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LINEAR TRANSFORMATIONS ON SYMMETRIC SPACES 11

MING-HUAT LIM

ABSTRACT  Let U be a finite dimensional vector space over an infinite field F Let
U denote the r-th symmetric product space over U Let T U — U™ be a linear
transformation which sends nonzero decomposable elements to nonzero decomposable
elements Letdim U > s+ 1 Then we obtain the structure of T for the following cases
(1) F1s algebraically closed, (1) F 1s the real field, and (1) T 1s injective

1. Introduction. Let U be a finite dimensional vector space over an infinite field F.
For each positive integer r > 2, let U"” denote the r-th symmetric product space over U.
A linear mapping T from U” to U is called a decomposable mapping if it maps nonzero
decomposable elements to nonzero decomposable elements. If dim U > s+ 1, we obtain
the structure of T when F is algebraically closed or the real field or T is injective. When
r = s and F is algebraically closed of characteristic either 0 or exceeding r, the structure
of T was studied in [3, 6, 8].

A subspace of U'"” 1s called a decomposable subspace if 1t consists entirely of de-
composable elements. A decomposable subspace is called maximal if it is not contained
in any other decomposable subspaces. We first determine the form of an infinite family
of certain maximal decomposable subspaces such that any two of them have a non-zero
intersection and then use these results to determine the structure of decomposable map-
pings.

Throughout this paper we assume that dim U > 2.

2. Maximal decomposable subspaces. For any r vectors x,...,x, in U, we shall
use x| - - - x, to denote a decomposable element of U™. For convenience we call x; - - - x,
adecomposable element of length r, any vector in U a decomposable element of length 1
and any scalar in F a decomposable element of length 0. Let x and y be nonzero decom-
posable elements of length r and s respectively where r > 5. Then y is called a factor of
x if x = y - z for some decomposable element of length r — s.

Let x be a nonzero decomposable element of length r— 1. Then the set {x-u : u € U},
denoted by x- U, is a decomposable subspace and is called a type I subspace of U". Two
distinct type 1 subspaces x-U and y-U m U are called adjacent 1f x and y have a common
factor of length r — 2.

A k-field is a field over which every polynomial of degree less than or equal to k splits
completely. Let W be a 2-dimensional subspace of U. Then 1t is shown 1n [2, Proposi-
tion 10] that W is a decomposable subspace if and only 1if F is an r-field. The decompos-
able subspace W is called a type r subspace of U Let yy, ...y, « be vectors in U— W,
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1 < k < r, then the subspace {y| - --y,_« -z : 2 € W} is denoted by y, - - -y, - WX,
If F is a k-field, then y; - - - y,_; - W® is a decomposable subspace and is called a type k
subspace of U If F is an r-field with char F = 0 or char F > r then every maximal
decomposable subspace of U is of type i for some 1 < i < r whendim U > 3 (see [2]).
rtimes
Let u € U. Then u” denotes the decomposable element u - - - u in U, Proposition 9
in [2] can be improved as follows:

PROPOSITION 1. {u’ : u € U} is a decomposable subspace of U™ if and only if F is
a petfect field of characteristic p and r = p' for some positive integer t.

PROOF.  Suppose {u” : u € U} is decomposable. Then Proposition 9 in [2] implies
that char F = p > 0and r = p' forsome 7. Let A\ € F—{0},u € U—{0}. Then \u" = V'
for some v € U, v # 0. Hence v = au for some nonzero a in F. Hence a” = A. This
shows that F is a perfect field. The sufficiency follows from the fact that Au" = (au)’,
a” = X and uf +u) = () +uz)" (see [2]).

Suppose F is a perfect field of characteristic p > 0 and r > p’ for some positive
integer ¢. Let x be a nonzero decomposable element of length r — p’ over U. Then the
decomposable subspace {x-u” : u € U} is denoted by x - U’ and is called a power type
subspace of degree t.

