The virtues of eta-expansion

C. BARRY JAY \dagger
School of Computing Sciences, University of Technology, Sydney
PO Box 123, Broadway 2007
Australia (e-mail: cbj@socs.uts.edu.au)
NEIL GHANI
LFCS, Department of Computer Science, University of Edinburgh The King's Buildings, Mayfield Road Edinburgh EH9 3JZ, UK (e-mail: ng@dcs.ed.ac.uk)

Abstract

Interpreting η-conversion as an expansion rule in the simply-typed λ-calculus maintains the confluence of reduction in a richer type structure. This use of expansions is supported by categorical models of reduction, where β-contraction, as the local counit, and η-expansion, as the local unit, are linked by local triangle laws. The latter form reduction loops, but strong normalization (to the long $\beta \eta$-normal forms) can be recovered by 'cutting' the loops.

Capsule Review

This paper presents a confluent strongly normalizing rewriting system for the typed λ-calculus corresponding to cartesian closed categories with natural number object. The idea put to work in this paper is that of using a rewriting system where extensional equalities (the (η) rule, $\lambda x . M x=M$ and surjective pairing, $\left\langle p_{1} M, p_{2} M\right\rangle=M$) are turned into expansion rules, rather than contractions, as is customary.

This idea is not new: Prawitz (in proof theory), Huet (for higher order unification) and Mints (in category theory) all somehow suggested in the 1970s to explore this possibility. But these suggestions really got lost until the 1990s (maybe due to the initial success obtained by Pottinger and others in handling surjective pairing as a contraction), when Barry Jay re-discovered this idea (with category-theoretic motivations) and fully exploited it. The work was originally reported in a technical report in 1991. This fuller paper by Jay and Ghani is well-written and a nice exposition of the issues related to eta-expansion.

1 Introduction

Extensional equality for terms of the simply-typed λ-calculus requires η-conversion, whose interpretation as a reduction rule is usually a contraction

$$
\lambda x . f x \Rightarrow f
$$

[^0]If the type structure contains only arrow and product types, whose η-reduction is

$$
\left\langle\pi c, \pi^{\prime} c\right\rangle \Rightarrow c
$$

then the resulting system, including the usual β-reductions, has the properties of being: a congruence; confluent and; strongly normalizing. Thus reduction provides an effective procedure for deciding the equality of terms.

However, the additon of further datatypes typically causes one of these properties to fail. Even the introduction of a unit type (necessary for defining types with given constants, such as booleans and lists) is problematic. Specifically, if *:1 is the given constant of unit type, with η-rule

$$
a \Rightarrow * \quad \text { if } a: 1
$$

then confluence is lost because for any variable $f: A \rightarrow 1$ the term $\lambda x . f x$ has two normal forms

$$
\lambda x . * \Leftarrow \lambda x . f x \Rightarrow f
$$

(as noticed by Obtulowicz, and reported in Lambek and Scott, 1986).
Lambek and Scott handle this problem by suppressing all terms of unit type other than *, while Curien and Di Cosmo (Curien et al., 1991) recover confluence by applying the Knuth-Bendix algorithm to obtain additional reduction rules, while only preserving weak normalization.

However, confluence can be maintained without restrictions or the introduction of new rules by interpreting η-conversions as expansions

$$
\begin{array}{rlll}
t & \Rightarrow & \lambda x . t x & \text { if } t: A \rightarrow B \\
c & \Rightarrow & \left\langle\pi c, \pi^{\prime} c\right\rangle & \text { if } c: A \times B \\
a & \Rightarrow & * & \text { if } a: 1
\end{array}
$$

Note that in each case the amount of type information which can be inferred from a term is increased.

In addition to the recovery of confluence, the category-theoretic analysis of reduction provides a second argument in favour of interpreting η as an expansion.

In this analysis, types are interpreted by objects, terms by morphisms, and reductions by 2 -cells. For example, if ($\lambda z . t) a$ is a term of type Y containing one free variable of type X, then its β-reduction is represented

$$
X \xrightarrow[{t[a / z}]]{\stackrel{(\lambda z . t) a}{\Downarrow}} Y
$$

Labelling the 2-cells yields a 2-category (Seely, 1987; Rydeheard, 1987), while leaving them unlabelled yields an ordered category (Jay, 1992). If the 2 -cells are actually equalities then the result is the (ordinary) category of denotations.

Just as in the denotational semantics of λ-terms, models of reduction should be cartesian closed categories, where cartesian closure and, more generally, adjunctions
are re-interpreted to accommodate 2-cells. Exactly how this should be done is an area of active research (Gray, 1974; Kasangian et al., 1983; Jay, 1988, 1990, 1991a; Carboni et al., 1990; Hoare et al., 1989) but most developments share the following properties. There is a local counit and a local unit which are linked by local triangle laws. In our examples the local counit is β-contraction, the local unit is η-expansion (as opposed to η-contraction), while the local triangle laws assert certain equations between 2-cells. For function types this means the following 2-cells are both identities:

$$
\begin{align*}
\lambda x . t & \Rightarrow \quad \lambda y .(\lambda x . t) y
\end{align*} \quad \Rightarrow \quad \lambda y . t[y / x] \equiv \lambda x . t
$$

Such reduction sequences, from a term to itself, are called loops. The triangle laws for the product type are

$$
\begin{array}{rlcll}
\langle a, b\rangle & \Rightarrow & \left\langle\pi\langle a, b\rangle, \pi^{\prime}\langle a, b\rangle\right\rangle & \Rightarrow & \langle a, b\rangle \\
\pi c & \Rightarrow & \pi\left\langle\pi c, \pi^{\prime} c\right\rangle & \Rightarrow & \pi c \tag{2}\\
\pi^{\prime} c & \Rightarrow & \pi^{\prime}\left\langle\pi c, \pi^{\prime} c\right\rangle & \Rightarrow & \pi^{\prime} c
\end{array}
$$

where the latter pair of loops are thought of as a single loop in the product category. Those for the unit type are

$$
\begin{equation*}
* \Rightarrow * \Rightarrow * \tag{3}
\end{equation*}
$$

and the trivial loop in the terminal category.
Thus, η-expansions are supported by the categorical interpretation of reduction. Conversely, the confluence of reduction can be used to refine the ordered category semantics, so that models are confluently cartesian closed categories (Jay, 1992).

