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Quaternions and Some Global Properties
of Hyperbolic 5-Manifolds

Ruth Kellerhals

Abstract. 'We provide an explicit thick and thin decomposition for oriented hyperbolic manifolds M
of dimension 5. The result implies improved universal lower bounds for the volume vols (M) and, for
M compact, new estimates relating the injectivity radius and the diameter of M with vols(M). The
quantification of the thin part is based upon the identification of the isometry group of the universal
space by the matrix group PSa L(2, H) of quaternionic 2 X 2-matrices with Dieudonné determinant
A equal to 1 and isolation properties of PS L(2, H).

0 Introduction

The Margulis lemma for discrete groups of hyperbolic isometries has important con-
sequences for the geometry and topology of hyperbolic manifolds of dimensions
n > 2. There is a universal constant € = ¢, such that for each oriented hyperbolic
n-manifold M of finite volume there is a thick and thin decomposition

(0.1) M =M<, UM-.

of M as follows. The thick part M. having at each point an injectivity radius bigger
than €/2 is compact. The thin part M<. of all points p € M with injectivity ra-
dius smaller than or equal to /2 consists of connected components of the following
types. The bounded components are neighborhoods of simple closed geodesics in M
of length < € homeomorphic to ball bundles over the circle. The unbounded compo-
nents are cusp neighborhoods homeomorphic to products of compact flat manifolds
with a real half line.

Estimates for the constant ¢, induce universal bounds for various characteristic
invariants of M such as volume. Explicit values for ¢, are known for n = 2 by work
of P. Buser [Bu2, Chapter 4] and for n = 3 by work of R. Meyerhoff [M]. For n = 4,
partial results are contained in [K3].

The aim of this work is to estimate the constant €5 and to derive some global
properties such as new lower volume bounds for hyperbolic 5-manifolds M (cf. Sec-
tion 2 and Section 3). We show that fore < /3 /97 there is a decomposition of M
according to (0.1). Moreover, we prove the universal bound vols(M) > 0.000083.

To this end, we analyse the thin part of M and construct embedded tubes around
simple closed geodesics of length I < 1/3/8 of radius given by (cf. Section 2.1)
(0.2) cosh(2r) = 1—k3k, where k = Z—WZ
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The tubes around distinct closed geodesics of lengths < /3/97 ~ 0.0612 are pair-
wise disjoint. In the non-compact case, they are also distinct from the canonical
cusps associated to parabolic elements in the fundamental group of M.

Our considerations are based upon the identification of hyperbolic space H> and
its boundary through quaternions such that Iso*(H>) equals the group PSAL(2; H)
of quaternionic 2 x 2-matrices with Dieudonné determinant A = 1 as described by
[H] and [Wil] (cf. Section 1.2). In this context, we characterise the isolation of the
identity in PSAL(2; H) (cf- Section 1.3). The strategies involved are standard and go
back to [J], [Be] and [Wat].

The explicit tube construction (0.2) implies comparison results between injec-
tivity radius, diameter and volume of compact hyperbolic 5-manifolds M (cf. Sec-
tion 3.2). For example, we prove that the injectivity radius i(M) of M satisfies i(M) >
const - vols(M) ™! improving results of P. Buser [Bul] and A. Reznikov [Re].

In [CW, Section 9], C. Cao and P. Waterman constructed tubes around closed
geodesics in hyperbolic #n-manifolds M for n > 2 and give a lower bound for the
in-radius of M by viewing isometries of hyperbolic n-space as Clifford matrices of
pseudo-determinant 1. By different methods, Buser [Bul, Section 4] obtained anal-
ogous results for compact hyperbolic manifolds of dimensions > 2. Both contribu-
tions provide clearly weaker bounds than ours when specialized to n = 5. As an illus-
tration, the in-radius r(M) measuring the radius of a largest embeddable ball in M
is bounded from below by 1/65536 according to [Bul, Theorem 4.11] and by 1/544
according to [CW, Theorem 9.8] while we obtained the bound 1/30 (¢f. Lemma 5).

Acknowledgment The work was completed during a short stay at the Max-Planck-
Institute for Mathematics in Bonn. The author expresses her thanks to the Director,
Professor G. Harder, and to Professor F. Hirzebruch for the invitation and the hospi-
tality.

1 The Quaternion Formalism for Isometries of H>
1.1 Loxodromic Isometries of Hyperbolic n-Space

Let E" := E" U {o0}. A Mobius transformation of E" is a finite composition of
reflections in spheres or hyperplanes of £ and preserves cross ratios
x—ul -y —vl
x, y;u,v] = 7———F——
e =yl lu—v|
for distinct points x, y, u,v € E". The group of all Mobius transformations of E" is
denoted by M(E™), or by M(n) for short.
Consider hyperbolic space H" in the upper half space E7}, that is,

1
(1.1) H" = (Ez, ds? = —z(dx§+.--+dx§))
x?’l
with distance between two points x, y € H" given by
x = yI?
1.2 hd =1+ —-—
(1.2) coshd(x, y) oy
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By Poincaré extension, every Mobius transformation T € M(n — 1) gives rise to an
element in M(E}) again denoted by T. In fact, T € Iso(H") since it leaves invariant
the hyperbolic metric (1.2).