The following result is obtained by modifying the proof of the theorem in [7]:

PROPOSITION 2.  Let M be a maximal decomposable subspace of U™” over the infinite
field F. Then one of the following holds:
(i) Misatype I subspace;
(ii) M C x- W for some 2-dimensional subspace W of U and some nonzero decom-
posable element x of length r — k where 1 <k <r;
(iii) M is a power type subspace and F is a perfect field of prime characteristicp < r.

We remark that equality holds in (ii) only if F'is a k-field.

3. Intersections of maximal decomposable subspaces. Throughoutthis section U
will denote a finite dimensional vector space over an infinite perfect field F of characteris-
tic p > 0. We study the intersection properties of maximal decomposable subspaces and
determine the form of an infinite family of maximal decomposable subspaces of type 1 or
power type such that any two members of the family have a nonzero intersection. These
results will be used in Section 4.

LEMMA 1. Two power type decomposable subspaces M = x - UP and N = y - U"" of
U, r > p', are equal if and only if x = \y for some \ € F.

PROOF. The sufficiency is clear. We prove the necessity. Choose a vector z ¢ (y,) U

<+« U(y,4) wherey = y| - -y, ¢, k = p’. Then M = N implies that

x- K=y -w

for some w € U. Since (z) # (y;) for all i, it follows that (z) = (w). Therefore x = Ay
for some A € F.
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LEMMA 2. Let M = x- UK k = p'and N = y - U™, m = p’, be two distinct
decomposable subspaces of U where t > € > 0 and r = p'. Then dim(M N\ N) = 1 if
and only if either

(i) t> Landy = Ix - f*" for some f € U, X € For
(ii) r > m+kandx = z-a", y = z-f* for some a, f € U and nonzero decomposable
element 7 of lengthr — k — m.

Otherwise M NN = 0.

PROOF.  Suppose that M NN # 0. Then there are nonzero vectors f and a € U such
that x- f* = y-a™ # 0. Either (f) = (a) or {f) # (a). If (f) = (a), then t # ¢, otherwise
M = N, a contradiction. Hence t > ¢ and y = A\x - f¥~™ for some \ € F. If (f) # (a),
then clearly r > k+m and x = z-a™, y = z- f* for some nonzero decomposable element
zoflength r — k —m.

Conversely, if (i) holds, then MNN = (x-f¥) and if (ii) holds, then MNN = (z-a™-f*).

Let z- UP' be a decomposable subspace of U where r > p', t > 0. Then every factor
of z is also called a factor of z - U”".

Let Py(U") denote the collection of all type 1 subspaces of U™". For each positive
integer ¢, let Z,(U") denote the collection of all power type decomposable subspaces of
degree ¢ in U, The following result was proved in [3, Proposition 6] for t = 0.

PROPOSITION 3. Let C C B,(U™) be an infinite family such that M\, M, € C implies
that MM, # 0. Then r > 2k, k = p' and there exists a nonzero decomposable element
y of length r — 2k such that for any M € C,

M=y-a, U
for some ay € U.

PROOF. It follows from Lemma 2 that r > 2k. If r = 2k, the assertion is clear from
Lemma 2. Hence we assume that r > 2k. Let M = x - U* be a fixed decomposable
subspace in C. By Lemma 2, each N € ( has a common factor of length r — 2k with M.
Since C is infinite, it follows from Lemma 2 that there exist an infinite subset D of C
and a nonzero decomposable element y of length r — 2k such that

D={y - U:vevCU}

for some infinite subset V of U where (v) # (v,) for distinct vi,v, € V. Let z - U* be
any member of C. Since V is infinite, there exists v € V such that v is not a factor of z.
Hence by Lemma 2, z = y - wk for some w € U. This completes our proof.

PROPOSITION 4. Let C be an infinite collection of decomposable subspaces of type 1
or power type in U such that for every M, M, in C, M "M, # 0. Then C C P(U")
for some integer t > 0, except possibly when char F = 2, in which case, there exist a
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nonzero decomposable element x of length r — 2**! for some non-negative integer s and
a subset W of U such that

(H CZ{x'Uzm}U{x~w2Y~U2x:weW}.

