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Group Actions and Codes
V. Puppe

Abstract. A Z2-action with “maximal number of isolated fixed points” (i.e., with only isolated fixed
points such that dimk(⊕iHi (M; k)) = |MZ2 |, k = F2) on a 3-dimensional, closed manifold deter-
mines a binary self-dual code of length= |MZ2 |. In turn this code determines the cohomology algebra
H∗(M; k) and the equivariant cohomology H∗Z2

(M; k). Hence, from results on binary self-dual codes
one gets information about the cohomology type of 3-manifolds which admit involutions with max-
imal number of isolated fixed points. In particular, “most” cohomology types of closed 3-manifolds
do not admit such involutions. Generalizations of the above result are possible in several directions,
e.g., one gets that “most” cohomology types (over F2) of closed 3-manifolds do not admit a non-trivial
involution.

This note is concerned with certain aspects of the following statement and ques-
tion due to F. Raymond and R. Schultz: “It is generally felt that a manifold ‘chosen
at random’ will have very little symmetry. Can this intuitive notion be made more
precise? . . . ” (s. [Pu2] and the references given there for further comments and re-
sults in this direction). Here we mainly consider involutions on closed 3-manifolds,
but—in principle—similar arguments could be applied to Zp- or S1-actions on closed
manifolds.

1 m-Involutions and Filtrations

Let X be a connected finite-dimensional space with an involution, which has only
isolated fixed points. If the number of isolated fixed points is maximal, i.e., if it
equals the total dimension of H∗(X; k) as a (graded) k-vector space, k = F2, we call
the involution an m-involution for the purpose of this note. In this case—using the
Borel construction and the localization theorem for equivariant cohomology—one
gets that the inclusion of the fixed point set, XG ↪→ X, induces an injection of k[t]-
algebras H∗G(X)→ H∗G(XG) ∼= kn ⊗ k[t], k[t] = H∗G(pt) = H∗(BG), which becomes
an isomorphism after inverting t . Here G = Z2,H∗(−) denotes Čech-cohomology
with coefficients in k = F2, n = dimk⊕iHi(X) (cf., e.g., [AP], Chapter 1, Section 3).

We therefore study the following algebraic situation. Let A∗ (corresponding to
H∗G(X)) be a graded connected algebra, flat over k[t], with a degree preserving injec-
tion ι : A∗ → kn ⊗ k[t], deg(t) = 1, (corresponding to H∗G(X) → H∗G(XG)) where
kn is concentrated in degree 0 and is equipped with the componentwise multiplica-
tion ν : kn × kn → kn, ν

(
(a1, . . . , an), (b1, . . . , bn)

)
= (a1b1, . . . , anbn). Assume

that after localization with respect to t the map ι becomes an isomorphism. Let
A∗ := A∗

⊗
k[t] k0 (corresponding to H∗(X) ∼= H∗G(X)

⊗
k[t] k0 = H∗G(X)/tH∗G(X)),
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where k0 = k[t]/tk[t] as k[t]-module, and d := max{i; Ai �= 0} (corresponding to
the cohomological dimension cd(X) := max{i; Hi(X) �= 0}). We assume that d is
finite. Then F j(kn) := {y ∈ kn; y ⊗ t j ∈ im ι} defines a multiplicative filtration on
kn with

F−1(kn) = 0 ⊂ F0(kn) = 〈1〉 ⊂ · · · ⊂ Fd(kn) = kn

where 〈1〉 denotes the k-vector space generated by the unit 1 := (1, . . . , 1) ∈ kn.

The graded algebra
⊕d

i=0 Fi(kn)/Fi−1(kn) associated to the filtration F∗(kn) is iso-
morphic to A∗. Moreover, F∗(kn) determines the injection ι : A∗ → kn ⊗ k[t], since
A∗ can be considered as the subalgebra of kn⊗k[t], which is generated by all elements
of the form y ⊗ t j with y ∈ F j(kn) (cf. [Pu1], (1.15)–(1.16)).

Remark 1 For k = F2, every element in kn is idempotent, i.e., v2 = v for all v ∈ kn.
As a consequence, a2 = 0 for all a ∈ Ai , i > 0.

For the topological situation this gives

Corollary 1 If X is a connected finite-dimensional topological space of cohomological
dimension d, which admits an m-involution, then x2 vanishes for all x ∈ H̃∗(X).