According to the fixed point behavior a Mobius transformation is either elliptic,
parabolic, or loxodromic. For example, if T € M(E?) has precisely one, resp. two,
fixed points in £"~! and none in E, then T is parabolic, resp. loxodromic.

Let T € Iso(H") be a loxodromic element, and denote by q;,9, € 0H" its two
different fixed points. They determine a unique geodesic ay C H", the axis of T,
along which T acts as a translation. For p € ar, d(p7 T(p)) =: T is constant and
called the translational length of T. Besides, T consists of a rotational part R such
that—after a suitable conjugation—we obtain the representation

(1.3) T=rA, wherer=¢", Ac OE").

For later purpose, we prove the following very useful property of T (for n = 4, see
[K3, Lemma 1.3]).

T(p)

Figure 1

Proposition 1 Let T € Iso(H") be a loxodromic element with axis ar, with rotational
part R and with translational length 7. Let p € H" be such that p ¢ ar, and assume
that the foot of the perpendicular from p to ar is p. Denote by w = w(p) the angle at p
in the triangle (p, ﬁ,R(p)) .Letd = d(p, T(p)) and § = d(p, ar). Then,

(1.4) coshd = cosh 7 + sinh? & - (cosh 7 — cosw).
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Proof Without loss of generality, we may assume that a; = (0, 00). Then, p = |ple,.

Leta:= d(p,R(p)) , b= d(R(p), T(p)) ,and c:= d(ﬁ, T(p)) (¢f. Figure 1).
Hyperbolic trigonometry yields with respect to the triangle ( p, P, R( p))

(1.5) cosha = cosh? § — sinh? § cosw = 1 + sinh? §(1 — cosw),

and with respect to the Saccheri quadrangle ( p, T(p), T(p), R(p))

(1.6) coshb = cosh 7 cosh” § — sinh? §,

and finally with respect to the right-angled triangle ( p, T(p), T(p))

(1.7) cosh ¢ = cosh 7 cosh d.

Next, consider the hyperbolic tetrahedron A = A(p, p,R(p), T(p)) . The dihe-
dral angle formed by the facets opposite to p and T(p), respectively, and attached at
the edge (p,R(p)) equals 7/2. Denote by Ag(y) the spherical vertex figure of A at
the vertex R(p). Ap(p) is a right-angled triangle with hypotenuse 3, say. Further-
more, let u (resp. v) be the edge of Ag(,) in the facet opposite to p (resp. T(p)) in A.
Then, cos 3 = cosucosv.

By hyperbolic trigonometry, we deduce

(1.8) coshd = coshacoshb — sinh asinh b cos (3,

as well as

(1.9) cosh ¢ = cosh b cosh § — sinh bsinh § cos u,
1.9
coshd = coshacosh § — sinh asinh § cos v.

Hence, by (1.7) and (1.9),

coshbcoshd — cosh7coshd coshacoshd — coshd
sinh b sinh § sinh a sinh §

coshb — coshT cosha—1

cos 3 = cosucosv =

= coth’ §

sinh b sinha
By using (1.5), (1.6) and (1.8), we obtain
coshd = cosh acosh b — coth? §(cosh b — cosh 7)(cosha — 1)

= cosh acosh b(1 — coth? §) + coth® § - [cosh b + (cosha — 1) cosh 7]

= _% [cosh? § — sinh? § cosw] - cosh b
sin

+ coth? § - [cosh b + sinh? §(1 — cosw) cosh 7]
= cosh b cosw + cosh? § cosh (1 — cosw)
= cosh® § cosh 7 cosw — sinh” § cos w + cosh? § cosh 7(1 — cosw)

= cosh 7 + sinh? §(cosh 7 — cosw). -
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Remark Let0 < ap,...,a, <2m,0 < r < [5], withcosay > -+ > cos, denote
the rotation angles of the loxodromic element T € Iso(H"). Then,

COS (g > COSW > COS ;.

To see this, pass to the normal form of the orthogonal part R € O(n — 1) of T and
express p = (po, - - ., Pn_2,t) € H" with respect to the new basis in E"~! = {t = 0}.
Then, project the triangle ( p, p,R(p)) orthogonally down to {t = 0} in order to
compute

2. .2 2 2 2 2
_(pptpi)eosagt -+ (py + ) cosa, + Pyt P,
= P 2

Pot +Pus

COS w

- (p3+---+p>_,)cosa,
7 7
pot ot pus

= cos a,.

1.2 Quaternions and Iso™ (H°)

Consider the quaternion algebra H = {q = qo + qii + 927 + g3k | ¢ € R} with
generators i, j, where k = ij as usual. H is a Euclidean vector space with basis
1,1, j, k. Decompose a quaternion q = qo + q1i + 42 j + g3k into scalar part Sq := gy
and vector part Vq = qii + q2j + g3k so that ¢ = Sq + V. The (quaternionic)
conjugate of g is given by § = Sq — Vq and satisfies |q|> = q§ = gq. For a unit
quaternion g, we can write

(1.10) a=exp(la) == cosa+ Isina for some a € [0, 27),
where I is a pure unit quaternion, i.e., the scalar part of I vanishes and therefore

I = —1I, or equivalently I*> = —1. Furthermore, write ¢ =: u + vj with u = qq + qi1,
v = q, + q31 € C. Then, there is the correspondence

(1.11)  gq=(qo+qi)+ (@ +qsi)j=u+vj~Q:= (_“V :) € Mat(2; C).