PROOE. Let D, = CN P(UM). Then D, is infinite for some non-negative integer ¢.
By Proposition 3, there exist a nonzero decomposable element x of length r — 2k where
k = p' and a subset W of U such that

D= {x-d U:acw}

Suppose that some decomposable subspace y- U™ € C wherey = y; -+ -y, m,m = p'
and ¢ < t. Choose ¢ € W such that (c) & {(y1),..., (yr_m)}. Since x- ¢* - U¥ and y - U™
have a nonzero intersection, it follows from Lemma 2 that

2) x-ckouk =y

for some u, v in U. Since c is not a factor y, it follows from (2) that & is a factor of V", a
contradiction since m < k. Hence

PUYNC =0

for ¢ <1t

Suppose now some y- U™ € C where m = p’, £ > t and y is a nonzero decomposable
element of length r — m. Choose d € W such that d is not a factor of x or y. We obtain
from Lemma 2 that

(3) x-d* =Xy -f"* or
4) x-d=z-fm

where A € F, f € U and z is a factor of length r —m —k of y. If (4) holds, then (d) = (f)
and k = m because of our choice of d. This yields a contradiction. Hence (3) holds. Thus
(d) = {f), k = m — k, and x = by for some b € F. Since m = p’ = 2k = 2p', we get
p=2and t+1 = {. Therefore C is the form (1).

4. t-regular decomposable mappings. Throughout this section U will denote a
finite dimensional vector space over a perfect field F of characteristic p > 0.

A decomposable mapping T from U” to U is called t-regular if the images of any
two adjacent type 1 subspaces of U under T are distinct power type decomposable
subspaces of degree ¢.

Let f be any injective semi-linear mapping on U with respect to the automorphism
A — ALk = p'. Let z be any fixed nonzero decomposable element of U7, Then
there exists a linear mapping S from U — U such that

(5) SCer - ox) = 2 (Fe) - (F)

where k = p'. Clearly S is a t-regular decomposable mapping. We shall show in this
section that every z-regular decomposable mapping is of the form (5).
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LEMMA 3. Let W be the subspace of U spanned by the vectors z - uf - ulﬁ coeuk

where u, € U, z is a fixed nonzero decomposable element in U™ and k = p'. Then
every linear mapping S of the form (5) maps the set of all nonzero decomposable elements
of U onto the set of all nonzero decomposable elements of W. Moreover, S: U — W
is bijective.

PROOF. We first show that S: U — W is bijective. Clearly S(U") = W. Let
vi,...,Vv, be any basis of U. For any wy,...,w, € U, we have w, = ZJ":la,,v,. Since
char F = p, it follows that

=1 =1
= (Fi,“’ff‘f) : (]:la’;vf)

Since {vf‘1 vfzvf‘ i1 <i; <ip <--- <i, < n}isalinearly independent set, it
follows that dim W = dim U and hence S is injective.

The proof of the lemma will be complete if we can show that every decomposable
element B in W is of the form A - df - - - d* for some d, € U. Let B = z; - - - z,. Using
Lemma 1 in [7], we get

B=A-yi - yu

for some y, € U. Suppose that

yios
for all d, € U. Then

y‘ ...yrk :g’ln.hl...hq

for some g; € U, h, € Usuch thatk fmand (g,) # (h,) for all i. Extend g; to a basis
g1,-..,8n of U. Write ¢ = rk. Let O, denote the set of all increasing sequences of ¢
integers from 1,...,n. For each o = (ay,..., o) € Q. p, let

8a = 8a; " 8a; " " 8a.-

Then {g, : @ € Qc,} is a basis of U“). Now let

n

h,=3 b,g, by, €cF.
J=1

For each 1 <i < g, let j, denote the largest integer such that b, # 0. We have j, > 1 for
all i. It is not hard to see that

q
i Ye = (H bu,)grln 8y 8t Z boga
a€Q:,\f3
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whereby € F, 3 € Qcpand (Boq1y, - - -, Bo0p) = (1,..., 1,j1,...,jg) for some permutation
oof {1,...,c}. Hence

cye E({gh gk 1< << <},
This implies that
Ayi-oye @{A-gh-gh 1< <---<i, <n})=W.
Hence we obtain a contradiction and the proof is complete.