We are mainly interested in the case where A∗ is a Poincaré algebra of formal
dimension d (i.e., in more algebraic terms, a graded Gorenstein Artin algebra of socle
degree d), corresponding to the topological situation that X is a Poincaré duality
space over k, e.g., a closed d-dimensional manifold. Then the orientation σ : A∗ → k

defined by σ|Ai = 0 for i �= d, σ|Ad : Ad ∼=→ k (which, together with the multiplication
A∗ × A∗ → A∗ gives a dual pairing on A∗) can be extended to a k[t]-linear map
σ̃ : A∗ → k[t], which induces an orientation σ̄ : kn → k, by evaluating at t = 1.
(Note that A∗ → kn ⊗ k[t] induces an isomorphism after evaluating at 1, because
A∗[t−1]→ kn ⊗ k[t, t−1] is an isomorphism.)

It turns out that σ̄(ei) = 1 for ei := (0 · · · 0, 1, 0 · · · 0) ∈ kn, i = 1, . . . , n; σ̄(1) =
0 and Fd−1(kn) = ker σ̄. More generally: F⊥j = Fd− j−1, where the orthogonal com-

plement is taken with respect to the non-degenerate bilinear form s : kn×kn ν→kn σ̄
→ k.

(cf. [AP] Chapter 5, Section 1 and 2 and [Pu2] for analogous situations, coming from
group actions.)

We want to use this algebraic data to get necessary conditions for the existence
of m-involutions on closed manifolds or finite-dimensional Poincaré duality spaces.
Taking d-fold products of elements in A1, the Poincaré algebra A∗ gives rise to a
symmetric multilinear form of degree d, where d := max{i,Ai �= 0} is the formal
dimension of A∗. This d-form is non-degenerate if and only if A∗ is generated by
A1, in which case the multiplication on A∗ can be recovered from the d-form (cf.
Remark 2 below for the case d = 3). In terms of the above filtration the d-form is
given by

F1/F0 × · · · × F1/F0
ν̄
−→ Fd/Fd−1

σ̄
−→ k

where the first map, ν̄, is the d-fold multiplication induced by the multiplication, ν,
of kn, and the second is induced by the orientation σ̄ : kn → k.

https://doi.org/10.4153/CJM-2001-009-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2001-009-0
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Definition A based multiplicative self-dual filtration of length d in kn is a filtration
F−1 = 0 ⊂ F0 = 〈1〉 ⊂ F1 · · · ⊂ Fd−1 ⊂ Fd = kn, together with a basis v̄1, . . . , v̄m

of F1/F0, such that ν(Fi × F j) ⊂ Fi+ j and F⊥j = Fd− j−1, where the orthogonal

complement is taken with respect to the non-degenerate bilinear form s : kn × kn ν
→

kn σ̄
→ k. (Note that n must be even, since s(1, 1) =

∑n
i=1 σ̄(ei) has to vanish in k =

F2.) Let Fd
m,n denote the space of all based multiplicative self-dual filtrations of length

d in kn. Let Sd(km) denote the space of symmetric d-forms on km. A based filtration
F∗ ∈ Fd

m,n gives rise to a symmetric d-form M(F∗) ∈ Sd(km) given on the standard

basis vectors ei , i = 1, . . . ,m, of km by M(F∗)(ei1 , . . . , eid ) := σ̄
(
ν̄(v̄i1 · · · v̄id )

)
, with

v̄i1 · · · v̄id ∈ Fd/Fd−1. In total, this defines a map M : Fd
m,n → Sd(km).

We want to study the properties of the map M. Clearly M is equivariant with
respect to the GL(m; k)-actions on Fd

m,n and Sd(km) given by base change. But M

is also invariant with respect to the action of the symmetric group Sn on Fd
m,n given

by permuting coordinates in kn. The group Sn can be viewed as the automorphism
group of the algebra kn (equipped with the componentwise multiplication ν).

The image of M is contained in Sd
′(km) := {µ ∈ Sd(km); µ(ei1 , . . . , eiα) = 0 if

ir = is for s �= r}, since vv = v for all v ∈ kn. In particular, vivi ∈ F1 if vi ∈ F1 (cf.
Remark 1).

2 m-Involutions and Codes

We will be mainly interested in the case d = 3, which corresponds to m-involutions
on closed 3-manifolds, but we start with the cases d = 1, 2 for illustration.

