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Abstract 

Responses to potential threats to welfare vary greatly between species. Even closely related animals often differ in their fear of 
humans and/or novelty; their behavioural responses to pain; and when captive, their overall welfare and the form and frequency of 
their stereotypies. Such species differences stimulate hypotheses about I) the way that responses to challenge co-vary with other 
biological traits; 2) the adaptive value of particular responses; and 3) the factors predicting responses to evolutionarily new scenarios, 
such as captivity. We illustrate how these ideas can be statistically tested with multi-species comparisons, and show how techniques 
such as the Comparative Analysis of Independent Contrasts can be used to control for any non-independence of data points caused 
by species' relatedness. For each of the three types of hypothesis, we then provide several welfare-relevant examples including one 
that has been fully tested (respectively, the relationships between sociality and anti-predator behaviour in antelopes; predation pressure, 
foraging niche and neophobia in parrots; and home range size and stereotypy in carnivores). Ultimate explanations such as these, 
based on species' ecology and evolutionary history, have great explanatory appeal. Species comparisons can also have great practical 
value, allowing the test of hypotheses that would be almost impossible to investigate experimentally, and generating principles that 
allow predictions about the welfare of similar unstudied species. Multi-species data, for example from the many taxa held in zoos, 
thus hold enormous potential for increasing the fundamental understanding of animal welfare. 
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Introduction 
Animal welfare research usually concentrates on proximate 
issues investigating the development and elicitation of 
responses reflecting stress and other problems. Yet, when 
trying to judge whether given responses could be adaptive 
in nature, or when trying to make sense of species differ-
ences, we need ultimate explanations based on ecology and 
evolutionary adaptation. Thus when asking "Why do sheep 
seem so stoical in the face of pain, while pigs are so vocal?" 
or "Why do caged carnivores tend to pace rather than perform 
other stereotypies?", we typically want to know the adaptive 
value of evolved traits, or the role of a species' ecological 
niche in determining reactions to captivity. Such ultimate 
explanations have enormous explanatory appeal, but their 
value is not just heuristic: they are uniquely placed to yield 
fundamental principles about welfare responses. Here, we 
show how to use species comparisons to test evolutionary 
and ecological hypotheses empirically. We provide several 
examples and also present many hypotheses that remain to 
be fully tested. 

Species differences in response to potential 
threats to welfare 
Humans have known for millennia that animals react differ-
ently to captive management. That some species domesticate 
readily, when even their close relatives may not, has long 
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been evidence of this ( see eg Diamond 1997; Clutton-Brock 
1999). More recently, data from farms and laboratories, and 
more importantly from zoos, have painted a more detailed 
picture of how species vary in their responses to potential 
threats to welfare. 
Some species differences are in the 'style' with which animals 
respond to a given challenge, one example being fleeing 
versus freezing when frightened. When various rodent 
species are placed in a novel open arena, for instance, all 
show behavioural signs of stress, but guinea pigs ( Cavia 
parcel/us) tend to become immobile, while chinchillas 
(Chinchilla laniger) move actively around the arena, biting 
objects within it and defecating extensively (Glickman & 
Hartz 1964). Other species differences occur in the degree 
to which particular stimuli elicit responses, for example, 
how much fear is elicited by humans ( eg foxes, Vulpes 
vulpes and Alopex lagopus [Pedersen & Jeppesen 1998]), or 
by novelty or changes to the environment. Even very closely 
related taxa may differ: crab-eating macaques (Macacafas-
cicularis) show greater corticosteroid responses to novelty 
or restraint, greater and more prolonged heart rate increases 
in response to a novel environment, and more alarm-calling 
when disturbed by humans, than do bonnet macaques 
(Macaca radiata), while these in tum respond far more than 
rhesus macaques (Macaca mulatta) (Clarke & Mason 1988; 
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Figure I 
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Potential Type I error (a) and Type II 
error (b) caused by relationships 
between species. The two graphs (adapt-
ed from Gittleman & Luh 1992) show 
hypothetical cross-species analyses look-
ing at the relationship between body 
weight and stereotypy frequency, using 
data from two groups of related species 
(represented by circles and crosses). Not 
controlling for relatedness could clearly 
lead to (a) an erroneous significant rela-
tionship where none exists (ie a Type I 
error), or to (b) a non-significant result 
when the correlation is actually strong (ie 
a Type II error). 
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Clarke et al 1994). Other aspects of captivity also affect 
species differently, with some species being very prone to 
developing abnonnal behaviour, and others, much less so, 
even when housed almost identically (see van Hoek & ten 
Cate [1998] for species differences within parrots, for 
example). 
In several instances more worrying signs of differential welfare 
exist. For example, while the ring-tailed lemur (Lemur 
catta) has minimal behavioural and veterinary problems in 
captivity and excellent breeding success, its relative the 
gentle lemur (Hapalemur griseus) provides a striking contrast 
with its stereotypies and over-grooming, timidity, and high 
morbidity (Petter 1975). Similar unexplained variance in 
captive breeding success and/or morbidity occurs in other 
taxa, including monkeys (P01iugal & Asa 1995; Mooney & 
Lee 1999; Savage et al 2002), canids (Ginsberg & 
Macdonald 1990), felids (Nowell & Jackson 1996; Mellen 
et al 2000) and artiodactyls (Primack 1998; Barnes et al 
2002), and across different species of angelfish (S Fossa 
2002, personal communication). 
Species thus vary greatly in the nature and magnitude of 
their responses to captivity. This can be a practical problem 
when trying to understand and improve animal welfare, 
but also potentially provides an unparalleled insight into 
these responses. 