The obvious problem with expansion rules is that the system is not normalizing. In particular, the local triangle laws yield reduction loops which can be endlessly repeated. Any attempt to recover strong normalisation must 'cut' these loops. As β-reduction is inviolate, the expansions appearing in $(1,2)$ must be prevented. Thus, terms of function type may be expanded provided they are neither λ-abstractions nor applied: terms of product type may be expanded if they are neither pairs nor projected.

In fact, these restrictions alone are enough to recover strong normalization. That is, it is precisely the loops created by the local triangle laws which prevent normalization. Reduction is then confluent and strongly normalizing, but does not form a congruence, since the restrictions on expansion depend on the context.

The normal forms of the restricted system are the expanded normal forms of Prawitz' (1971), or the long $\beta \eta$-normal forms of Huet (1976). These forms appear, for example, in the development of the LF logical framework (Harper et al., 1991) and in the study of type classes (Hilken et al., 1991). Unlike the present system, Huet's reduction proceeded in two stages; first do β-reduction, then η-expansion, subject to restrictions that preserve β-normality.

The long $\beta \eta$-normal forms still satisfy a universal property in the unrestricted system as they are essentially normal i.e. any reduction from such a term is reversible. Thus every term is reducible to an essential normal form. The main conclusions

Table 1. The three rewrite relations

Rewrite Relation	Congruence	Confluence	Strong Normalization
η-contraction	yes	no	yes
η-expansion	yes	yes	no
restricted η-exp'n	no	yes	yes

of this paper can be summarized in Table 1 . The restricted η-expansions were first exploited by Mints (1979) for technical purposes, but omitted from his later writings; his approach is being revived by Čubrić (1992). The main results of this paper were announced by the first author in 1989, and appeared in Jay (1991b), though the first complete proof of the confluence of the restricted system was constructed by Di Cosmo and Kesner (1993). They, and Akama (1993), have each proved the confluence and strong normalization of the restricted system, but by methods distinct from ours.

Recently Dougherty (1993) applied expansionary rewrites to the more difficult issue of rewriting for coproducts, but in his approach confluence holds only for terms of ground type. An alternative approach extends the ideas contained in this paper by considering coproduct-introduction and coproduct-elimination as adjoint. The associated unit and counit then form an η - and β-rewrite rule, respectively, and full confluence can be proved. This work forms the core of the second author's forthcoming thesis.

The paper is structured as follows: section 2 introduces the reduction system; section 3 establishes a general confluence theorem, which is used in section 4 to prove confluence of the expansion system; section 5 introduces the restricted expansion system, and establishes confluence, while section 6 is devoted to its strong normalization; section 7 proves essential normalization of the expansion system.

2 Eta-expansion

The simply-typed λ-calculus over a set of base types has types freely generated by

$$
T:=T \times T|T \rightarrow T| N|\mathbf{1}| C
$$

where C denotes any base type. The atomic types are $1, N$ and the base types. For each type T, there are disjoint sets of variables $\operatorname{Var}(T)$, and constants $\operatorname{Con}(T)$ such that $* \in \operatorname{Con}(1)$ and $0 \in \operatorname{Con}(N)$. The well-formed terms (with their associated types)
are generated by the following inference system:

$$
\begin{array}{cc}
\overline{x: A} x \in \operatorname{Var}(A) & \overline{*: 1} \\
\frac{c: A}{} c \in \operatorname{Con}(A) \\
\frac{b: B}{\lambda x . b: A \rightarrow B} x \in \operatorname{Var}(A) & \\
\frac{f: A \rightarrow B \quad a: A}{\operatorname{app}(f, a): B} \\
\frac{a: A b: B}{\langle a, b\rangle: A \times B} & \frac{c: A \times B}{\pi c: A}
\end{array}
$$

$$
\overline{0: N} \quad \frac{n: N}{S n: N} \quad \frac{a: A \quad h: A \rightarrow A \quad n: N}{\operatorname{It}(a, h, n)}
$$

The term $\operatorname{app}(f, a)$ may be written $f a$. A typical term may be denoted $\mathscr{T}\left(u_{i}\right)$ where \mathscr{T} is the outer term constructor and the u_{i} are its arguments and a variable x may be expressed as $x()$. Basic familiarity with λ-calculus is assumed (e.g. Berendregt, 1984; Lambek and Scott, 1986), and terms equivalent under α-conversion are identified.

The expansionary rewrite relation has the following set of basic reductions:
$(\beta \rightarrow)$
$(\eta \rightarrow)$
$\left(\beta_{\times, 1}\right)$
$\left(\beta_{\times, 2}\right)$
$\left(\eta_{\times}\right)$
$\left(\eta_{1}\right)$
$\left(\beta_{N, 1}\right)$
$\left(\beta_{N, 2}\right)$

$$
\begin{array}{rl}
(\lambda x . b) a & \Rightarrow \\
t & b[a / x] \\
\pi\langle a, b\rangle & \Rightarrow \\
\pi^{\prime}\langle a, b\rangle & \Rightarrow \\
c & \Rightarrow \\
a & \Rightarrow \\
\pi^{\prime} c \\
\operatorname{It}(a, h, 0) & \Rightarrow \\
\operatorname{It}(a, h, S n) & \Rightarrow \\
h \operatorname{It}(a, h, n)
\end{array}
$$

where: (i) the η-rules have implicit type restrictions, e.g. $\eta \rightarrow$ is restricted to terms of function type; (ii) $\eta \rightarrow$ requires that x not be free in t, and; (iii) $\beta \rightarrow$ involves implicit α-conversion whenever substitution threatens to capture free variables of a. Closing basic reductions under the term constructors of the language yields the 1 -step rewrite relation, whose reflexive, transitive closure is denoted \Rightarrow.

Rewrites built solely from the various η-rules are called expansions. Conversely, those built without expansions are contractions. The rewrite relation on terms obtained by restricting the basic reductions to expansions (respectively, contractions) is denoted \rightarrow_{η} (respectively, \rightarrow_{β}).

3 An abstract confluence theorem

Confluence of the expansionary system and its restricted fragment will be proved using the following variant of a theorem by Kahrs (1991).