(1) The case d = 1 is trivial: m = 1, n = 2, since F1/F0
∼= k. On the topological

side this corresponds to a reflection of the 1-dimensional sphere S1.
(2) Let d = 2. Then n = m + 2, both even, and there is just one GL(m; k)-orbit in

F2
m,n represented by F0 = 〈1〉 ⊂ F1 = ker σ̄ ⊂ F2 = kn and a chosen basis v̄1, . . . , v̄m

of F1/F0. The following vectors v1, i = 1, . . . ,m in ker σ̄ represent a basis v̄1, . . . , v̄m

in ker σ̄/〈1〉:

vi :=

{
(1i, 0, 1, 0n−i−2) for i odd

(1i, 0n−i) for i even, where 1i := (1, . . . , 1) ∈ ki , etc.

The symmetric bilinear form, which is obtained by applying the map M to this ele-
ment in F2

m,n, is represented by the following (m×m)-matrix




0 1
1 0

0 1
1 0

. . .
0 1
1 0




(all other entries are zero)
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So of the two GL(m, k)-orbits in S2(km), consisting of non-degenerate 2-forms, only
one is in the image of M : F2

m,m+2 → S2(km). On the topological level one has the
classical result that all non-degenerate forms in S2(km), (k = F2), can be realized
as the cup-product form (with coefficients k) of compact surfaces (s. [MH], Chap-
ter V, 1). But only connected sums of tori (including the empty sum = S2) admit
m-involutions.

(3) d = 3. It follows that n = 2m+2, and a based multiplicative self-dual filtration
F0 = 〈1〉 ⊂ F1 ⊂ F2 = ker σ̄ ⊂ F3 = kn is completely determined by the (m + 1)-
dimensional subspace F1 ⊂ kn, with the property F⊥1 = F1, and a choice of a basis in
F1/F0.

Note that the condition F⊥1 = F1 already implies that 1 ∈ F1, for F1 is a maximal
isotropic subspace with respect to the non-degenerate bilinear form on kn; and if V
is any isotropic subspace of kn, so is V + 〈1〉.

Hence in this case the space F3
m,n is just the space of maximal isotropic subspaces

of kn (with respect to the non-degenerate bilinear form given by the component-
wise multiplication, ν, and the orientation σ̄ : kn → k, σ̄(ei) = 1 for i = 1, . . . , n)
together with a chosen basis of F1/F0, or in terms of coding theory:

The orbit space, F̄3
m,n := GL(m; k)\F3

m,n with respect to the action of GL(m; k) by
base change on F1/F0 is the space of all binary self-dual codes of length n = 2m + 2,
i.e., the space of maximal isotropic subspaces of kn. Its quotient F̃3

m,n := GL(m; k) \
F3

m,n/Sn with respect to the action of the symmetric group can on one hand be viewed
as the space of the equivalence classes of binary self-dual codes (cf., e.g., [Pl]), on the
other hand as the space of equivalence classes of embeddings A∗ ↪→ kn ⊗ k[t] as
above, where A∗ := A∗ ⊗k[t] ko is a Poincaré algebra of formal dimension d = 3,
A1 ∼= km, and the equivalence relation is taken with respect to automorphisms of the
k[t]-algebra kn ⊗ k[t].

Remark 2 For d = 3 one can identify S3(km) with the space of all Poincaré algebras
A∗ of formal dimension d = 3 and A1 = km. Those algebras which are generated by
A1 correspond to non-degenerate forms in S3(km).

M. Postnikov (s.[Po]) has shown that every form in S3
′(km) can be realized as the

cup-product form of a closed orientable 3-manifold. In fact, he showed that every
µ ∈ S3(km), which fulfills the condition µ(ei , ei, e j) = µ(ei , e j , e j) (in F2) for all i, j =
1, . . . ,m, can be realized by a closed orientable 3-manifold. Every form µ ∈ S3(km)
with µ(ei , ei, e j) + µ(ei , e j , e j) = µ(e1, ei, e j) for all i, j = 1, . . . ,m, can be realized
by a non-orientable closed 3-manifold; here e1 corresponds to the (non-zero) first
Stiefel-Whitney class.

On the other hand, if a 3-manifold M admits an m-involution, then its cup-
product form must be in the image of M. We want to use just a rough estimate
for the size of M(F3

m,n) in S3
′(km) in order to show that “most” closed 3-manifolds do

not admit an m-involution.
The number of elements in F3

m,n is given by

|F3
m,n| =

m∏
i=1

(22i − 1)2m−i < 2
3m2+m

2 .
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On the other hand |S3
′(km)| = 2(m

3).