Evolutionary and ecological explanations for 
species differences 
Species differences are valuable because, first, they stimulate 
novel evolutionary or ecological hypotheses, and, second, 
they can be used to test such ideas statistically if data exist 
for enough species. 
Species differences can generate and address three types of 
research question. The first is evolutionary, and asks how 
particular traits have co-evolved; do they co-occur, for 
example, or instead do they negatively correlate when a 
range of species is compared? For instance, we could ask 
"Does neophobia conelate with the volume of the amyg-
dala, the brain region responsible for fear processing?" Such 
questions can reveal cross-species trends, such as relation-
ships between paiiicular behavioural patterns and specific 
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anatomical traits or physiological responses. The second 
type of question tackles issues of adaptation, using species 
comparisons to answer the question "What is the evolutionary 
function of trait X?" For example, if the function of freezing 
is to hide from predators, we might test this idea by predicting 
that it should then be most frequent in highly predated 
species, especially those whose predators hunt via visual 
and auditory cues. The final type of question investigates 
how responses to new scenarios are shaped by an animal's 
prior traits or ecological niche. One example might be "Are 
oral stereotypies in captive ungulates predicted by natural 
foraging mode?" Unlike the previous two, this approach 
reveals patterns of pre-adaptation or vulnerability to new 
(potentially human-imposed) circumstances, rather than 
how natural selection has operated in the past. 
We develop these approaches later in this paper, giving 
more examples of welfare-relevant hypotheses and demon-
strating how some have been tested. But first, we discuss 
how data from multiple species should be handled, since 
species comparisons raise important methodological and 
statistical issues. 

Testing hypotheses using species comparisons 
In other fields of biology, species comparisons have long 
been used to test ideas about niche effects and evolution (eg 
Stearns 1983; Cheverud et al 1985; Harvey & Clutton-
Brock 1985). In many ways, comparative studies proceed 
like any other statistical enquiry: requiring clear hypothe-
ses, good quality data (ideally interval or ordinal), and as 
many independent replicates (eg species) as possible. Any 
likely confounds also need to be carefully considered when 
planning or interpreting analyses. However, two important 
additional features typify multi-species comparative analyses. 
The first is that to achieve a good sample size, data are often 
collated from multiple sources ( eg many separate papers on 
zoo animals). This necessitates careful thought as to how to 
ensure that only good quality data are used, for instance, by 
discarding reports that do not meet clear methodological 
criteria (see Gittleman 1989 for a detailed discussion of this 
imp01iant point). 
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Figure 2 

The Comparative Analysis of Independent 
Contrasts (CAIC). On this hypothetical 
phylogeny (a), squares and diamonds repre-
sent living species, and circles represent (a) 
their extinct ancestors. The values for the 
two variables of interest, x and y, are shown 
for each species ( calculated, rather than 
measured directly, for ancestors). The dif-
ferences between the most closely related 
species ( eg the difference between x-vari-
ables for the squares) represent independent 
data points, or contrasts. These can then be 
plotted against each other (shown in [b], 
with calculations shown in grey along the 
dotted lines) to determine whether the two 
variables correlate, independent of phylogeny. 
Here, the greater the x contrast, the 
greater they, suggesting that they positively 
correlate, although more contrasts are 
obviously needed for statistical testing. 
(Adapted from Purvis & Rambaut 1995.) 