Let R and S be relations on some set. Denote the reflexive closure of R by $R^{=}$ and its reflexive transitive closure by R^{*}. The composite of R and S is denoted $R ; S$. Assume that R is confluent and strongly normalizing for the rest of this section.
S is R-extendable if every divergence $t_{1} \stackrel{S}{\leftarrow} t \xrightarrow{R} t_{2}$ can be completed to

Note that this definition is slightly stronger than that of Kahrs (1991).

Lemma 3.1
If S is R-extendable then it is R^{*}-extendable.

Proof

It suffices to prove that any divergence $t_{1} \stackrel{S}{\leftarrow} t \xrightarrow{R^{*}} t_{2}$ can be completed to

by induction on the R-rank of t. If the R^{*}-reduction of t is vacuous then the result is trivial. Otherwise we have the following completion

where the left cell exists by the R-extendability of S, the top right cell by R-confluence and the bottom right cell by the induction hypothesis.
S satisfies the diamond lemma relative to R if every divergence $t_{1} \stackrel{S}{\leftarrow} t \xrightarrow{S} t_{2}$ can be completed to

The usual diamond lemma arises when R is the identity relation.
Theorem 3.2
If S is R-extendable and satisfies the diamond lemma relative to R then $R \cup S$ is confluent.

Proof

It suffices to show that $R^{*} ; S^{=} ; R^{*}$ satisfies the diamond lemma, which is done by induction on the R-rank and repeated use of the premises and previous lemma. Details are given for those cases in which S always appears; the others are simpler.

If both of the first R^{*}-reductions are of length 0 then we can construct

and the confluence of R yields the desired completion.
Otherwise the divergence is completed to

This theorem will be applied with R given by β-reduction, which is confluent and strongly normalizing (Girard et al., 1989). However, neither η-expansion nor its restricted form satisfy the premises for S, and so a broader notion of expansion must be employed.

4 Confluence of the expansion system

Define $\eta(t)$ to be the basic expansion of a term t of product, exponent or unit type. A neutral term is one which is not a λ-abstraction, pair or $*$.

Lemma 4.1

The following statements hold:
(i) $\eta(t)\left[t^{\prime} / x\right]=\eta\left(t\left[t^{\prime} / x\right]\right)$
(ii) If t is not neutral then $\eta(t) \rightarrow \beta^{*} t$.
(iii) $\eta(\eta(t)) \rightarrow \beta^{\cdot} \eta(t)$
(iv) If $t \rightarrow \beta^{\cdot} t^{\prime}$ then $\eta(t) \rightarrow \beta^{*} \eta\left(t^{\prime}\right)$.

Proof
Trivial. Note that the number of β-reductions may increase in (iv) as the η_{\times}-rule duplicates its argument.

Parallel expansion (denoted \rightarrow) is the smallest relation on terms closed under
(i) Congruence: For each term constructor \mathscr{T}

$$
\frac{u_{i} \rightarrow u_{i}^{\prime}}{\mathscr{T}\left(u_{i}\right) \rightarrow \mathscr{T}\left(u_{i}^{\prime}\right)}
$$

(ii) Expansion: For any term u of product, exponent or unit type

$$
\frac{u \rightarrow u^{\prime}}{u \rightarrow \eta\left(u^{\prime}\right)}
$$

(iii) Substitution:

$$
\frac{u \rightarrow u^{\prime} \quad v \rightarrow v^{\prime}}{u[v / z] \rightarrow u^{\prime}\left[v^{\prime} / z\right]}
$$

A formal proof d of $u \rightarrow u^{\prime}$ is called a derivation and is denoted $u \rightarrow u^{\prime}$. The height of d is the length of its longest branch.

Lemma 4.2
Parallel expansion is a reflexive relation. Hence if $t \rightarrow t^{\prime}$ then $\eta(t) \rightarrow \eta\left(t^{\prime}\right)$.

Proof

The proof is by induction on term structure. If t is a variable $x()$, then the congruence rule applies, while the inductive step is straightforward. Congruence is also sufficient to establish the second result.

Lemma 4.3

If there is a derivation $t \rightarrow t^{\prime}$ whose only use of substitution is its last step then there is one which does not use substitution at all.

Proof
Let the final substitution be

$$
\frac{u \rightarrow u^{\prime} \quad v \rightarrow v^{\prime}}{u[v / z] \rightarrow u^{\prime}\left[v^{\prime} / z\right]}
$$

The proof is by induction on the height of the derivation $u \rightarrow u^{\prime}$. Its last rule is either a congruence or expansion. First, consider a congruence

$$
\frac{u_{i} \rightarrow u_{i}^{\prime}}{\mathscr{T}\left(u_{i}\right) \rightarrow \mathscr{T}\left(u_{i}^{\prime}\right) \quad v \rightarrow v^{\prime}} \underset{\mathscr{T}\left(u_{i}\right)[v / z] \rightarrow \mathscr{T}\left(u_{i}^{\prime}\right)\left[v^{\prime} / z\right]}{ }
$$

If z is not free in $\mathscr{T}\left(u_{i}\right)$ or $\mathscr{T}\left(u_{i}\right)=z$ then the result is trivial. Otherwise the derivation can be replaced by

$$
\frac{u_{i} \rightarrow u_{i}^{\prime} v \rightarrow v^{\prime}}{u_{i}[v / z] \rightarrow u_{i}^{\prime}\left[v^{\prime} / z\right]}
$$

(taking care that \mathscr{T} does not bind any free variables of v and v^{\prime}).
Second, Lemma 4.1 allows us to replace an expansion

$$
\frac{\frac{u \rightarrow u^{\prime \prime}}{u \rightarrow \eta\left(u^{\prime \prime}\right)} \quad v \rightarrow v^{\prime}}{u[v / z] \rightarrow \eta\left(u^{\prime \prime}\right)\left[v^{\prime} / z\right]}
$$

by

$$
\frac{\frac{u \rightarrow u^{\prime \prime}}{u[v / z] \rightarrow u^{\prime \prime}\left[v^{\prime} / z\right]}}{u[v / z] \rightarrow \eta\left(u^{\prime \prime}\left[v^{\prime} / z\right]\right)}
$$

In each case the height of the left-hand derivation of the new substitutions is reduced and so can be eliminated.

Theorem 4.4 (Substitution Elimination)
If there is a derivation $t \rightarrow t^{\prime}$, then there is one which doesn't involve substitution.
Proof
Use induction on the number of substitutions in the derivation and apply Lemma 4.3.