Hence
|F3

m,n|

|S3
′(km)|

≤ 2
3m2+m

2

2(m
3)
= 2−

1
6 (m3−12m2−m) and limm→∞

|F3
m,n|

|S3
′(km)|

= 0.

Let S̄3
′(km) denote the orbit space of the GL(m; k)-action given on S3

′(km) by base
change. In [W], p. 227 the size of S̄3

′(km) is given for m ≤ 6 in the context of the
classification of fake tori up to PL-homeomorphism (in somewhat different termi-
nology). One has:

|S̄3
′(k1)| = |S̄3

′(k2)| = 1
|S̄3
′(k3)| = |S̄3

′(k4)| = 2
|S̄3
′(k5)| = 3, |S̄3

′(k6)| = 6.

To calculate |S̄3
′(km)| for large m seems a difficult problem. But a rough estimate

shows that most equivalence classes of S3
′(km) are not in the image of the induced

map

M̄ : F̄3
m,n := GL(m; k) \ F3

m,n → GL(m; k) \ S3
′(km) =: S̄3

′(km).

Recall that this map factors through the quotient F̃3
m,n := GL(m; k) \ F3

m,n/Sn with

respect to the action of the symmetric group. We denote the induced map by M̃.
Since GL(m; k) acts freely on F3

m,n, one has as a very rough estimate

|F̄3
m,n|

|S̄3
′(km)|

≤
|F3

m,n|

|S3
′(km)|

= 2−
1
6 (m3−12m2−m),

in particular,

lim
m→∞

|M̄(F̄3
m,n)|

|S̄3
′(km)|

= 0.

Corollary 2 For large enough m, most F2−cohomology types of closed 3-manifolds do
not admit an m-involution.

Remark 3 In [Pl], [PS1], [PS2], [CP] and [CPS] binary self-dual codes up to length
32 are classified. Let F1 ⊕ F ′1 be the direct sum of two binary self-dual codes F1

and F ′1 of length n and n ′, respectively. If v̄1, . . . , v̄m and v̄ ′1, . . . , v̄
′
m ′ are bases of

F1/〈1n〉 and F ′1/〈1n ′〉 respectively, where 1n ∈ kn and 1n ′ ∈ kn ′ , then we can choose
(1n, 0), (v1, 0), . . . , (vm, 0), (0, v ′1), . . . , (0, v ′m ′) as a basis of (F1 ⊕ F ′1)/〈1n+n ′〉, where

the vi and v ′i ′ are representatives of the v̄i and v̄ ′i ′ , and (vi , 0) ∈ kn ⊕ kn ′ , (0, v ′i ) ∈
kn ⊕ kn ′ . The 3-form corresponding to F1 ⊕ F ′1 (and the above basis) under the map
M can be easily described in terms of 3-forms corresponding to F1 and F ′1. If one
defines the “connected sum” µ#µ ′ of two 3-forms µ, µ ′ on km and km ′ , by

(µ#µ ′)(ei , e j , ek) = µ(ei , e j , ek) for ei, e j , ek ∈ km

(µ#µ ′)(e ′i , e
′
j , e
′
k) = µ ′(e ′i , e

′
j , e
′
k) for e ′i , e

′
j , e
′
k ∈ km ′ and otherwise equal to zero
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then M(F1 ⊕ F ′1) = µ1
0#M(F1)#M(F ′1), where µ1

0 is the trivial form on k1. Note
that on the other hand the “connected sum” operation on forms corresponds to the
connected sum operation on manifolds, i.e., µ(M#M ′) = µ(M)#µ(M ′), where µ de-
notes the form given by the cup-product of the manifold. If M and M ′ are manifolds
with differentiable m-involution, then taking the connected sum at fixed points one
can see that M#M ′ admits an m-involution.

The trivial form, µ1
0, is realized by S1×S2 with an m-involution, being the diagonal

operation corresponding to the obvious m-involutions on S1 and S2
(

(x0, x1) �→
(x0,−x1) for (x0, x1) ∈ S1 ⊂ R2; (x0, x1, x2) �→ (x0,−x1,−x0) for (x0, x1, x2) ∈ S2 ⊂
R3
)

. So, if F1 and F ′1 are realized by two manifolds with m-involutions M and M ′,
respectively, then F1 ⊕ F ′1 can be realized by M#(S1 × S2)#M ′.

It is shown in [S], Corollary 2.9 (in terms of Poincaré algebras) that any form in
S3(km) has a unique (up to order) connected sum decomposition into indecompos-
able forms.