A second crucial consideration is that data points ( eg 
species means) may not be statistically independent because 
of the relatedness between species. Sometimes known as 
'phylogenetic signal' (Blomberg et al 2003), this is the danger 
that closely related species are inherently similar, leading to 
pseudo-replication (Harvey & Pagel 1991). For example, if 
investigating the correlates of ungulates' foraging modes, it 
might well be invalid to treat different species of equid as 
independent if they have all simply inherited the same grazing 
style from a common ancestor. Even non-inherited variables 
may be subject to this sort of problem. For example, we 
might well find that some aspects of captive husbandry (eg 
'starve days' for some carnivores) are inherently similar for 
clusters of related species (see Freckleton et al 2002, p 723 
for a discussion of the treatment of non-inherited character-
istics). Such non-independence would violate the assump-
tions of most statistical tests, and, as illustrated in Figure 1, 
could result in Type I or Type II errors. 

Controlling for the effects of relatedness between 
species 
In order to control for the potential non-independence of 
species, we first need a phylogenetic tree that shows exact-
ly how our subject species inter-relate. Luckily, several are 
readily available; for example, complete trees have been 
published for primates (Purvis 1995) and carnivores 
(Bininda-Emonds et al 1999), and partial trees for rodents 
(eg Degen et al 1998), ungulates (eg Perez-Barberia et al 
2001), birds (eg Morrow et al 2003), and many other groups. 
Next we need to select a method to deal with the problem. 
The most commonly used and well-understood methods 
investigate whether differences between related species in 
one variable are paralleled by similar differences in other 
variables of interest. This Independent Contrasts method, 
originally introduced by Felsenstein (1985), has been mod-
ified and built upon to form a range of other comparative 
methods ( eg Grafen 1989; Pagel 1992). 
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The Comparative Analysis of Independent Contrasts 
(CAIC) (Purvis & Rambaut 1995) is derived from 
Felsenstein's (1985) method. A very basic outline of CAIC 
is provided in Figure 2. This method calculates weighted 
differences (ie contrasts) between related species (repre-
sented by similar symbols in Figure 2a), which can then be 
used as data points in normal statistical procedures. Its 
premise is that differences between related species are inde-
pendent because they have evolved since the split from the 
common ancestor. X-variable contrasts are then plotted 
against the equivalent y-variable contrasts to see whether 
changes in the two variables correlate using standard statis-
tical procedures. An advantage of CAIC is that it still works 
well even if there are imprecise areas of the tree (Garland & 
Diaz-Uriarte 1999), ie areas that have three or more species 
radiating from the same ancestor ('polytomies') (see Pagel 
1992; Purvis & Rambaut 1995). It is possible to include a 
categorical variable in CAIC analyses, but given the loss of 
power this can lead to, other methods may need to be con-
sidered (see Grafen & Ridley 1996 for a review). The CAIC 
software is also freely available from the web (although cur-
rently for Macintosh computers only), with a comprehensive, 
user-friendly manual explaining how to use your tree and 
run the program (http://www.bio.ic.ac.uk/evolve/software/ 
caic ). For clear and more detailed descriptions of CAIC see 
Purvis and Rambaut (1995), and Purvis and Webster (1999), 
and for recent examples of its use, see Gittleman and Purvis 
(1998), Ruggiero and Lawton (1998) and Purvis et al 
(2000). 
Another method, representing a more general application of 
Felsenstein's (1985) Independent Contrasts, is Generalised 
Least Squares (GLS) (Pagel 1992, 1994; Freckleton et al 
2002). GLS involves the calculation of a parameter, lambda 
(0-1), which describes the degree to which variables are 
dependent on species' shared ancestry (based on the phylo-
genetic tree). This parameter is then incorporated into 
regression equation calculations so that the relationship 
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between the variables of interest is tested while controlling 
for the phylogenetic effect. Under specific conditions GLS 
returns exactly the same results as CAIC (Pagel 1999), but 
GLS has some additional advantages. It uses standard statis-
tical methods, and so can easily be applied to a wide range 
of models (egANCOVAand MANOVA) as well as to normal 
regressions (Rohlf 2001 ). It also does not require extensive 
coding of tree data prior to analyses, as is necessary for 
CAIC. However, a slight drawback of GLS is that the phy-
logeny must be well resolved (ie without polytomies ), 
although see Pagel (1992) for a way around this. 
(Alternatively, Grafen's [1989] multiple regression method 
can cope with incomplete trees.) GLS can be used to 
analyse data including categorical y-variables, but an alter-
native model is required for purely discrete data (see Pagel 
1994; Grafen & Ridley 1996). The necessary computer pro-
gram (called 'CONTINUOUS') is currently available only 
for Macintosh computers and can be obtained from the 
author (see Pagel 1997, 1999). Recent examples of the use 
ofGLS can be found in Forbis et al (2002) and in Gage and 
Freckleton (2003). 
An important point to remember before performing any of 
these tests is that not all variables are significantly affected 
by phylogeny ( eg Gittleman & Luh 1992); this may be espe-
cially true for behavioural traits (eg Blomberg et al 2003), 
and so it may not always be necessary to take corrective 
measures ( eg Bjorklund 1997; Price 1997). GLS actually 
incorporates a diagnostic test into its calculations, in the 
form of the lambda statistic, which tells you whether the 
data are significantly affected by phylogeny and by how 
much (rather than the simple 'yes/no' response provided by 
other tests [ see Freckleton et al 2002]). Other comparative 
methods, including CAIC, require a separate test to be run 
prior to analyses. Blomberg et al (2003) provide a good 
overview of the methods currently available, and also present 
a new method that is compatible with CAIC and GLS. For 
more general information about comparative methods, see 
Gittleman (1989), and Harvey and Pagel ( 1991 ); for reviews 
of some of the different methods available, see Gittleman 
and Luh (1992), and Martins and Hansen (1996). 
Overall, comparative tests thus use many species, do their 
utmost to ensure good quality data, and check, and if neces-
sary control, for relatedness between species, which can 
lead to statistical pseudo-replication. Now let us consider 
the role of such methods in animal welfare. 