Corollary 4.5
Let \mathscr{T} be a term constructor of arity n. If

$$
u=\mathscr{T}\left(u_{1}, \ldots, u_{n}\right) \rightarrow u^{\prime}
$$

then there are derivations $u_{i} \rightarrow u_{i}^{\prime}$ and a number k such that

$$
u^{\prime}=\eta^{k}\left(\mathscr{T}\left(u_{1}^{\prime}, \ldots, u_{n}^{\prime}\right)\right)
$$

In particular, if u is a variable or constant and $u \rightarrow u^{\prime}$, then $u^{\prime}=\eta^{k}(u)$.
Proof
Induction on the height of the derivation.

Corollary 4.6
There are inclusions $\rightarrow_{\eta} \subset \rightarrow \subset \rightarrow_{\eta^{*}}$ which are strict.
Proof
The strictness of the first inclusion is easily proved. For instance if t is any term of type 1 then the rewrite

$$
\langle t, t\rangle \rightarrow\langle *, *\rangle
$$

is clearly not in \rightarrow_{η}. The second inclusion follows from Corollary 4.5, which also implies strictness, since, for any term f of type $N \times N \rightarrow N$, there is an expansion

$$
f \rightarrow_{\eta^{\cdot}} \lambda x . f\left\langle\pi x, \pi^{\prime} x\right\rangle
$$

whose reduct is not of the form $\eta^{k}(f)$.

Proposition 4.7

Parallel expansion satisfies the diamond lemma and so is confluent. Thus \rightarrow_{η} is also confluent.

Proof

The proof is by induction on term structure. Consider a pair of rewrites of $\mathscr{T}\left(u_{i}\right)$ to $\eta^{j}\left(\mathscr{T}\left(u_{i}^{\prime}\right)\right)$ and $\eta^{k}\left(\mathscr{T}\left(u_{i}^{\prime \prime}\right)\right)$ where $u_{i} \rightarrow u_{i}^{\prime}$ and $u_{i} \rightarrow u_{i}^{\prime \prime}$. By induction, each u_{i}^{\prime} and $u_{i}^{\prime \prime}$ have a common expansion v_{i} and so $\eta^{j+k}\left(\mathscr{T}\left(v_{i}\right)\right)$ is the desired completion. Now Corollary 4.6 shows \rightarrow_{η} is confluent.

Lemma 4.8

Parallel expansion is β-extendable.

Proof

Consider a divergence $t_{1} \leftrightarrow t \rightarrow_{\beta} t_{2}$. The proof is by induction on the height of the derivation of its parallel expansion, which we assume does not use substitution. Thus there are two cases to consider.

First, if the parallel expansion is an application of the expansion rule to $t \rightarrow t_{1}^{\prime}$, then by induction there is a completion

Setting $t_{4}=\eta\left(t_{4}^{\prime}\right)$ implies that $t_{1} \rightarrow \beta^{\cdot} t_{4}$ by Lemma 4.1 and $t_{3} \rightarrow t_{4}$ by expansion.
Second, if the last rule of the parallel expansion is a congruence then perform a case analysis on the β-reduction. If it is $(\lambda x . \phi)(\psi) \rightarrow_{\beta} \phi[\psi / x]$ then the parallel expansion must be of the form $(\lambda x . \phi)(\psi) \rightarrow \sigma_{1} \psi_{1}$ where $\lambda x . \phi \rightarrow \sigma_{1}$ and $\psi \rightarrow \psi_{1}$. Hence, by Corollary 4.5, there is a term ϕ_{1} such that $\phi \rightarrow \phi_{1}$ and

$$
\sigma_{1}=\eta^{k}\left(\lambda x \cdot \phi_{1}\right)
$$

and so $\sigma_{1} \rightarrow \beta^{\circ} . \lambda x . \phi_{1}$ by Lemma 4.1. Thus the divergence can be completed to

Other basic β-reductions are handled similarly.
If the β-reduction of $t=\mathscr{T}\left(u_{i}\right)$ is of a proper subterm then the divergence is of the form

$$
\eta^{k}\left(\mathscr{T}\left(u_{i}^{\prime}\right)\right) \leftarrow \mathscr{T}\left(u_{i}\right) \rightarrow_{\beta} \mathscr{T}\left(u_{i}^{\prime \prime}\right)
$$

where $u_{i} \rightarrow u_{i}^{\prime}$ and $u_{t} \rightarrow \beta^{=} u_{i}^{\prime \prime}$ by assumption. The induction hypothesis is applied to each of these divergences to obtain terms v_{i} and w_{i} such that $u_{i}^{\prime \prime} \rightarrow \beta^{\bullet} v_{i} \rightarrow w_{i}$ and $u_{i}^{\prime} \rightarrow \beta_{\beta} . w_{i}$ and so $\eta^{k}\left(\mathscr{T}\left(w_{i}\right)\right)$ provides the desired completion.

Theorem 4.9

The expansionary system is confluent.

Proof

It has the same reflexive, transitive closure as $\rightarrow_{\beta} \cup \rightarrow$ which is confluent by Theorem 3.2.

5 Confluence of the restricted system

A rewrite $t \Rightarrow t^{\prime}$ is reversible if $t^{\prime} \Rightarrow t$. Among these are the triangular expansions, i.e. the expansions appearing in the triangle laws $(1,2,3)$. The 1 -step restricted reduction system consists of those 1 -step rewrites of the expansionary relation which are not triangular expansions.

The proof of confluence for the restricted system is obtained by imposing restrictions on parallel expansion which reflect those on expansions generally. Expansions are triangular if they are either of non-neutral terms, or of terms which are projected or applied, etc. The first restriction is directly incorporated into the definition below. The second, context-sensitive, restriction appears indirectly, via the notion of principal subterm, which we now define.

The principal subterm of an application $t u$ is t; that of the projections πt and $\pi^{\prime} t$ is t. Other terms do not have a principal subterm.

Restricted parallel expansion (denoted $\rightarrow{ }_{r}$) is the smallest relation on terms closed under
(i) Expansion: If u^{\prime} is neutral and of product, exponent or unit type then

$$
\frac{u \rightarrow_{r} u^{\prime}}{u \rightarrow r \eta\left(u^{\prime}\right)}
$$

(ii) Congruence: For each term constructor \mathscr{T}

$$
\frac{u_{i} \rightarrow_{r} u_{i}^{\prime}}{\mathscr{T}\left(u_{i}\right) \rightarrow_{r} \mathscr{T}\left(u_{i}^{\prime}\right)}
$$

provided that if u_{1} is the principal subterm of $\mathscr{T}\left(u_{1}\right)$ then there is a derivation of $u_{i} \rightarrow_{r} u_{i}^{\prime}$ whose last step is not an expansion.