Examples Using the notation of [Pl] one gets:

M̄(C2 ⊕ D14) = µ̄1
0#M̄(C2)#M̄(D14)

= µ̄1
0#M̄(A8)#M̄(A8)

= M̄(A8 ⊕ A8),

since M̄(C2) = 0 and M̄(D14) = M̄(A8)#M̄(A8). Similarly one can see that M̄(C2 ⊕
I18) = M̄(A8 ⊕ B12). In particular, M̃ : F̃3

m,n → S̄3
′(km) is not injective for m ≥ 7.

But for m ≤ 6 the map M̃ is injective. This can be seen by checking that the “rank
distribution” of the graded algebra A∗ which corresponds to M̄(c), i.e., the map that
assign to each element a ∈ A1 the rank of the linear map ma : A1 → A2, given as
multiplication by a, is different for inequivalent codes c ∈ F̄3

m,n if m ≤ 6. It is not

difficult to check that M̃ is indeed a bijection for m ≤ 5. On the other hand M̄ can
not be surjective for m = 6 since |F̃3

6,14| = 4 (s. [Pl]) and |S̄3
′(k6)| = 6 (s. [W],

p. 227). Alternatively, a straight forward calculation shows that the equivalence class
of the form µ ∈ S3

′(k6), defined by µ123 = µ145 = µ246 = 1, µi jk = 0 otherwise,
gives an algebra A∗ with a rank distribution which differs from the rank distributions
coming from the four equivalence classes in F̃3

6,14 of the codes C7
2,C

3
2 ⊕ A8,C2 ⊕

B12,D14.
Similar considerations (s. [Pi] for details) show that M̃ is also not surjective for

m = 7 and 8. Using the classification of binary self-dual codes up to length 30
in [Pl], [PS1], [PS2], [CP] and [CPS] instead of the very rough estimate |F̃3

m,n| ≤

|F̄3
m,n| above, and on the other hand the estimates |GL(m; k)| ≤ 2m2

· 0, 29 for m ≥

9
(
|GL(m; k)| =

∏m
i=1(2m − 2m−i), so |GL(m;k)|

2m2 =
∏m

i=1(1 − 1
2i ) decreases, as m

increases, and
∏9

i=1(1− 1
2i ) < 0, 29

)
and |S̄3

′(km)| ≥ |S3
′(km)|

|GL(m;k)| , one gets the following

table:

m 9 10 11 12 13 14

|F̃3
m,n| 16 25 55 103 261 731

|S̄3
′(km)| > 3 · 23 > 3 · 220 > 3 · 244 > 3 · 276 > 3 · 2117 > 3 · 2168
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In particular,
|M̄(F̄3

14,30)|

|S̄3
′(k14)|

≤ 2−160, while the above very rough estimate only gives

2−63 as an upper bound for this quotient.
Summarizing, we obtain the following properties of M̃:

M̃ injective ⇐⇒ m ≤ 6

M̃ surjective ⇐⇒ m ≤ 5.

We remark here that the rank distribution corresponding to M̄(c) is not determined,
though somewhat related, to the weight distribution of the code c; e.g., the codes
A8 ⊕ A8 and E16 have the same weight distribution (see, e.g., [Pl]) but the algebras
corresponding to M̄(A8 ⊕ A8) and M̄(E16) have different rank distributions: M̄(E16)
gives an element a (corresponding to line 8 of the listing of E16 in [Pl]) with rk(ma) =
6, while for all elements a ∈ A1 belonging to M̄(A8 ⊕ A8) one gets rk(ma) ≤ 4.

(4) The case d = 4.
In this case, too, the filtration 〈1〉 = F0 ⊂ F1 ⊂ F2 ⊂ F3 ⊂ F4 = kn is completely

determined by the properties of the subspace F1 ⊂ kn ,i.e.,

(i) 1 ∈ F1

(ii) F1 × F1 → F⊥1 = F2

(iii) F3 = ker σ̄

In terms of coding theory F1 ⊂ kn is a self-orthogonal (i.e., F1 ⊂ F⊥1 ), binary code
of dimension m and length n. That F1 is self-orthogonal follows from (i) and (ii)
(and the fact that F1 ⊂ F2), but in particular (ii) imposes an additional restriction
on the code. It might be interesting to classify these kinds of self-orthogonal codes,
and to see, what kind of restriction for closed 4-manifolds with m-involution can
be derived from this classification. On the topological side one would have to deal
with the question: Which 4-forms can be realized by cohomology algebras of closed
4-manifolds?