Using comparative approaches in animal 
welfare research 

Using species differences to investigate how traits 
have co-evolved 
There are many examples of species comparisons being 
used to test hypotheses about co-evolution. For instance, 
Nunn and colleagues investigated the correlates of circulat-
ing leucocyte level by comparing the white blood cell 
counts of 41 primate species with various aspects of their 
behavioural biology (Nunn et al 2000). Both in simple 
cross-species regressions and in analyses correcting for 
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phylogeny, leucocyte levels correlated with promiscuous 
mating systems. 
Several authors have suggested similar, but more welfare-
relevant ideas that could be investigated with comparative 
techniques. Mendoza and Mason (1997), for example, propose 
from a study of two monkey species that low sympathetic 
responses to stress are associated with high parasympathetic 
tone. Anti-predator behaviour may also co-vary with paiiic-
ular traits. Hedenstrom and Rosen (2001) hypothesise a 
relationship between wing-loading and patterns of escape-
flight in birds fleeing from avian predators; Leal (2000), 
based on a study of two Anolis species, suggests that lizards 
that signal to predators that they have been spotted also 
show good endurance running; and Brashares et al (2000) 
hypothesise that antelope anti-predator behaviour co-varies 
with group size. Unlike the other examples here, this last 
idea was properly tested. In a phylogenetically controlled 
study of 75 species, solitary and pair-living antelopes were 
found to typically seek cover and hide, while gregarious 
species were found to take flight or stand at bay. Thus, com-
parative methods potentially have great value for revealing 
how welfare-related traits (eg the tendency to seek cover 
when frightened) may be predicted from other aspects of an 
animal's biology. 

