · g‖X 6 CX‖f‖X‖g‖X , f, g ∈X.

From this and Lemmas 2.1 and 2.2,

H(x) =

∞∑
m,n=0

amn((1−Ψ(x))Ref(x))m((1−Ψ(x))Imf(x))n

converges in X. Since Ψ ∈ C∞c (R), H(x) = F (Ref(x), Imf(x)) except for

some compact set in R.

The proof of Theorem 1.1. By Propositions 3.1, 3.4 and Lemma 2.4, we

have the desired result.
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