Lemma 5.1

Restricted parallel expansions lie in the reflexive transitive closure of restricted expansion.

Proof
An inductive proof will establish the stronger claim that if $u \rightarrow_{r} v$ then there is a restricted expansion sequence $u \rightarrow_{\eta^{\cdot}} v$ such that if the former derivation does not end in an expansion then the latter does not contain a basic expansion. If the last step of the derivation of $u \rightarrow_{r} v$ is an expansion then the result is immediate. If the last step yields $\mathscr{T}\left(u_{i}\right) \rightarrow_{r} \mathscr{T}\left(v_{i}\right)$ by congruence then the existence of the reduction follows by induction (and the restrictions on principal sub-terms) and the resulting reduction contains no basic expansions since all reductions act on the u_{1} 's.

Lemma 5.2
If $t_{1} \rightarrow t_{2}$ then there is a β-reduction $t_{2} \rightarrow \beta$. t_{3} such that $t_{1} \rightarrow r t_{3}$.

Proof

The proof is by induction on the height of the derivation $t_{1} \rightarrow t_{2}$. If the last step is of the form

$$
\frac{t_{1} \rightarrow t_{2}^{\prime}}{t_{1} \rightarrow \eta\left(t_{2}^{\prime}\right)}
$$

then the induction hypothesis gives a term t_{3}^{\prime} such that $t_{2}^{\prime} \rightarrow_{\beta} . t_{3}^{\prime}$ and $t_{1} \rightarrow_{r} t_{3}^{\prime}$. If t_{3}^{\prime} is neutral, then $t_{3}=\eta\left(t_{3}^{\prime}\right)$ is as required. Otherwise $\eta\left(t_{2}^{\prime}\right) \rightarrow \beta_{\beta} \cdot \eta\left(t_{3}^{\prime}\right) \rightarrow_{\beta} . t_{3}^{\prime}$ by Lemma 4.1(iv,ii). Now set $t_{3}=t_{3}^{\prime}$.

Alternatively, if the last step of $t_{1} \rightarrow t_{2}$ is a congruence, say

$$
\frac{u_{i} \rightarrow u_{i}^{\prime}}{\mathscr{T}\left(u_{i}\right) \rightarrow \mathscr{T}\left(u_{i}^{\prime}\right)}
$$

then the induction hypothesis yields reductions $u_{i} \rightarrow_{r} v_{i}$ and $u_{i}^{\prime} \rightarrow \beta^{\circ} v_{i}$ for each i. Hence $\mathscr{T}\left(u_{i}^{\prime}\right) \rightarrow_{\beta^{\prime}} \mathscr{T}\left(v_{i}\right)$ and $\mathscr{T}\left(u_{i}\right) \rightarrow_{r} \mathscr{T}\left(v_{i}\right)$ unless $\mathscr{T}\left(u_{i}\right)$ has a principal sub-term u_{j} for which $u_{j} \rightarrow r v_{j}$ ends with v_{j}^{\prime} being expanded. Then $\mathscr{T}\left(v_{i}^{\prime}\right)$ where $v_{1}^{\prime}=v_{i}$ if $i \neq j$ is the required term.

Lemma 5.3
Restricted parallel expansion satisfies the diamond lemma relative to β-reduction.

Proof

Given two \rightarrow_{r}-reducts of t, there is a completion of the form

where the top square arises from the diamond lemma for parallel expansion, the triangular cells are instances of Lemma 5.2, and the bottom cell is given by confluence of β-reduction.

Lemma 5.4
Restricted parallel expansion is β-extendable.
Proof
Any divergence of the form $t_{1} \leftarrow_{\beta} t \rightarrow r t_{2}$ can be completed to

where the first cell is the β-extendability of \rightarrow and the second is by Lemma 5.2.

Theorem 5.5

The restricted expansionary system is confluent.

Proof

The confluence of $\rightarrow_{\beta} \cup \rightarrow_{r}$ is an application of Theorem 3.2 so that it suffices to prove that the restricted system has the same reflexive transitive closure. That restricted parallel expansion is reflexive and contains restricted expansion follows as in the unrestricted case, and Lemma 5.1 establishes the rest.

6 Strong Normalization

Theorem 6.1
The restricted reduction system is strongly normalizing to Huet's long $\beta \eta$-normal forms.

The long $\beta \eta$-normal forms are simply the normal forms of the restricted system. Reduction to normal form can be achieved by first reducing to β-normal form, and then performing restricted expansions (from the inside out). Cubric's counterexample to this strategy arises from taking $a \Rightarrow *$ to be a β-rule. The following lemmas are of use

Lemma 6.2

(i) Let $t: A \times B$ be a term. If πt and $\pi^{\prime} t$ are strongly normalizable then so is t.
(ii) Let $t: A \rightarrow B$ be a term and $x: A$ be a variable not free in t. If $t x: B$ is strongly normalizable then so is t.

Proof

For (i) it suffices to show that all the 1 -step reducts of t are strongly normalizable, by induction on the rank of πt. The result $\left\langle\pi t, \pi^{\prime} t\right\rangle$ of a basic expansion is strongly normalizable since its only reductions arise from those of its components. Any other 1 -step reduction $t \Rightarrow t^{\prime}$ induces another such of πt and $\pi^{\prime} t$. The projections of t^{\prime} are strongly normalizable, and of lower rank than those of t. Thus t^{\prime} is strongly normalizable by induction. (ii) is proved similarly to (i) since reductions of λ-terms are all obtained by reductions of their body.

Strong normalization of the restricted system is proved by Girard's reducibility techniques (Girard et al., 1989). The presence of expansionary, context sensitive rewrite rules means that the reducibility predicates must be modified slightly.

The set RED_{T} of reducible terms for each type T is defined by induction on the structure of T. Let $t: T$ be a term:
(i) If T is an atomic type then t is reducible if it is strongly normalizable.
(ii) If $T=U \times V$ then t is reducible if πt and $\pi^{\prime} t$ are.
(iii) If $T=U \rightarrow V$ then t is reducible if $t u: V$ is reducible for all reducible $u: U$.