LEMMA 4. Let V be a vector space over an infinite field. Let D be the set of all
decomposable elements of V. If D = JI_, D, then (D,) = V") for some j.

PROOF. Let 0: ®V — V") be the canonical mapping such that §(x; @ - -+ @ x,) =
Xxp -+ X Let
E={n®  ®x:00®  -®x)€ D}

Then |2, E, is the set of all decomposable elements of @"V. By Proposition 1 in [8],
(E;) = ®@"V for some j. Since 8 is surjective, it follows that (D,) = V.

LEMMA 5. Let T: U — UY be a t-regular mapping where s > rp'. Then the
images of all type 1 subspaces have a common factor of length s — rp'.

PROOF. LetM, =x;---x—;-U,and M, = y; -- -y, - U be any two type | sub-
spaces. Let
Mt:yl"'yx—l'xt"‘xr—l'U, i=1,...,r—1.

Since M, " M,,1 # 0, we have T(M,) N T(M,4;) # 0. Hence T(M,) and T(M,,) have a
common factor of length s — 2p’. Consequently 7(M,) and T(M,) have a common factor
of length s — rp'.

Suppose T(M,) = Z - U where Z = z;-- “Zgpt» 2 € U. Let {Zy,...,Zn} be a
maximal set of factors of Z of length s — rp’ such that (Z,) # (Z,) for i # j. Then the
image of any type 1 subspace has a factor Z, for some i. Let D, be the set of all nonzero
decomposable elements v; - - -v,_; such that T(v| - - -v,_; - U) has Z, as a factor. Then
(U, D,) U {0} is the set of all decomposable elements of U~ Y. In view of Lemma 4
(D,) = UV for some j. By Lemma 1 in [7] we see that Z, is a factor of the image of
any type 1 subspace of U".

LEMMA 6. Let T: UD — UY be a t-regular mapping. Let x = a - b, y = a - ¢ where
a is a nonzero decomposable element of length r — 3, and b, c are linearly independent
vectors in U. Let m = p'. If 7 is a common factor of length s — 2m for all T(x - u - U),
u € U — {0}, then z cannot be a common factor for all T(y - u - U), u € U — {0}.

PROOF. For each nonzero gin U, letM, = x-g-Uand N, = y - g- U. Suppose that
z a common factor for all T(M,) and T(N,), g € U — {0}. Let d be a nonzero vector in
U such that {(d) # (c) and (d) # (b).
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Since M., M, are adjacent and M, N, are adjacent, it follows from Lemma 2 that

(6) M) =z f"-U"
(7 T(Mg) =z-dp - U™
®) TNy =z-djt- U™

for some f,d|,d, € U. Since T is t-regular, (f) # (d;) and (d) # (d>). Note that M,
and N, are adjacent and hence (f) # (dy).
Now in view of (6), (7) and (8),

<

Ta-b-c-dy=z-f" u"
=z-di V"
=z-dy-w"

for some u,v,w € U. Since (d;) # (dy), we have (d;) = (w), (dy) = (v). It then follow
that either

(f) = {di) = (w) or (f) = {d2) = (v),

a contradiction. Hence the lemma is proved.
The following result follows from Theorem 1 in [8] and the proof of Theorem 6 in

[8].

PROPOSITION 5. Let V be a finite dimensional vector space over an infinite field.
If L: VO — VO is a linear mapping such that the images of any two adjacent type I
subspaces of U are distinct type 1 subspaces, then L = A\P.(g) where ) is a nonzero
scalar and P,(g) is the r-th induced power of a nonsingular linear mapping g on V.