(5) The cases with d > 4 get more and more involved, but there are still connec-
tions with coding theory, e.g., if d = 2d ′ + 1, then the term Fd ′ in the filtration F∗
is a self-dual code. But the d-form corresponding to F∗ is determined by F1 (and a
chosen basis of F1/F0).

3 General Involutions

To show that most closed 3-manifolds cannot admit any non-trivial involution, we
follow the strategy which was applied in [Pu2] (s. p. 285 and Remarks 1.3.), slightly
modified. A non-trivial involution on a manifold M induces an involution on
H∗(M; k). If this is trivial (i.e., the action is cohomologically trivial), then the first
non-vanishing differential in the Serre spectral sequence of the Borel construction
M → MG := M × EG→ BG, G = Z2, would correspond to a non-trivial derivation
on H∗(X; k) of negative degree. If the involution on H∗(M; k) is trivial and the Serre
spectral sequence collapses at the E2-level, then dim⊕iHi(MG) = dim⊕iHi(M),
which is equivalent to H∗(M; k) being TNHZ (totally non-homologous to zero) in
H∗(MG; k) (see, e.g., [AP], (3.10.4)). While the classification of binary self-dual codes
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gives rather precise information about the algebras, which might occur as cohomol-
ogy algebras of closed 3-manifolds, which admit m-involutions, the counting argu-
ment, which proves Corollary 2, can be generalized to the TNHZ case (s. (a) below).
So, in view of the above strategy, we show that most algebras in question do not admit
automorphisms of order 2 (s. (b) below). Therefore an involution on a correspond-
ing manifold must be cohomologically trivial (in most cases). Finally we prove, that
most algebras in question do not admit non-trivial derivations of negative degree (s.
(c) below). This reduces the problem to the TNHZ case. Combining these results
one gets

Theorem Most F2-cohomology algebra types of closed 3-manifolds do not admit non-
trivial involutions.

(a) The TNHZ-case If X is a Poincaré duality space over k = F2 of cohomo-
logical dimension d with an involution, such that dim⊕iHi(XG) = dim⊕iHi(X),
then again—applying equivariant cohomology—this leads to an embedding of k[t]-
algebras

H∗G(X)
ι
−→ H∗G(XG) = H∗(XG)⊗ k[t],

which becomes an isomorphism after inverting t . But the fixed point components
Fγ ⊂ XG need not be points. By a result of Chang-Skjelbred and Bredon (see, e.g.,
[AP]), one has H∗(XG) =

∏
γ H∗(Fγ), where Fγ is a Poincaré duality space over k of

cohomological dimension dγ ≤ d. So the algebraic situation looks as follows:
One has an embedding of k[t]-algebras

A∗
ι
−→
(∏
γ

B∗γ

)
⊗ k[t],

which becomes an isomorphism after localization with respect to t ; A∗ := A∗⊗k[t] k0

and the B∗γ are Poincaré algebras. Most of what we have discussed in the case where∏
γ B∗γ = kn can be generalized.
In case d = 3, for example, one is lead to discuss the following generalization of

binary self-dual codes. Consider an orientation σ̄ : B∗ =
∏
γ B∗γ → k, where the

B∗γ are Poincaré algebras of formal dimension dγ < d = 3 and length nγ , and the
restriction σ̄γ : B∗γ → k of the orientation σ̄ to B∗γ gives a dual pairing B∗γ × B∗γ →

B∗γ
σ̄γ
→ k on B∗γ . Consider all self-dual subspaces F1 ⊂

∏
B∗γ = B∗ with respect to the

dual pairing B∗ × B∗ → B∗
σ̄
→ k.

To the knowledge of the author “codes” of this kind have not been studied sys-
tematically in coding theory. In particular there is no classification at hand for small
length. But counting arguments, similar to those above, show that the 3-forms ob-
tained from those self-dual subspaces can only make up a small part of the space of
all 3-forms (cf. [Pu2] Proposition 3 and its proof). This implies that “most” F2- co-
homology algebra types of closed 3-manifolds do not admit an involution such that
dim⊕iHi(XG) = dim⊕iHi(X), which is the TNHZ-case.
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(b) Automorphisms of order 2 We want to show that most Poincaré algebras of
formal dimension 3 do not admit non-trivial involutions, i.e., non-trivial automor-
phisms of order 2 (cf. [Pu2] p. 288–289, for similar arguments in case k = Q).