The proof hinges on simultaneously establishing the following three hypotheses:
CR 1 If $t \in \operatorname{RED}_{T}$ then t is strongly normalizable.
CR 2 If $t \in \operatorname{RED}_{T}$ and $t \Rightarrow t^{\prime}$ then $t^{\prime} \in \operatorname{RED}_{T}$.
CR 3^{\prime} If t is neutral and every 1 -step reduct of t other than those obtained by a basic expansion of t is in RED_{T} then $t \in \operatorname{RED}_{T}$.
$\mathrm{CR} 3^{\prime}$ differs from the original CR 3 by the insertion of the italicized restriction, introduced to cope with the expansions. In particular, $\mathrm{CR} 3^{\prime}$ implies that variables are reducible. Although the modifications to the usual proof are minor, it is presented in full because of the basic delicacy of the arguments.

Lemma 6.3
Let CR1,2, 3^{\prime} hold for types A and B and let $u: A$ and $v: B$ be reducible. Then $\langle u, v\rangle$ is reducible.

Proof

Both u and v are strongly normalizable by CR1. Thus we can use induction on the
sum of their ranks to prove that $t=\pi\langle u, v\rangle$ is reducible by $\mathrm{CR} 3^{\prime}$. Its 1 -step reducts (other than basic expansions) are:
(i) u
(ii) $\pi\left\langle u^{\prime}, v\right\rangle$, where $u \Rightarrow u^{\prime}$
(iii) $\pi\left\langle u, v^{\prime}\right\rangle$ where $v \Rightarrow v^{\prime}$
(i) u is reducible by assumption. (ii) u^{\prime} is reducible by CR 2 and has lower rank than u. Hence $\pi\left\langle u^{\prime}, v\right\rangle$ is reducible by induction. (iii) This is similar to (ii).

Lemma 6.4
Let CR1,2,3' hold for all sub-types of A and B (inclusive) and let $t: B$ be a term and $x: A$ be a variable. If the term $t[u / x]: B$ is reducible whenever $u: A$ is, then $\lambda x . t: A \rightarrow B$ is reducible.

Proof

Assume the result is true whenever the type of $\lambda x . t$ is a proper sub-type of $A \rightarrow B$. Since $t=t[x / x]$ is reducible it follows that it is strongly normalizable, as is any reducible $u: A$. Thus we can use induction on the sum of their ranks to prove that ($\lambda x . t) u: B$ is reducible by CR 3^{\prime}. Its 1 -step reducts (other than basic expansions) are
(i) $t[u / x]$
(ii) $(\lambda x . t) u^{\prime}$, where $u \Rightarrow u^{\prime}$
(iii) $\left(\lambda x . t^{\prime}\right) u$ where $t \Rightarrow t^{\prime}$
(i) $t[u / x]$ is reducible by assumption. (ii) u^{\prime} has lower rank than u. (iii) Since t^{\prime} has lower rank than t it suffices to show that $t^{\prime}[u / x]$ is reducible, and apply induction.

If the reduction $t \Rightarrow t^{\prime}$ induces a reduction $t[u / x] \Rightarrow t^{\prime}[u / x]$ then we are done by CR2. A simple induction on the structure of t shows the only alternative to be that t^{\prime} is obtained by a basic expansion of an occurrence of the free variable x in t and u is either a pair or a λ-abstraction. Now $\eta(u)$ is reducible: in the first case by Lemma 6.3; in the second, if $u: C \rightarrow D$ then $u v: D$ is reducible whenever $v: C$ is, and induction shows that $\lambda y . u y$ is reducible (where y is not free in u). Hence $t[\eta(u) / x]$ is reducible by assumption. Finally, Lemma 4.1 implies that $t[\eta(u) / x] \rightarrow{ }_{\beta}{ }^{\prime} t^{\prime}[u / x]$, and so this reduct is also reducible, by CR 2 for B.

Theorem 6.5

$\mathrm{CR} 1, \mathrm{CR} 2$ and $\mathrm{CR} 3^{\prime}$ hold for every type T.
Proof
The proof is by induction on the structure of the type T. In each case two forms of 1 -step reduction of a term $t: T$ are considered, namely the basic expansions and the others.

If T is atomic then CR 1 is a tautology and CR 2 holds trivially. For $\mathrm{CR}^{\prime} 3^{\prime}$ it suffices to show that any basic expansion of t is also strongly normalizable but the only case is $t \Rightarrow *$.

Consider $T=A \times B$. If t is reducible then so are πt and $\pi^{\prime} t$ which are then strongly normalizable by induction. Thus t is strongly normalizable by Lemma 6.2 and so CR1 holds.

CR2 for a basic expansion of t follows from Lemma 6.3 since the components of the pair $\left\langle\pi t, \pi^{\prime} t\right\rangle$ are reducible by definition. Otherwise a 1 -step reduction $t \Rightarrow t^{\prime}$ yields $\pi t \Rightarrow \pi t^{\prime}$ whence πt^{\prime} is reducible by CR2 for A. The analogous argument for $\pi^{\prime} t^{\prime}$ holds and so t^{\prime} is reducible, as required.

For $\mathrm{CR} 3^{\prime}$, let t be a neutral term whose 1 -step reductions other than basic expansions produce reducible terms. Since t is neutral, a 1 -step reduction of πt which is not a basic expansion must be of the form $\pi t \Rightarrow \pi t^{\prime}$ where $t \Rightarrow t^{\prime}$. The latter reduction is not a basic expansion since otherwise $\pi t \Rightarrow \pi t^{\prime}$ would be triangular. Thus t^{\prime} is reducible by hypothesis, whence πt^{\prime} is by definition. Thus πt is reducible by CR 3^{\prime} for A. The analogous argument for $\pi^{\prime} t$ holds and so t is reducible, as required.

Now consider $T=A \rightarrow B$. If t is a reducible term and $x: A$ is a variable not free in t then $t x$ is reducible by definition, and so strongly normalisable by hypothesis. Thus t is strongly normalizable by Lemma 6.2.