Consider a matrix M € Mat(2; H) and associate to M the complex block matrix

A B
M= <C D) € Mat(4;C)

according to (1.11). The trace Tr M of M is defined by

TrM::ltrM:S(a+d) forM:(a b)
2 c d

and is obviously conjugacy invariant. In order to establish a determinant of M we
adopt the point of view of J. Dieudonné (¢f. [D], [As]) and consider again M. By

https://doi.org/10.4153/CJM-2003-042-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2003-042-4

Quaternions and Some Global Properties of Hyperbolic 5-Manifolds

1085

exploiting the correspondence (1.11), one calculates (cf. [Wil, Section 3])

(1.12) detM = |li]‘|2 = |7‘,‘j‘2,
lH =da— dbd_lC,
Ly = cac™'d — cb,
(1.13)

= ad — bd™'cd,
21 = ac” 'dc — b,
In particular, det M > 0, and
(1.14)
The quantity
(1.15)

is called the Dieudonné determinant of M.

1<1i,j <2, where
li, = bdb~'a — b,
Ly = ad — aca™'b;
1 = db"tab — cb,

2 = da — ca” 'ba.

det M = |ad — aca™'b|* = |ad|* + |bc|* — 2S(acdb).

A =AM) =, VdetM

Proposition 2 [Wil, Theorem 1] Let M = ((Z Z) € Mat(2;H) be such that

A(M) # 0. Then, M is invertible, and
vt ('
—l{llc

~I'b
L,'a
In order to abbreviate, we write

~d b Iid 15
(1.16) <Nc Na) T <l2_11c lz_zla ’

= —1
<_5721

—1 —1
dry; —br121>
ary,

do b\ _ (dr)' by
c av) T \ery' oary')”

By coefficient comparison in MM~! = I = M~!'M, one obtains the following

useful identities.

Lemmal LetM = (a b
c d

) € Mat(2; H) be invertible. Then,

(i) ad.—bc. =da. —cb.=1; ~da— "bc="ad—""cb=1.
(i) a~d—-b~c=d”a—c"b=1; doa—boc=a.d—c.b=1
(iii) ab. =ba., cd. =dc.; ~ac="ca, ~bd="db.
@iv) a~b=0b"a, ~d=d" ¢, a.c=c~a, b.d=d._b.

By Lemma 1, the group SaL(2;H) of all quaternionic 2 x 2-matrices with
Dieudonné determinant A = 1 can be identified according to'

a b

SAL(2;H) = {T - (C d) € Mat(%H) | ad — be = 1}.

!Following L. Ahlfors [Al], SL(2;H) is used to denote the group of quaternionic Clifford matrices of

pseudo-determinant equal to 1.
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There is a close relationship to the group Iso™ (H”) of orientation preserving isom-
etries of H> in the following way (¢f. [H], [Wil]). Take the hyperbolic 5-space H>
with its canonical orientation and parametrize the space with the aid of H by writing
E3 = H x Ry so that 9H" = A (¢f. (1.1)). The group SAL(2; H) acts on 1A by linear
fractional transformations

T(x) = (ax + b)(cx + d)~*

with T(c0) = oo for ¢ = 0, and with T(co) = ac™' and T(—c~'d) = oo for ¢ # 0.
By passing to the projectivized group

PSAL(2; H) := SaL(2; H)/{£E},
one gets the isomorphism
PSAL(2; H) ~ Iso™ (H).

In the following, we do not distinguish in the notation between elements of these
groups.
Let T € Iso™ (H”) be a loxodromic element with rotational part R (cf. (1.3)). Since
T is orientation preserving, R is the Poincaré extension of the composition of either
one or two rotations in planes of H. In fact, R € SO(4) is given by (cf. [C2, (6.78)],
[C1], [Po])
R(x) =axb witha,beH,l|al =|b =1.

In particular, the rotation through the angles +a+ 3 € [0,27),0 < a < < 7,
about two completely orthogonal planes is given by

exp(al) 0
(117) ( 0 exp(—m))

for some unit pure elements I, J] € H. Finally, consider a parabolic element X €
Iso*(H>) which acts as a translation. Modulo conjugation in PSAL(2; H), X can be
written in the form

x_<(1) *1‘) with o € H = E*.

1.3 Isolation of the Identity in PSAL(2, H)

Consider a non-elementary discrete two generator subgroup (S, T) of PSL(2, C). By
Jorgensen’s trace inequality [J],

(1.18) |t T — 4] + |tr[S, T] — 2| > 1,

where [S, T] = STS™!T~. By specializing, for example to an element

T:(g ;ﬂl) with |\| # 1,
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the inequality (1.18) takes the form

(1.19) IN= AT (1 + |be]) > 1.

By writing A =: 2"+, (1.19) turns into

(1.20) 2(coshT — cosa) - (1 + |be|) > 1.