THEOREM 1. Let T: U — U be a t-regular mapping. Then s > rp' and T is of
the form (5).

PROOE. If r = 2, by Proposition3,s > 2p’. Letr > 3.Letk = p'. Lety,...,y— be
nonzero vectors of U such that (y,) # (y,) fori #j.Let M =y, -y, - Uand T(M) =
B- U* where B is a nonzero decomposable vector in U™ In view of Proposition 3 and
Lemma 5 we have foreachi=1,...,r —1,

@ {TGr-5 -y u-U):ucU—{0}} C{B-ut U :ueU—{0}}
for some nonzero decomposable element B, of length s — 2k. Since
TM) € {T(y -+ F, - yr1-u-U):ue U\{0}}
it follows that
(10) B-U=B -u U

for some nonzero u, in U. Hence u* is a factor of B by Lemma 1. Since (y,) # (y,) for
m # j, by Lemma 6 we have (B,,) # (B,) for m # j. This shows that (u,,) # (u,) for
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m # j. Consequently B is a decomposable element of length > (r — 1)k. This implies
that s —k > (r — 1)k and thus s > rk. Suppose s > rk. Then Lemma 5 implies that there
exists a decomposable element A of length s — rk such that A is a factor of the image
of any type 1 subspace of U". Hence from (9) we obtain A is a factor of B; for each i.
Hence (10) implies that A - u¥ - - -u¥_| is a factor of B.

Let W = ({A -k .-k v, € U}). Then T(M) C W. Using inductionon r — 1, it is
easily shown that {y; - - -y : yi € U, {y;) # (y;) fori # j} spans U"~D and hence we
have T(U") C W. Let S be any linear mapping of the form (5). Then Lemma 3 implies
that S~!: W — U™ sends any two distinct power type decomposable subspaces in W
of degree 1 to distinct type 1 subspaces of U". Hence S~! o T: U” — U sends any
two adjacent type 1 subspaces to distinct type 1 subspaces. In view of Proposition 5,
S~ o T = A\P,(g) for some nonsingular linear map g on U and A € F — {0}. Thus
T = )\§ o P,(g) is of the form (5).

The following result is obtained by modifying the proof of Theorem I and putting
t=0.

THEOREM 2. Let V be a finite dimensional vector space over an infinite field. If L
is a linear mapping from VO to V¥ such that the images of any two adjacent type |
subspaces of V" are distinct type 1 subspaces, then r < s and

(11) Lvy---v) =A-g0v1)---g(vy)
for some nonzero decomposable element A of length s — r and some nonsingular linear

mapping g on U.

5. Main results. In this section U is a finite dimensional vector space over an arbi-
trary infinite field F.
We shall need the following:

LEMMA 7. Let T: U — UY be a decomposable mapping such that the images of
any two adjacent type 1 subspaces are distinct. Let dim U > 2. Let char F = 2. Let x be
a fixed nonzero decomposable element of length r — 2 over U. Let m = 2% where k is a
non-negative integer. Then it is impossible that

(12) {Tx-y-U):yeU—{0}} = {z- U} U{z-w" - U" : we W}
for some nonzero decomposable element 7 of length s — 2m over U and some W C U.
PROOF.  Suppose that (12) holds. Let My, = x -y - U,y € U — {0}. Assume that
TM,) = z- U™,
Let u, v be linearly independent vectors of U such that e = u + v. Then

13) TM,) =z-uy - U",
(14) TM,) =z-V{ - U™,
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for some u;,v; € U where (u;) # (v1). Let a, b be two linearly independent vectors of
U such thata,b ¢ (u1, v ). Since T(M,) = z - U™, it follows that