Proposition 1 Let A2(m) ⊂ S3(km) be the subset of forms, such that the corresponding
Poincaré algebras admit non-trivial involutions. Then there exists a m0 ∈ N such that

|A2(m)|

|S3(km)|
≤
[ m

2

]
2−

1
2 (m2−9m+12) for m ≥ m0;

in particular,

lim
m→∞

|A2(m)|

|S3(km)|
= 0.

Proof For every r = 1, . . . , [ m
2 ] let (v1, . . . , vr, v̄1, . . . , v̄r,w1, . . . ,ws) denote the

canonical basis of km (s = m− 2r); define the involution

r : km → km by r(vi) = v̄i for i = 1, . . . , r

r(v̄i) = vi for i = 1, . . . , r

r(w j) = w j for j = 1, . . . , s

Then {r ; r = 1, . . . , [m
2 ]} gives a complete set of representatives of isomorphism

classes of non-trivial Z2-representations on km (m > 1). A Poincaré algebra A∗ =⊕3
i=0 Ai (over k = F2) admits a non-trivial involution if and only if the correspond-

ing form µ ∈ S3(km) is invariant under a non-trivial involution on km.

Hence A2(m) =
⋃[ m

2 ]
r=1 GL(m; k)

(
S3(km)

) r
, where S3(km)r denotes the forms,

which are invariant under r , and GL(m; k) × S3(km) → S3(km) denotes the action
given by base change.

Let α(m) :=
(m+2

3

)
; then dimk

(
S3(km)

) r
= α(s)+ rs+ 1

2

(
α(m)−

(
α(s)+ rs

))
=

1
2

(
α(m) + α(s) + rs

)
.

The subspace S3(km)r ⊂ S3(km) is invariant under the group GL(r; k)×GL(s; k),
considered as a subgroup of GL(m; k) via the embedding

(A,B) �→


A 0 0

0 A 0
0 0 B


 .

Since |GL(m; k)| = 2m2∏m
i=1(1− 1

2i ), one gets∣∣ (GL(m; k)/GL(r; k)× GL(s; k)
) ∣∣

= 2m2

·
m∏

i=1

(
1−

1

2i

)/
2r2

r∏
i=1

(
1−

1

2i

)
2s2

s∏
i=1

(
1−

1

2i

)

≤ 2m2−r2−s2+2 (since
∏r

i=1(1− 1
2i ) ≥ 2−2 for all r).
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Therefore νr :=
∣∣GL(m; k)

(
S3(km)

) r
∣∣ ≤ 2

1
2

(
α(m)+α(s)+rs

)
+m2−r2−s2+2.

Since ν1 ≥ νr for r = 1, . . . , [ m
2 ] and m large enough (m ≥ 8 suffices), one has

|A2(m)| ≤
[ m

2

]
2β(m),

where β(m) = 1
2

(
α(m) + α(m − 2) + m − 2

)
+ m2 − (m − 2)2 + 1. So |A2(m)|

|S3(km)| ≤

[ m
2 ]2β(m)−α(m) = [ m

2 ]2−
1
2 (m2−9m+8) for m ≥ m0.

Let Rσ(m) ⊂ S3(km) and Ru(m) ⊂ S3(km) denote the subsets of forms that can
be realized by the cohomology algebras of compact orientable and non-orientable
3-manifolds, respectively.

By the results of Postnikov [Po] one has:

Rσ(m) = {µ ∈ S3(km);µ(v, v,w) + µ(v,w,w) = 0 for all v,w ∈ km}, and

Ru(m) = {µ ∈ S3(km); ∃vo ∈ km, v �= 0, such that

µ(v, v,w) + µ(v,w,w) = µ(vo, v,w)}.

We want to imitate the argument used to prove Proposition 1 to show that “most”
algebras corresponding to forms in Rσ(m) and Ru(m) do not admit non-trivial in-
volutions. We start with Rσ(m). Clearly

dimk Rσ(m) =

(
m + 2

3

)
−

(
m

2

)
=: α ′(m); and

dimk Rσ(m)r = α ′(s) + rs +
1

2

(
α ′(m)− (α ′(s) + rs

)
=

1

2

(
α ′(m) + α ′(s) + rs

)
Since

A2(m) ∩ Rσ(m) =

[ m
2 ]⋃

r=1

GL(m; k)Rσ(m)r , and

νσ1 ≥ ν
σ
r for r = 1, . . . ,

[ m

2

]
and m ≥ m0,

where νσr := |GL(m; k)Rσ(m)r | ≤ 2
1
2

(
α ′(m)+α ′(s)+rs

)
+m2−r2−s2+2, one gets

|A2(m) ∩ Rσ(m)| ≤
[ m

2

]
2β
′(m) with

β ′(m) =
1

2

(
α ′(m) + α ′(m− 2) + (m− 2)

)
+ m2 − (m− 2)2 + 1.