Formulas avoiding trace such as (1.19) and (1.20) allow generalizations for Iso*(H")
of geometrical relevance. In [Wat], P. Waterman presents various versions of (1.19)
for the group PSL(2;C,_,) of Clifford matrices associated to the Clifford algebra

C,—, with n — 2 generators.
Here, we derive a formula analogous to (1.20) for PSAL(2; H) ~ Iso™ (H>) and for

an element
(eT/z exp(la) 0 )
T= /2 exp(—
0 e Pexp(—JB)

with rotational part according to (1.17) by adapting suitably standard methods (cf.
[Be], [Wat] and [K3]).

Proposition 3 Let

_f(a b (e exp(la) 0 .
5 <C d> = ( 0 e 72 exp(_m)> € PSAL(2; H)

be loxodromic elements generating a non-elementary discrete subgroup. Then,
(1.21) 2(cosh7’—cos(oz+ﬂ)) (14 be]) > 1.

Proof We follow the strategy of [Wat, Theorem I]. Suppose that

(1.22) ,u::Z(coshT—cos(oH-ﬂ)) “(L+]be]) <1,

and write p := ¢7/2 for short, as well as

A 0
(3 0)

Consider the Shimizu-Leutbecher sequence defined inductively by

_ (a0 bo\  _ ._ (a b\,
=i i) == (0 0)

Sl = (a"“ b"“) = S,TS,; ! forn>0.

Cnt+l dn+1
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By Section 1.2, Proposition 2 and (1.16), one computes

o fa b\ (A 0\ (~d b,
=\, d,J\0 B ') \—-"¢c, ~a,

_ (a,A~d, —b,B"'"~¢, —a,A~b,+b,B"'~a,
“\ec,A™d, —d,B"'™¢, —c,A™b, +d,B"™a,

Since A(S,,) = 1, we deduce that |a,| = |a,..| = |~a,| and so forth. Therefore,

(1.23)
|bn+lcn+1| = |(_anA~bn + an_lNan) : (CnANdn - dnB_lNCn)|

= |awbucod,| - |A —a;'b, B~ ~a,~ b, - |A — ¢, 'd, B~ Ve, ~d) Y.
For the middle factor in (1.23), for example, one gets the estimate (cf. Section 1.2)

|A—a 'b,B'~a,~b, | =[SA+VA—(SB™")-a, 'b,~a,~b,"
—a; 'b, (VB ")~a,~ b}

=[SA-B Y +VA—a,'b,(VB")~a,~b, |
= {S(A=B7'Y + |VA—a, ' b,(VB~)"a,~b, '[P}/
<{(pcosa — p~'cos 3)% + (|VA| + [VB~I|)?}1/2
= {(pcosa — p~ ' cos B)* + (p| sina| + p~ | sin B])2}/?
={p*+p % = 2c(er, B)}'/?
= {2(cosh7’ — c(a,ﬁ)) }1/2,

where we used the notation

cos(a — 3) else.

cos(a+ ) ifa,B€[0,m]ora,p € [w,2m),
cla, B) ==
Hence, ¢(0,3) = cosf3, and by (1.17), c(c, ) > cos(a + ). The same estimate
results for the third factor in (1.23). Therefore,
[brs1€ur1] < |anbucad,| - {2( cosh ™ — cos(a + ﬁ)) } )
Since |a,d,| < 1+ |b,c,| by Lemma 1(i), we obtain by induction
|bn+lcn+1‘ S /’Ln|bc|7
and therefore, by (1.22), b,¢,., — 0 and a,d,, — 1. Since

|an+1| - ‘anANdn - an71NCn|7 |dn+1‘ = ‘ - CnAan - dnBilNan‘a
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we deduce that |a,| — pand |d,| — p~'. Moreover, we get the estimate
|busi| < |anby| - {2(cosh T — cos(a + B)) },

and by induction
[n|

pn

) |Cn"pn_>0-

Next, consider the elements

. __ m—n n __ - 0 Ao b2n A" 0
Tu:=T7"5uT _( 0 B”) (c2n dzn) (0 B”)

 (AT"ay A" AT"by,BT"
o BnCznAn Bndan—n

= (a" ﬂ") forn > 0.
Yn On

The sequence {T), },>¢ has a convergent subsequence since

|| = [azn| — p

6n] = |dan| — P_l
|b2n|

[Yul = lean| - p™ — 0.

If we can show that the elements T, are all distinct, then the group (S, T) is not
discrete which yields the desired contradiction.

Suppose on the contrary that the sequence {T,},> stabilises, that is, 8, = v, =
0. Then, b,, = ¢;,, = 0. Let T,,;; be the first element such that b,,;; = ¢,4+; = 0. Since
p # 1,(1.23) yields a,b, = 0 and ¢,d, = 0. But detS, = |a,d, — a,c,a,'b,| = 1,
which leaves only two possibilities. In the first case, b, = ¢, = 0 which is impossible.
In the second case, a, = d, = 0. Forn > 0,0 =Tr S, = S(a, +d,) = S(A+B~!) =
pcosa+ p~!cos (3. Itis easy to see that this contradicts 2 ( cosh T — cos(a + 6)) <1
given by the assumption (1.22). Therefore, n = 0 and a = d = 0. This is impossible
since the group (S, T is supposed to be non-elementary. ]

Proposition 4 Let S = (LCI Z), T = (13 B0_1> € PSAL(2;H) be loxodromic
elements such that 2r := dist(ar, agrg—1) > 0. Then,
(1.24) coshr > |bc|'/?.