Using species differences to investigate adaptive 
hypotheses 
Comparative techniques are one of the few ways of testing 
evolutionary hypotheses about fitness. For example, two 
studies ( on birds and rodents) have used this approach to 
investigate the idea that group-living functions to reduce 
individual predation risk by testing the prediction that 
group-size co-varies with predation pressure (Ebensperger 
& Cofre 2001; Beauchamp 2002). Here we present two 
further, welfare-related ideas from other authors. 
The first concerns the function of pain responses. Species 
differ markedly in their reactions to tissue damage: some 
display clear signs of distress ( eg pigs), while others ( eg 
sheep) show little, if any, overt behavioural response, even 
after surgical procedures that other evidence shows to be 
painful and aversive ( eg Rushen & Congdon 1987; Broom 
1998). Such observations have inspired two adaptive 
hypotheses: that distress vocalisations function to solicit 
help from conspecifics; and that hiding injury, by moving 
and behaving normally, functions to avoid attracting predator 
attention (Bateson 1991; Broom 1998, 2001). These ideas 
generate clear and testable predictions. If the former is 
correct, distress vocalisations should be most common in 
naturally group-living species, especially ones in which 
conspecifics protect or provision each other. If the latter is 
correct, we should expect behavioural signs of pain ( eg limp-
ing) to be most common in non-predated species, and least 
common in species whose predators use visual cues to pre-
select their targets. However, comparative techniques have 
not yet been used to test either of these interesting ideas. 
Our second example concerns responses to novelty. Several 
authors have suggested that neophilia assists dietary gener-
alists to explore and thus exploit novel foodstuffs, while 
neophobia functions to reduce exposure to predation risk 
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( eg Glickman & Sroges 1966). Evidence for these hypothe-
ses has been accumulated for several species of bird (eg 
Greenberg 1990) and primate (Vitale et al 1991; Clarke & 
Lindburg 1993; Clarke et al 1995; Day et al 2003), but nei-
ther was properly tested until recently. Mettke-Hofmann 
and co-workers (2002) collected data on exploration and 
neophobia for 61 species of parrot, and compared these with 
ecological variables using both cross-species and phyloge-
netically controlled statistics. As predicted, island-living 
species (subject to low predation) were neophilic, showing 
short latencies to explore and exploring for long durations, 
although they were unexpectedly no less neophobic than 
other species, being equally deterred from eating when a 
novel object was near their food. Species from complex 
ecological niches, for example, forest margins, were also 
neophilic, although only when phylogeny was corrected for. 
This study could perhaps have used more direct measures of 
dietary generalism and predation pressure, but still illus-
trates the potential power of testing functional hypotheses 
with multi-species data. 

Using species differences to investigate responses to 
evolutionarily new circumstances 
Probably most relevant to welfare are questions about how 
biological traits predict animals' reactions to new scenarios, 
including ones imposed by humans. Conservation biology 
provides some excellent examples, with comparative meth-
ods being used to identify traits that increase vulnerability 
to extinction in the wild (Purvis et al 2000) and in reserves 
(Woodroffe & Ginsberg 1998) and that increase the likeli-
hood of thriving when introduced to new locations (eg Wolf 
et al 1998; Sol et al 2002). Many traits have been hypothe-
sised to predict responses to human management, although 
only a few have been tested. These include ideas about the 
factors predisposing certain species to domestication (see 
Diamond 1997; Clutton-Brock 1999), as well as more 
welfare-focused hypotheses about stress and stereotypic 
behaviour in captivity. 

Several traits have been suggested to predispose species to 
poor captive welfare, including fear of humans (Hediger 
1950), an endangered conservation status in the wild 
(Ginsberg & Macdonald 1990), being a dietary generalist 
(Morris 1964; Ormrod 1987), and having a naturally large 
home range size (Prescott & Buchanan-Smith 2004). These 
ideas largely remain untested, although recent work on 
carnivores provides support for the last hypothesis, as we 
discuss below. 