CR 2 for a basic expansion of t to λx.tx follows from Lemma 6.4 since its conditions are satisfied by assumption. The other 1 -step reductions $t \Rightarrow t^{\prime}$ induce $t u \Rightarrow t^{\prime} u$ for any reducible term $u: A$ and so $t^{\prime} u$ is reducible by CR2 for B. Thus t^{\prime} is reducible by definition.

For $\mathrm{CR}^{\prime} 3^{\prime}$, let t be a neutral term whose 1 -step reductions other than basic expansion produce reducible terms. We will show that $t u: B$ is reducible for every reducible term $u: A$ by $\mathrm{CR}^{\prime} 3^{\prime}$ for B and induction on the rank of u and t. Consider a 1 -step reduction of $t u$ which is not a basic expansion. Since t is neutral, it is given by either $t \Rightarrow t^{\prime}$ or $u \Rightarrow u^{\prime}$. Now such a reduction $t \Rightarrow t^{\prime}$ cannot be a basic expansion (since otherwise $t u \Rightarrow t^{\prime} u$ would be triangular) and so t^{\prime} is reducible, whence $t^{\prime} u$ is. On the other hand, u^{\prime} is reducible and of lower rank than u by CR 1 and CR 2 .

Lemma 6.6

The term $t=\operatorname{It}(a, h, n)$ is reducible if a, h and n are.

Proof

By CR 3^{\prime}, it suffices to show that any reduct of t other than a basic expansion is reducible, by induction, first on the sum of the ranks of a, h and n and second, on the number of leading S 's in n. Any such reduction of t is either a reduction of one of one of its sub-terms, in which case induction applies, or is of the form

$$
t=\operatorname{It}\left(a, h, S n^{\prime}\right) \Rightarrow h \operatorname{It}\left(a, h, n^{\prime}\right) \quad \text { or } \quad t=\operatorname{It}(a, h, 0) \Rightarrow a
$$

In the first case, as h is reducible, it suffices to prove that $\operatorname{It}\left(a, h, n^{\prime}\right)$ is. Now n^{\prime} must be reducible and of no higher rank than n, and furthermore, has one less leading S in its construction so the induction hypothesis applies. In the second case, a is reducible by assumption.

Proposition 6.7

Let $t: T$ be any term, with free variables among $x_{i}: X_{i}$ for $i=1, \ldots, n$ and let $u_{i}: X_{i}$ be reducible terms. Then $t\left[u_{i} / x_{i}\right]$ is reducible.

Proof

The proof is by induction over the structure of the term. The cases involving variables, *, 0 , successor, projection and application are all trivial, while pairing and iterator are handled by Lemma 6.3 and Lemma 6.6. Finally, if $t=\lambda y . b: A \rightarrow B$ then $t\left[u_{l} / x_{i}\right]$ is reducible iff $b\left[u_{i} / x_{i}\right][v / y]$ is reducible for all reducible $v: A$ which follows by induction.

Corollary 6.8
In the restricted system every term is reducible, and so is strongly normalizable.

Proof

Apply the theorem with $u_{1}=x_{i}$.
This normalization result yields separate proofs of the earlier confluence theorems. That of the restricted system follows upon establishing weak confluence (Curien et al., 1991), a task made more complex than usual by the context sensitive nature of the relation. The full system is covered by

Corollary 6.9
If $t \Rightarrow t^{\prime}$ in the full system then t and t^{\prime} have the same normal form in the restricted system. Hence the full system is confluent.

Proof

Let t_{0} be the normal form of t in the restricted system. It suffices, by induction on the length of the reduction sequence, to consider a 1 -step reduction $t \Rightarrow t^{\prime}$. If this step is in the restricted system then t^{\prime} also has normal form t_{0}. Otherwise, $t_{0} \Rightarrow t_{1}$ is a triangular expansion, and so is reversible, whence $t_{1} \Rightarrow t_{0} \Rightarrow t$ in the restricted system. Confluence follows directly.

7 Essential normalization

As noted above, the presence of reduction loops means that no terms of higher type are normal in the full system, at least in the usual sense. There is, however, a weaker notion which 'ignores' reversible reductions.

A term t is an essential normal form if any reduction of it is reversible, i.e. if $t \Rightarrow t^{\prime}$ (not necessarily in one step) then $t^{\prime} \Rightarrow t$. It is essentially normalizable if there is a number k, called an essential bound for t, such that each reduction sequence from t has at most k irreversible steps. The reduction system is (strongly) essentially normalizing if every term is so, and weakly essentially normalizing if every term reduces to an essentially normal term.

Theorem 7.1

The full system is weakly essentially normalizing to the long $\beta \eta$-normal forms.

Proof

If t is a long $\beta \eta$-normal form then by Corollary 6.9 its reducts in the full system reduce to its normal form in the restricted system, i.e. to t itself. Thus t is essentially normal. As every term reduces to a long $\beta \eta$-normal form in the restricted system, we are done.

Several plausible conjectures about this system do not hold, as will be seen from the following examples.

Not every reversible reduction is triangular. Let $f: N \rightarrow N \rightarrow N$ and $m, n: N$ all be variables. Then

$$
\begin{equation*}
f m n \Rightarrow(\lambda x . f x) m n \Rightarrow(\lambda x . \lambda y . f x y) m n \tag{4}
\end{equation*}
$$

Now $f m n$ is a long $\beta \eta$-normal form and so of course the first reduction must be a triangular expansion. The second expansion is reversible but not triangular. Similar possibilities arise with pairing.
Proposition 7.2
The full system is not strongly essentially normalizing.
Proof
Let $s=\left(\lambda x .\left\langle y, y^{\prime}\right\rangle\right) x: N \times N$ where $x, y, y^{\prime}: N$ are variables. Then $\pi s \Rightarrow y$ and $\pi^{\prime} s \Rightarrow y^{\prime}$ and so

$$
\begin{aligned}
\pi s & \Rightarrow \pi\left\langle\pi s, \pi^{\prime} s\right\rangle \\
& \Rightarrow \pi\left\langle y, \pi^{\prime} s\right\rangle \\
& \Rightarrow \pi\left\langle y, \pi^{\prime}\left\langle\pi s, \pi^{\prime} s\right\rangle\right\rangle \\
& \Rightarrow \pi\left\langle y, \pi^{\prime}\left\langle\pi s, y^{\prime}\right\rangle\right\rangle
\end{aligned}
$$

Now set $r=\pi\left\langle y, \pi^{\prime}\left\langle z, y^{\prime}\right\rangle\right\rangle$ where $z: N$ is a variable and define

$$
\begin{aligned}
s_{0} & =\pi s \\
s_{n+1} & =r\left[s_{n} / z\right]
\end{aligned}
$$

That $s_{n} \Rightarrow s_{n+1}$ was proved above for $n=0$, while in general

$$
s_{n+1}=r\left[s_{n} / u\right] \Rightarrow r\left[s_{n+1} / u\right]=s_{n+2}
$$

The result follows upon showing the irreversibility of these reductions. More generally, we show, by induction on m, that if $s_{m} \Rightarrow s_{n}$ then $m \geq n$. The base case is vacuously true. For the induction step, consider a reduction $s_{m+1}=r\left[s_{m} / z\right] \Rightarrow s_{n}$.