Proof Denote by p the common perpendicular of the axes ar, agrs—: whose end
points equal 0, 0o, S(0), S(co) in HH>. Choose a Mébius transformation

a f
V= (7 5) € PSAL(2, H)
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such that 0, 0o, $(0), S(c0) are mapped to —w, w, —1, 1 with |w| > 1, say. That is, p
is mapped to the positive t-axis, and 2r = dist(ar, agrs—1) = log|w|. For the cross
ratios, we obtain

|bd "]

[L—wP _
bd! —acl|’

- [_la la_Wa W] = [bd?laacilaovoo]
4wl

By (1.12) and (1.13), this means that

1= wp
4fw|

= |bc|.
By (1.10), we can write w = pexp(Iw) in E* for some w € [0,27) and a unit pure
element I € H. Hence, 2r = log p. Putting z := (2r + Iw)/2, we deduce

w = e” exp(lw) =: exp(2r + Iw) = exp(2z).

Next, define )
sinhz := E{exp(z) —exp(—2)}.

It follows that

(cosh(Zr) — cos w) < %(cosh(Zr) + 1) .

| —

1
|sinhz|* = Z|(1 —w)w | =

Thus,

cosh® r = %(cosh(Zr) +1) > |sinhz|* = |bc|. [ |

Proposition 5 Let S = (i Z) and T = ((1) ,le) € PSAL(2;H) with u € E*

generate a non-elementary discrete subgroup. Then,
(1.25) le| - ] > 1.

The proof is a slight modification of the proof of [K3, Theorem 1.2] by using
Lemma 1.

2 A Thick and Thin Decomposition for Hyperbolic 5-manifolds

Let M denote an oriented complete hyperbolic 5-manifold of finite volume which
consequently will be called hyperbolic 5-manifold for short. That is, M is a Clifford-
Klein space form H> /T where I" < PSa L(2, H) is discrete, torsion-free and cofinite.
In particular, I' is non-elementary. Denote by i,(M) the injectivity radius of M at p.
By the Margulis Lemma for discrete groups of hyperbolic isometries (cf. [BGS, Sec-
tion 9-10], [T], [R1]), there is a universal positive constant € such that there is a thick
and thin decomposition

(2.1) M =M<, UM-.
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of M as follows. The thick part M. = {p € M | i,(M) > 5} of M is compact.

The thin part M<. = {p € M | i,(M) < 5} in (2.1) consists of connected
components of the following types. The bounded components are neighborhoods
N of simple (i.e. with no self-intersection) closed geodesics g through p € M<. in
M of length I(g) < € homeomorphic to ball bundles over the circle. In fact, N is a
quotient U /Ty by an infinite cyclic group I'y < T of loxodromic type with common
axis projecting to g and leaving precisely invariant some component U C H® lying
above N. The unbounded components are cusp neighborhoods homeomorphic to
products of compact flat manifolds with a real half line. Each cusp neighborhood can
be written in the form C = C; = V,/I'y with I'; < T of parabolic type fixing some
point g € OH" and leaving precisely invariant some horoball V, C H” based at q.

In fact, to each subgroup I'; < I of parabolic type corresponds a particular ex-
tremal horoball B, such that B, /T, embeds in M. We describe it for the case g = oo,
only. Denote by u # 0 a shortest vector in the translational lattice A < I's here
identified with E*. Then,

B(p) = Boo(p) == {x € H* | x5 > |p|}

is called the canonical horoball of " . B(1) is precisely invariant with respect to I'
and gives rise to a cusp neighborhood in M. Moreover, canonical horoballs associated
to inequivalent parabolic transformations in I' are disjoint. The proofs are slight
variations of those of [K3, Lemma 2.7] and [K3, Lemma 2.8].

2.1 The Thin Part of a Hyperbolic 5-manifold

In the following, we construct neighborhoods of sufficiently small simple closed
geodesics in M such that they are disjoint from canonical cusp neighborhoods. If
g is a simple closed geodesic in M, denote by r, the injectivity radius for the expo-
nential map of the normal bundle of g into M. For r < ry, the set To(r) = {p € M |
dist(p,g) < r} is called a tube around g of radius r. By making use of the description
Iso™(H>) ~ PSa L(2, H), we construct tubes as follows.

Proposition 6 Let |y = g =~ 0.068916. Then, each simple closed geodesic g in M of
length I(g) < ly has a tube Ty (r) of radius r satisfying

1 -3k 27l(g)
2.2 h(2r) = ———, here k = .
(2.2) cosh(2r) z where 75

Proof Consider two different lifts g;, § of ¢ in H>. They give rise to I'-conjugate
loxodromic elements T, T, with disjoint axes ar,, ar, but equal translational length
7 and rotational angles o + 8 with 0 < o < # < 7. Denote by p the common
perpendicular of ar, and ar,. We have to study the length 2r of p in terms of 7 = I(g).
Without loss of generality assume that (¢f. (1.17))

T — e/? exp(Ia) 0
L 0 e Pexp(—JB) )’

o —1 . _(a b
Tz = STIS with S = (C d) 5
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for some unit pure quaternions I, J. Since (T}, T,) is non-elementary, (T}, S) is non-
elementary as well. By Proposition 3, (1.21), applied to (T4, S), we obtain

(2.3) 2k - (1+ |bc|) > 1, wherek = cosh7 — cos(a + 3).