Tx-e-f)=z-a*"
T(x-e-g)=2z b

for some f, g in U. Clearly (a) # (b) implies that {f) # (g). We have either (f) # (e) or
(g) # (e). We may assume that (e) # (f). Let A = x - e f. In view of (13) and (14), we
have

B=x-u-f—z-f" uf
C=xovefmrz fi W
for some fi,f> in U. Since (f) # (e), we have
TMyp) =z -f;"-U"
for some f3 in U. Since T(A), T(B), T(C) € z- f5" - U™, it follows that

(f3) = (a) = (fi) = (f2)

by our choice of a.
Now, letf| = aa, f, = Ba, a, 3 € F. We obtain
TB+C) =z (xa)" -ul' +z-(Ba)™ -V}
=z-d" - (au; + (Bvy)" since char F = 2
= T(A)

=z a2m.

This implies that a = au; + (v, contradicting our choice of a. This completes the proof.

THEOREM 3. Let T: U — U" be a decomposable mapping such that the images
of any two adjacent type 1 subspaces are distinct. If dimU > s+ 1, then T is of the
form (11), except possibly when F is a perfect field of prime characteristic p and s > rp',
t > 0, in which case T may be of the form (5).

PROOF: CASE 1. Fis a perfect field of prime characteristic p < s. Let M be a type 1
subspace of U™, Then T(M) is a decomposable subspace of U and

dimU =dimM =dimT(M) > s + 1.

Suppose that T(M) C x - W® for some 2-dimensional subspace W and some nonzero
decomposable element x of length s — k where 1 < k < 5. We shall show that this leads
to a contradiction. First note that

dimTM) <dimW® =k+1<s+1.
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This implies that k = s and T(M) = WS dimU = s+ 1 and F is an s-field. Let
M = x-y-U where x is a nonzero decomposable element of length r—2 andy € U—{0}.
Let M, = x-u-Uand C = {T(M,) : u € U,u # 0}. We shall show that W is
the only type s subspace C. Suppose there is another type s subspace V) in C. Then
WO NV £ {0} implies that W NV is 1-dimensional. Choose a nonzero vector z in U
such that

T(x-y-2)=w--wy

where (w,) # (w,) fori # j, (y) # (z)and WNV # (w,) forall i = 1,...,s. Since
wi -+ ws € T(M,), clearly T(M;) is not a power type decomposable subspace. If

TM,) =212 U

for some z, in U, then

TM)N WY £0

and
T(M) NV #£0

imply that z; - - -z, € WMV and hence
(z1) =" =(z-1) =WNV.

Since w; - - -wy € z1 - - - z5—1 - U, it follows that (w,) = WNV for some i, a contradiction.
Hence T(M,) = N for some 2-dimensional subspace N of U because of Proposition 2.
Note that

x-y-zeM.NM,

implies that wy,...,w; € WNN. Hence
<W1,...,WS> = WIN,

a contradiction to our hypothesis on T since M, and M, are adjacent. This shows that W'®
is the only type s subspace in C. Let C—{T(M)} = D. Then D consists of decomposable
subspaces of type 1 or power type in U". In view of Proposition 4,

D—T(M,) C B(UY)
for some integer + > 0 and some g € U. By Proposition 3,
D—-TMy) ={e-u"-U":uecZ}

where m = p', Z C U and e is a nonzero decomposable element of length s — 2m. Let v
and w be linearly independent vectors in U such that

TM,))=e-VI-U",
TM,) =e-wi- U
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Then there exists h € U such that & & (g) U (y) U (v) U (w) and
Tx-v-h)y=e-v-dy

where d| ¢ (vi,w). Then
T(My) = e h™- U™

for some h; in U. Clearly A7 is a factor of v{" - df". But (h;) # (v1), hence {d;) = (h;).
Since T(M;), T(M,), T(M,,) all have a nonzero intersection with T(M,), it follows that
(d1,vi,w1) C W, a contradiction since dim W = 2, dim(dy, v, w;) = 3. This contradic-
tion shows that 7(M) is not contained in x - W® for any 2-dimensional subspace W of
U and any nonzero decomposable element x. Hence by Proposition 2 the image of any
type 1 subspace is either a type 1 or a power type subspace.