Observe that if $r \Rightarrow r^{\prime}$ then all occurrences of z in r^{\prime} are as a component of a pair, since $r^{\prime} \neq z$ by normalization considerations and z may not be the subject of a projection.

Thus the reduction above decomposes into a one of $r \Rightarrow r^{\prime}$ and, for each free occurrence of z in r^{\prime}, a reduction of s_{m} to a sub-term t of s_{n}. Now t has the same essential normal form y as s_{m} and so must be either y or s_{p} for some $p \leq n$ (by induction on n). Thus if t is s_{p} then the original induction hypothesis implies $n \geq p \geq m$ as required. Otherwise, each t is y and so $r^{\prime}[y / z]=s_{n}$ which is impossible since the left-hand side is λ-free.

8 Acknowledgements

We are grateful to D. Čubric for introducing us to the links with Mints' work; R. Di Cosmo and D. Kesner for pointing out some problems with earlier versions of
this work; S. Soloviev for translating some of Mints work, and; the referees for their comments. We would also like to thank P.-L. Curien, S. Kahrs, E. Kazmierczak, M. Mendler, G. Plotkin, A. Simpson and T. Stroup for many stimulating conversations, and the members of the Applications of Categories Club and the Categorical Rewriting Club for their constructive criticism.

References

Akama, Y. (1993) On Mints' Reduction for ccc-Calculus. Lecture Notes in Computer Science Vol. 664. Springer-Verlag, pp. 1-12.
Barendregt, H. P. (1984) The Lambda Calculus Its Syntax and Semantics (Revised Ed.). Studies in Logic and the Foundations of Mathematics 103. North Holland.
Carboni, A., Kelly, G. M. and Wood, R. (1990) A 2-categorical approach to change of base and geometric morphisms I. Sydney Category Seminar Reports 90-1.

Curien, P.-L. and Di Cosmo, R. (1991) A confluent reduction for the λ-calculus with surjective pairing and terminal object. In: Proc. ICALP: Lecture Notes in Computer Science Vol. 510. Springer-Verlag, pp. 291-302. (Also Tech. Rep. LIENS-91-11.)
Di Cosmo, R. and Kesner, D. (1993) A confluent reduction for the extensional typed λ calculus. In: Proc. ICALP: Lecture Notes in Computer Science Vol. 700. Springer-Verlag.
D. Dougherty, D. (1993) Some λ-calculi with categorical sums and products. In: Rewriting Techniques and Applications: Lecture Notes in Computer Science Vol. 690. Springer-Verlag, pp. 137-151.
Girard, J.-Y., Taylor, P. and Lafont, Y. (1989) Proofs and Types. Cambridge University Press.
J.W. Gray, J. W. (1974) Formal category theory: Adjointness for 2-categories: Lecture Notes in Mathematics Vol. 391. Springer-Verlag.
Harper, R., Honsell, F. and Plotkin, G. (1991) A framework for defining logics. Tech. Rep. LFCS-91-162.
Hilken, B. P. and Rydeheard, D. E. (1994) Towards a categorical semantics of type classes. Fundamenta Informatica (to appear).
Hoare, C. A. R., Jifeng, H. and Martin, C. E. (1989) Pre-adjunctions in Order Enriched Categories. Oxford University Computing Laboratory.
Huet, G. (1976) Résolution d'équations dans des langages d'ordre $1,2, \ldots, \omega$. Thèse d'Etat, Université de Paris VII.
Jay, C. B. (1988) Local adjunctions. J. Pure Appl. Alg. 53: 227-238.
Jay, C. B. (1990) Extending properties to categories of partial maps. Tech. Rep. LFCS-90-107.
Jay, C. B. (1991) Partial functions, ordered categories, limits and cartesian closure. In: G. Birtwistle (ed), IV Higher Order Workshop, Banff, 1990, Workshops in Computing. SpringerVerlag, pp. 151-161.
Jay, C. B. (1992) Modelling reduction in confluent categories. In: M. Fourman et al. (ed.), Proc. Durham Symposium on Applications of Categories in Computer Science, Workshops in Computing, vol. 177. London Mathematics Society, pp. 143-162.
Jay, C. B. (1991) Long $\beta \eta$ Normal Forms and Confluence. Tech. Rep. LFCS-91-183 (and its revised version).
Kahrs, S. (1991) λ-rewriting. PhD thesis, Universität Bremen (in German).
Kasangian, S., Kelly, G. M. and Rossi, F. (1983) Cofibrations and the realization of non deterministic automata. Cahiers de Topologie et Géometrie Différentielle 24: 23-46.
Lambek, J. and Scott, P. (1986) Introduction to higher order categorical logic. Cambridge University Press.

Mints, G. E. (1979) Teorija categorii i teoria dokazatelstv.I., in: Aktualnye problemy logiki i metodologii nauky, Kiev, pp. 252-278.
Prawitz, D. (1971) Ideas and results in proof theory. In: J. E. Fenstad (ed.), Proc. 2nd Scandinavian Logic Symposium, pp. 235-307. North-Holland.
Rydeheard, D. E. and Stell, J. G. (1987) Foundations of equational deduction: A categorical treatment of equational proofs and unification algorithms. In: Pitt et al. (eds.), Category Theory and Computer Science: Lecture Notes in Computer Science Vol. 283. Springer-Verlag, pp. 114-139.
Seely, R. A. G. (1987) Modelling computations: a 2-categorical framework. In: Proc. Second Annual Symposium on Logic in Computer Science. IEEE.

[^0]: \dagger Research supported by The Royal Society of Edinburgh/BP.