Now, (1.24) of Proposition 4 yields cosh” r > |bc|, that is,

1 —
(2.4) cosh(2r) > 2%,
which is nontrivial if
(2.5) k=k(1;a,3) = cosht — cos(ax + 3) < i

Next, observe that (2.4) remains valid for k(nT; na, n3) by considering n-th iterates
of Ty, T, for arbitrary n € N. In this situation, we make use of the modified Zagier
inequality [CGM, Lemma 3.4] which says that for arbitrary 0 < p < 7+/3 and
v € [0, 2m), there exists a number ny € N such that

2p
2.6 cosh(ngp) — cos(ngr) < —.
(2.6) (10p) (nov) < e
By choosing 7 = p < g and v = o + [ according to (2.3), (2.5) and (2.6) imply

that X
k(nots noa, no3) < T n

Lemma2 Let g denote a simple closed geodesic in M of length I(g) < ly with tube T,(r)
of radius r satisfying (2.2). Then,

(a) r=r(l) is strictly decreasing.
(b) The volume vols ( Tg(r)) is strictly decreasing with respect to 1.

Proof Part (a) is obvious. As to part (b), observe that the volume of T,(r) equals the
volume of a cylinder Cyl(r, I) of radius r with axis of length / which in general is given
by (¢f. [K3, Lemma 2.4])

2
vol, (Cyl(r, 1)) = rﬂl 1-sinh" ' r.

Hence,

sinh® r

2.7) V015(Tg(r)) = g 1-sinh*r = . Volg,(Cyl(r7 l)) .

By (2.2),
Vol3(Cyl(r7 l)) =71 -sinh®r= = — 27l,
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which is a strictly decreasing function of I. ]

Remark Cao and Waterman [CW] obtained tubes around short closed geodesics
of lengths < [, in hyperbolic manifolds M of arbitrary dimensions n > 2. They
made use of certain extremal values associated to the rotational part of loxodromic
elements losing much accuracy when estimating the tube radius. For example, for
n =5, a closed geodesic g of length Is ~ 0.0045 in M has a tube of radius ~ 0.9885
and volume ~ 0.01269 according to [CW, Corollary 9.5] while g has a tube of radius
~ 2.3786 and volume ~ 5.7846 according to (2.2).

Lemma 3 Let g, g’ denote two simple closed geodesics in M of lengths 1,1 < I} :=
V/3/9m =~ 0.061258 which do not intersect. Then, the tubes Ty, Ty of radiir, v’ subject
to (2.2) are disjoint.

Proof Write M = H’/T, and let g, ¢’ be lifts to H> of g, g’ which are the axes of
loxodromic elements T, T’ € I' with translational lengths 7 and 7/ and angles of
rotation +a + 3 and +a’ + 3’ as usually. Let § = dist(g,¢’). We must prove that
o>r+r'.

For this, conjugate T, T’ in PSAL(2, H) in order to obtain the elements

(e exp(la) 0 _fa b
X= ( 0 e /2 exp(—]ﬁ)) Y= <C d> ’

The axis ayxy—1 = Y(ax) of the element YXY ™! is disjoint from ax and ay. Let
p € ax denote the point such that 6 = dist(ax,ay) = dist(p, ay), that is, p is the
foot point on ax of the common perpendicular of ax, ay. By construction, d :=
dist(p7 Y(p)) > 2r. Denote by k' := k(Y) = cosh 7’ — cos(a’ + 3’). Then, Propo-
sition 1 implies that

cosh(2r) < coshd = cosh 7’ + sinh® §(cosh 7/ — cosw).
Remark Section 1.1 yields cosw > cos(a’ + 3’). Therefore,
cosh(2r) < cosh 7’ + sinh® §(cosh7" = cos(a’ + "))
<k'+1+sinh®8 -k’ = cosh?6 - k' + 1.
By Proposition 6, we deduce that

cosh(25):2cosh25—1ZZ'COSh(i#_IZZ' 1};{/4k_1
B 1—4k+1—4k—kk’
kK kk'

Suppose that k¥’ > k (otherwise, exchange the role of X and Y'). Then, we obtain

_ _ / _ _ /
cosh(25)2\/1k4k~\/1 4k+1 4k kk.

K’ kk'
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V3

By assumption, I < [; = 3= SO that, by Proposition 6,

2wl
k=—<2/9.
V3 /

Hence,
1 -3k < V1 —4k
k k7
and similarly for cosh(2r). In order to conclude that cosh(24) > cosh(2r + 2r'), it
suffices to show that
1 — 4k — kk’ S V1—4k—k 14k’ —k”?
kk' - k k'
The verification is left to the reader (for details, ¢f. [K3, p. 64]). [ |

cosh(2r) =

> sinh(2r) - sinh(2r').