The calculation for Ru(m) instead of Rσ(m) is similar.
One therefore gets

Proposition 1′ For R ′(m) = Rσ(m) or Ru(m) there exists a m0 ∈ N such that

|A2(m) ∩ R ′(m)|

|R ′(m)|
≤
[ m

2

]
2−

1
2 (m2−11m+11) for m ≥ m0,
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in particular

lim
m→∞

|A2(m) ∩ R ′(m)|

|R ′(m)|
= 0.

(c) Derivations We want to show next that most Poincaré algebras over F2 of for-
mal dimension 3 do not admit non-trivial derivations of negative degree. Let A∗ =⊕3

i=0 Ai denote a Poincaré algebra over F2 of formal dimension 3. Let a1, . . . , am

denote a basis of A1; b1, . . . , bm the dual basis of A2, and c ∈ A3 the dual of 1 ∈ A0.
The product in A∗ is completely determined by aia j =

∑m
k=1 µi jkbk for i, j =

1, . . . ,m.

Remark 4 A∗ is generated by A1 if and only if the m2 × m-matrix (µi jk), (i, j) ∈
{1, . . . ,m}2, k ∈ {1, . . . ,m} has rank m.

If d : A∗ → A∗ is a derivation of degree−1 then

d(ai)a j + aid(a j) = d(aia j) =
m∑

k=1

µi jkd(bk)

If d(ai) := αi and d(bk) :=
∑

l β
l
kal one gets

αia j + α jai =
∑

k,l

µi jkβ
l
kal for all i, j = 1, . . . ,m

in particular, one gets

∑
k

µi jkβ
l
k = 0 for all �= l �= j.

Remark 5 Assume that the (m−1)2×m matrices (µi jk), (i, j) ∈ {1, . . . , l̂, . . . ,m}2,
k ∈ {1, . . . ,m} have rank m for all l, as a consequence β l

k = 0 for all k, l = 1, . . . ,m.
This implies first that d(bk) = 0 for all bk, and then that d(ai) = αi = 0 for all
i. Hence, there are no non-trivial derivations of degree (−1) under the assumption.
Moreover there cannot exist non-trivial derivations of degree< (−1) either, since A∗

is generated by A1 as seen in Remark 4.

Remark 6 The condition in Remark 5 is sufficient but not necessary to obtain that
A∗ has no non-trivial derivations of negative degree.

Proposition 2 Let D(m) ⊂ S3(km) denote those forms for which the corresponding
Poincaré algebra admits a non-trivial derivation of negative degree. Then

lim
m→∞

|D(m)|

|S3(km)|
= 0
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Proof Let D̄(m) ⊂ S3(km) denote those forms which do not fulfill the condition in
Remark 5. Then, by Remark 6, D(m) ⊂ D̄(m) and hence it suffices to show that

limm→∞
|D̄(m)|
|S3(km)| = 0.

Assume that for a fixed lo the (m−1)2×m matrix Ml̂o
:= (µi jk), (i, j) ∈ {1, . . . , l̂o,

. . . ,m}2, k ∈ {1, . . . ,m} has rank < m. We may assume lo = m. Hence one of
the columns of Mm̂ can be expressed as a linear combination of the others. Assume
this is the case for the p-th column. Then {µi j p; i, j < m} is determined by the
{µi jk; i, j < m, k �= p} and the coefficients of the linear combination. So the number

of forms that fulfill these conditions is≤ 2(m−1) · 2(m+2
3 )−(m

2) = 2(m+2
3 )−(m

2)+m−1.
Since l0 and p above can be chosen independently between 1 and m, we obtain

|D̄(m)| ≤ m2 · 2(m+2
3 )−(m

2)+m−1.

So |D̄(m)|
|S3(km)| ≤ m22−

1
2 (m2−3m+2) and the proposition follows.

Similar to the above proof one obtains

Proposition 2′ For R ′(m) = Rσ(m) or Ru(m)

lim
m→∞

|D(m) ∩ R ′(m)|

|R ′(m)|
= 0.

I would like to thank the referee for correcting an error in the originally proposed
set of vectors in Section 2, case (2), and for several detailed suggestions which helped
to improve the presentation of this note.
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