Suppose that 7(Q) € P(U®) for some type 1 subspace Q and some ¢ > 0. Let R be
any type 1 subspace of U, Clearly there exist type 1 subspaces Qi,...,Q, such that
01 = 0, 0, = R and Q;,Q;, are adjacent. In view of Proposition 4 and Lemma 7,
T(Q;) € P(UY) implies that T(Q;11) € P(U™). Hence T(R) € P,(U™). This shows
that 7 sends type 1 subspaces to type 1 subspaces or 7 is a t-regular mapping. Hence the
theorem follows from Theorems 1 and 2.

CASE 2. Fisnot a perfect field of characteristic p < s.

Note that there are no power type decomposable subspaces in U™, It is easily seen
from the proof of Case 1 that T sends type 1 subspaces to type 1 subspaces. Hence the
theorem follows from Theorem 2.

THEOREM 4. Let T: UP — U be a decomposable mapping and dimU > s + 1.
If (i) F is algebraically closed or (ii) F is the field of real numbers or (iii) T is injective,
then T is of the form (11), except possibly when F is a perfect field of prime characteristic
p, s > rp', t >0, in which case T may be of the form (5).

PROOF. We shall show that the images of any 2 adjacent type 1 subspaces under T
are distinct. When F is algebraically closed, this can be shown by using exactly the same
argument as in the proof of Proposition 5 in [3]. When T is injective, clearly the images
of any 2 adjacent type 1 subspaces are distinct.

We now consider the case when F = R, the real field. Suppose that there exist 2
adjacent type 1 subspaces M| = x-y; - U, My = x -y - U such that T(M,) = T(M,)
where x is a decomposable element of length r— 2. Let y be any nonzero vector in U. Let
M = x-y- U. Then T(M) is a decomposable subspace of dimension > s + 1. Note that
T(M) # W for any 2-dimensional subspace W of U since R is not a s-field. Using this
we see from Proposition 2 that T(M) is a type 1 subspace since dim 7(M) > s+ 1. Since
(x-y1-y,x-y2-y) C M, it follows that T(M) contains a 2-dimensional subspace of T(M}).
This implies that T(M) = T(M,) since both T(M) and T(M,) are type 1 subspaces. Let
H=({x-y-u:y€ Uu € U}). Then T(H) is a type 1 subspace. Hence T|y induces
a linear mapping T from U® to U sending every nonzero decomposable element to a
nonzero vector in U. Let 6: @*U — U® be the linear mapping such that f(u @v) = u-v.
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Then T, 08 s alinear mapping sending every nonzero decomposable element to a nonzero
vector in U. By Theorem 4 in [1], we see that dim U = 4 or 8. Now the mapping T}
induces a symmetric bilinear mapping f from R" x R" to R™!, n = dim U, such that
f(a,b) = Oimplies a = 0 or b = 0. The existence of f implies by a theorem of Hopf [4,5]
that the real projective space of dimension n — 1 can be differentiably embedded into R",
n = 4 or 8. But it is known that such an embedding is not possible (see [9], [12]). Hence
we obtain a contradiction. This proves that the images of any 2 adjacent type 1 subspaces
under T are distinct.

Hence the theorem follows from Theorem 3.

The following example shows that Theorem 4 is false if neither of the conditions (1)
to (iii) hold:

EXAMPLE. Let Q, be a field extension of the rational field Q of degree n > 2. Let
e be a fixed nonzero decomposable element in Q%! where s > 2. Then there exists a
linear mapping 6: Q" — Q) such that

0(x)--x) = (I:[lx,> e

r

where [1/_, x, denotes the product of the x,’s in the field Q,. Clearly § is a decomposable
mapping and (Q") = e - Q,. Hence 6 is not of the form (11).
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