Lemma 4 Let M denote a non-compact hyperbolic 5-manifold. Then, the canonical
cusps and the tubes around closed geodesics according to (2.2) do not intersect in M.

The proof of Lemma 4 is basically a consequence of Proposition 5. For details we
refer to the analogous proof of [K3, Theorem 2.9].

2.2 A Thick and Thin Decomposition

Let M be a hyperbolic 5-manifold, and consider the thin and thick parts
Mc.={peM]|i,(M)<e/2} and M..={peM|i,(M)>¢e/2}

of M asin (2.1).

Theorem I For ¢ < /3/97 ~ 0.0612, the thin part M<. is a finite disjoint union of
canonical cusps and tubes Ty(r) around simple closed geodesics g of length < € according
to (2.2).

Proof We take up an idea of Meyerhoff [M]. Write M = H> /T", where I" < Iso™ (H")
is discrete, torsion-free and cofinite. The canonical cusps C and the tubes T around
simple closed geodesics of lengths < 9%_3 =~ 0.0612 in M as constructed in Section 2
are mutually disjoint. Hence, we must show that any cusp, resp. any bounded com-
ponent in M<., e < 0.0612, is contained in a canonical cusp C, resp. in a tube T. It
is easy to verify the assertion for the canonical cusps (cf. Section 2).

Let p € M. providing a loxodromic element X € I' with distance d :=
d(p, X(p)) < 0.0612. Assume without loss of generality that X has axis ax with end
points 0, co, and denote by 7 > 0 the translational length and by +a+3 € [0, 27) the
angles of rotation of X. Let R be the rotational part of X. We show that p € T, (r),
where the tube radius is given by (2.3) and (2.4), that is,

(2.8) cosh(2r) = 1_—k3k with k = k(X) = cosh7 — cos(a + 3).
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Let § = d(p, ax), and suppose that § > 0. By Proposition 1,
(2.9) coshd = cosh 7 + (cosh T — cosw) - sinh? 0,

where w = w(p) denotes the angle at the foot point p of the perpendicular from p to
ay in the triangle (p, ﬁ,R(p)) . Observe that cos(a + 3) < cosw < cos(a — 3).

By (2.9), we must show that for d(p,X(p)) < dp:=0.0612
coshd — cosht

1 — 4k
2.10 s — sinh? d < si hr=
( ) cosh 7 — cosw s = Smer 2k

3

where we may work with k = k(X") < 1/4 for any integer n > 1 (¢f. proof of
Proposition 6) and especially with

2mT
2.11 k=kX") < —
(2.11) (x™) < 7
for ny € N as given by (2.6). Now, write p = (p1,..., ps) € H> and consider the
circular locus of all points g € H> with gs = ps and d(q, ax) = 6. Varying over all
such g, we find d=, d* such that 0 < 7 < d= < d < d" < dj and (¢f. (2.9) and
Remark, Section 1.1)

coshd® — cosh T coshd™ — cosht

= sinh?§ = .
cosh 7 — cos(a + 3) s cosh 7 — cos(av — 3)
Therefore, it suffices to check that
coshdy — cosh T 1 — 4k

cosh —cos(a+ 3) — 2k
In order to verify (2.13), we distinguish between two cases.

Consider first the case cos(ae + 3) > 1 — 7. Choose k according to (2.8). Then,
(2.13) simplifies to

(2.12)

(2.13)

1 — 4k

coshdy < cosh Tt +

Since k < coshT+ 7 — 1 < coshdy +dy — 1 =: ko with coshdy ~ 1.00187, we see
that the inequality
1 — 4k
coshdy <1+ TO

implying (2.13) is verified.
Next, suppose that cos(a+/3) < 1—7. Choose k according to (2.11). Then, (2.13)

turns into
\/5 — 8T

coshdy < cosh7 + (cosht+7—1) -
4rT

Since cosh 7 + 7 — 1 > 7, it suffices to verify

\/5—87r7'

T

(2.14) 1.0019 < 1+ 7 -

The last term in (2.14) is strictly decreasing. Since 7 < d,, we obtain the bound
V3 — 87T - V3 — 87d,

4m 4m
which proves (2.14). [ |

~ 0.0154,
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3 Consequences
3.1 Volume Bounds
As first application, we derive some volume bounds.

Proposition 7 Let M be a hyperbolic 5-manifold M with m cusps and n distinct simple
closed geodesics of lengths < 0.059. Then,

m+n
3.1 s (M .
(3.1) vols (M) > — -

Proof Replace each of the m cusps by the canonical cusp neighborhood C;, 1 <
i < m, as described above. Cy, ..., C,, are pairwise disjoint. By methods based on
results of Bieberbach and a sphere packing argument including the lattice constant
computation §; = 72/16 of Korkine-Zolotareff (cf. [K2, Remark (a), p. 726]), one
has

1
vols;(C;) > % fori=1,...,m,

whence . .
vols({J &) = Y- vols(€i) > o
i=1 i=1

Suppose that M carries n > 1 distinct simple closed geodesics of lengths < 0.059
(< L < ly). By Proposition 6, Lemma 2, Lemma 3 and (2.7), M contains n mutually
disjoint tubes T, 1 < j < n, of total volume

n

! n
vols—,(jL_J1 Tj) = vols(T;) > n-0.01042 > 5%

j=1

Finally, by Lemma 4, the canonical cusps and the tubes are pairwise disjoint. This
finishes the proof. ]

Remark Let M be a (possibly non-orientable) hyperbolic 5-manifold M with m > 1
cusps. In [K2] and by methods based on the theory of (horo-)sphere packings, we
deduced the much better bound

(3.2) vols(M) > m - 0.3922.