Stereotypies, which show great taxonomic variation in form 
and frequency (see eg Mason 1993a), have attracted particular 
attention. For example, the propensity of deprivation-reared 
primates to self-clasp when rocking has been suggested to 
relate to their high degree of maternal contact in the wild 
(Berkson 1967, cited in Mason 1993b ), while the common 
perfonnance of oral stereotypies by herbivores ( eg Dittrich 
1976) and pacing by carnivores (eg Mason 1993b) has been 
suggested to reflect natural foraging movements (Terlouw 
et al 1991; Mason & Mend] 1997). Even within herbivores, 
species-typical oral stereotypies vary in form in a way 

Comparative tests in animal welfare S37 

suggested to minor the biting of naturally foraging sheep 
and goats, for example, versus the tongue-prehension of 
giraffes, okapis and cattle (Sambraus 1985). 
Yet more ideas have been stimulated by variance in stereo-
typy frequency, with highly stereotypic species suggested to 
be naturally more active (eg Meyer-Holzapfel 1968); teni-
torial (Morris 1964); wide-ranging (F01ihman-Quick 1984); 
generalist in their diet ( eg M01Tis 1964 ); or to be more 
active foragers, for example, relying on extensive prey 
search and pursuit ( eg Terlouw et al 1991; Mason & Mendl 
1997). These hypotheses were recently tested for the 
Carnivora (Clubb 2001; Clubb & Mason 2003). Data were 
collected from 35 species on stereotypy and also on hus-
bandry, to check that any differences stemmed from species 
biology rather than from differential housing. Cross-species 
and phylogenetically conected comparisons with various 
aspects of wild behaviour revealed that only natural home 
range size and distances travelled daily in the wild predicted 
stereotypy levels in captivity. The success of this approach 
in distinguishing between competing hypotheses suggests it 
would be fruitful in the future to run similar analyses for 
other taxa. 

Conclusions and animal welfare implications 
Most animal welfare problems are experienced by a handful 
of species (poultry, pigs, laboratory mice, etc), and these 
rightly attract the most research, usually with species-
specific and proximate objectives. However, for more fun-
damental insights it can be inspiring and useful to take an 
ultimate approach and to look at the 'bigger picture'. After 
all, how animals react to humans, the lack of opportunity to 
forage, and restricted space, is at least partly influenced by 
their evolved characteristics. 
As we have seen, species differences allow the statistical 
testing of three types of evolutionary or ecological hypothesis. 
We can thus use them to address welfare-relevant questions 
about the adaptive value of different responses to challenge; 
patterns of co-evolution; and relationships between paiiicu-
lar biological variables and responses to aspects of captive 
management. Testing these s01is of ideas is of heuristic 
value, providing fundainental, interesting explanations likely 
to appeal to students, the public, and researchers in 'purer' 
areas of biology. Comparative approaches also have a prac-
tical value. They can yield general principles, for example 
to predict likely responses and problems in little-studied 
species. They can be used to investigate hypotheses that 
would be difficult, unethical or simply impossible to tackle 
experimentally (such as the relative imp01iance of predation 
compared to natural ranging in carnivores). They can also 
yield novel insights with direct implications for improving 
housing. For instance, considering the ecological conelates 
of carnivore stereotypies potentially leads to new ideas 
about husbandry, shifting the focus towards incorporating 
aspects of large home ranges into enclosures ( eg more 
space, den sites, viewpoints, and complexity) and away 
from the foraging-based changes currently favoured ( eg 
Shepherdson et al 1998). 
In conclusion, species comparisons have enormous poten-
tial value, especially considering how cunently under-
utilised data gathered in zoos are. As well as allowing the 
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thorough testing of the many hypotheses presented here, 
ideas about species' reproductive perfonnance, morbidity 
and m01iality could readily be investigated using data 
already collated in the International Zoo Yearbooks and 
International Species Infonnation System (ISIS). The huge 
number of individual studies on behavioural abnormalities, 
time budgets and responses to environmental enrichments 
(eg as published in volumes of Zoo Biology and 
Environmental Enrichment Coriference Proceedings) could 
also be capitalised upon. Looking to the future, we hope that 
an increasing number of species will also generate additional 
data on other responses, such as motivations to perform nat-
ural activities ( cf eg Mason et al 2001 ), general aspects of 
behavioural control ( cf eg Garner et al 2003) and hypothal-
amic-pituitary-adrenal (HPA) axis functioning (cf eg 
Wingfield et al 1992, 1995; O'Reilly & Wingfield 2001). 
With such information, we can envisage comparative 
approaches giving us, in the future, new and fundamental 
insights into species variation in the prioritisation of different 
behaviour patterns, abnonnal behaviour development in 
captivity, and endocrine stress-responsiveness - all impor-
tant issues that are currently far from understood. 
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