Adjusting suitably the estimate (3.1) requires to lower the upper length bound 0.059.

Lemma 5 Let M be a hyperbolic 5-manifold. Then, there is a point p € M such that
the injectivity radius i,(M) of M at p satisfies

(3.3) i,(M) > 0.0343 > 1/30.
Proof Suppose that a shortest closed geodesic of M haslength I < I, := 0.0687526 <

ly. Then, by Proposition 6, there is a tube T embedded in M of radius r = r(I)
according to (2.2). By a result of A. Przeworski (c¢f. [Pr, Proposition 4.1]), there
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is an embedded ball B,(p) centered at some point p € M which is of radius p =
arcsinh(tanh(r) / 2) . Since r(I) is strictly monotonically decreasing, it follows that
p > p(ly) ~ 0.03439 and hence i,(M) > 0.03439. If a shortest closed geodesics on
M is of length > I, then i,(M) > 1, /2 ~ 0.03437 for all p € M. By comparison, the
result (3.3) follows. [ |

Theorem I For a hyperbolic 5-manifold M,
(3.4) vols (M) > 0.000083.

Proof If M is non-compact, the estimate follows from (3.2). Suppose that M is com-
pact. By Lemma 5, M contains a ball B of radius at least 0.0343. This yields the

estimate
(3.5) vols(M) > vols(B) > 0.00000025,
which we improve as follows. Consider the in-radius r(M) = max,ep i,(M) of

M. Let Sy C H’ denote a regular hyperbolic simplex of edge length 2r(M) with
spherical vertex simplex s, of dimension 4. By [K1, Theorem], there is the volume
bound

472 vols (Sreg)

(3.6) vols(M) > 5 m.

By means of [K1, Lemma 4] and [K1, Lemma 5], the quotient vols(Seg ) / vOly(sreg ) in
(3.6) can be estimated in terms of the dihedral angle 2« as given by the edge length
2r(M) (¢f. [K1, (3)]). Since r(M) > 0.0343, this leads to the asserted volume bound
vols(M) > 0.000083. |

Remarks (a) Cao and Waterman derived the bound r(M) > 1/544 for the in-radius
of a hyperbolic 5-manifold M (¢f. [CW, Theorem 9.8]). By exploiting (3.6) as above,
this yields the volume bound vols(M) > 0.00000023.

(b) Ratcliffe and Tschantz (¢f. [R2]) announced a geometrical construction of a
non-orientable hyperbolic 5-manifold with 10 cusps which is of volume 28((3) =~
33.6576. By passing to its oriented double cover one obtains a hyperbolic 5-manifold
of volume 56((3) which to our knowledge represents the smallest known volume
hyperbolic 5-manifold. Therefore, a smallest volume hyperbolic 5-manifold M, sat-
isfies 0.000083 < vols(M,) < 67.3152. Moreover, by Proposition 6 and Lemma 2, a
shortest closed geodesic in M, has length > 0.00043.

3.2 Injectivity Radius Versus Volume and Diameter

Let M be a compact hyperbolic 5-manifold. Denote by i(M) = minpcyi,(M) the
injectivity radius of M and by diam(M) = max, sen dist(p, q) the diameter of M.
The injectivity radius i(M) equals one half of the length of a shortest simple closed
geodesic in M. By results of P. Buser [Bul, Corollary 4.15] and A. Reznikov [R,
Theorem],

i(M) > const - vols(M) 3.

https://doi.org/10.4153/CJM-2003-042-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2003-042-4

1098 Ruth Kellerhals

We improve this estimate as follows.

Proposition 8 For a compact hyperbolic 5-manifold M,
(3.7) i(M) > const - vols(M) L.

Proof Assume that there is a short simple closed geodesic g of length [ in M. Then,
there is a tube T,(r) around g of radius r given by (cf. Proposition 6, (2.2))

1 27l
sinh®r = — —2, wherek = il

2k V3
This implies
™ . 4
vols(M) > V015(Tg(7’)) =5 [ -sinh”r.

Since sinh* r ~ const -I=2 for small I, we deduce ! > const - vols(M)~! as desired.
|

Proposition 9 For a compact hyperbolic 5-manifold M,
(3.8) i(M) > const - sinh(diam (M)) 2.

Proof Let g denote a simple closed geodesic in M. By a result due to E. Heintze and
H. Karcher [HK, Corollary 2.3.2], the length [ of g is bounded from below as follows.

2 vols(M)
~ 7w sinh? ( diam (M)) .
This together with Proposition 8, (3.7), yields

1

I > const -- — ,
i(M) - sinh (dlam(M))

which implies the desired result. ]
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