LINEAR TRANSFORMATIONS ON SYMMETRIC SPACES II

MING-HUAT LIM

Abstract

Let U be a finte dimensional vector space over an infinite field F Let $U^{(r)}$ denote the r-th symmetric product space over U Let $T U^{(r)} \rightarrow U^{(s)}$ be a linear transformation which sends nonzero decomposable elements to nonzero decomposable elements Let $\operatorname{dim} U \geq s+1$ Then we obtain the structure of T for the following cases (1) F is algebracally closed, (in) F is the real field, and (in) T is injective

1. Introduction. Let U be a finite dimensional vector space over an infinite field F. For each positive integer $r \geq 2$, let $U^{(r)}$ denote the r-th symmetric product space over U. A linear mapping T from $U^{(r)}$ to $U^{(s)}$ is called a decomposable mapping if it maps nonzero decomposable elements to nonzero decomposable elements. If $\operatorname{dim} U \geq s+1$, we obtain the structure of T when F is algebraically closed or the real field or T is injective. When $r=s$ and F is algebraically closed of characteristic either 0 or exceeding r, the structure of T was studied in $[3,6,8]$.

A subspace of $U^{(r)}$ is called a decomposable subspace if it consists entirely of decomposable elements. A decomposable subspace is called maximal if it is not contained in any other decomposable subspaces. We first determine the form of an infinite family of certain maximal decomposable subspaces such that any two of them have a non-zero intersection and then use these results to determine the structure of decomposable mappings.

Throughout this paper we assume that $\operatorname{dim} U \geq 2$.
2. Maximal decomposable subspaces. For any r vectors x_{1}, \ldots, x_{r} in U, we shall use $x_{1} \cdots x_{r}$ to denote a decomposable element of $U^{(r)}$. For convenience we call $x_{1} \cdots x_{r}$ a decomposable element of length r, any vector in U a decomposable element of length 1 and any scalar in F a decomposable element of length 0 . Let x and y be nonzero decomposable elements of length r and s respectively where $r \geq s$. Then y is called a factor of x if $x=y \cdot z$ for some decomposable element of length $r-s$.

Let x be a nonzero decomposable element of length $r-1$. Then the set $\{x \cdot u: u \in U\}$, denoted by $x \cdot U$, is a decomposable subspace and is called a type 1 subspace of $U^{(r)}$. Two distinct type 1 subspaces $x \cdot U$ and $y \cdot U$ in $U^{(r)}$ are called adjacent if x and y have a common factor of length $r-2$.

A k-field is a field over which every polynomial of degree less than or equal to k splits completely. Let W be a 2 -dimensional subspace of U. Then it is shown in [2, Proposition 10] that $W^{(r)}$ is a decomposable subspace if and only if F is an r-field. The decomposable subspace $W^{(r)}$ is called a type r subspace of $U^{(r)}$. Let y_{1}, \ldots, y_{r-k} be vectors in $U-W$,
$1<k<r$, then the subspace $\left\{y_{1} \cdots y_{r-k} \cdot z: z \in W^{(k)}\right\}$ is denoted by $y_{1} \cdots y_{r-k} \cdot W^{(k)}$. If F is a k-field, then $y_{1} \cdots y_{r-k} \cdot W^{(k)}$ is a decomposable subspace and is called a type k subspace of $U^{(r)}$. If F is an r-field with char $F=0$ or char $F>r$ then every maximal decomposable subspace of $U^{(r)}$ is of type i for some $1 \leq i \leq r$ when $\operatorname{dim} U \geq 3$ (see [2]).
r times
Let $u \in U$. Then u^{r} denotes the decomposable element $\overbrace{u \cdots u}$ in $U^{(r)}$. Proposition 9 in [2] can be improved as follows:

Proposition 1. $\quad\left\{u^{r}: u \in U\right\}$ is a decomposable subspace of $U^{(r)}$ if and only if F is a perfect field of characteristic p and $r=p^{t}$ for some positive integer t.

Proof. Suppose $\left\{u^{r}: u \in U\right\}$ is decomposable. Then Proposition 9 in [2] implies that char $F=p>0$ and $r=p^{t}$ for some t. Let $\lambda \in F-\{0\}, u \in U-\{0\}$. Then $\lambda u^{r}=v^{r}$ for some $v \in U, v \neq 0$. Hence $v=a u$ for some nonzero a in F. Hence $a^{r}=\lambda$. This shows that F is a perfect field. The sufficiency follows from the fact that $\lambda u^{r}=(a u)^{r}$, $a^{r}=\lambda$ and $u_{1}^{r}+u_{2}^{r}=\left(u_{1}+u_{2}\right)^{r}$ (see [2]).

Suppose F is a perfect field of characteristic $p>0$ and $r \geq p^{t}$ for some positive integer t. Let x be a nonzero decomposable element of length $r-p^{t}$ over U. Then the decomposable subspace $\left\{x \cdot u^{p^{t}}: u \in U\right\}$ is denoted by $x \cdot U^{p^{t}}$ and is called a power type subspace of degree t.

The following result is obtained by modifying the proof of the theorem in [7]:
Proposition 2. Let M be a maximal decomposable subspace of $U^{(r)}$ over the infinite field F. Then one of the following holds:
(i) M is a type 1 subspace;
(ii) $M \subseteq x \cdot W^{(k)}$ for some 2-dimensional subspace W of U and some nonzero decomposable element x of length $r-k$ where $1<k \leq r$;
(iii) M is a power type subspace and F is a perfect field of prime characteristic $p \leq r$.

We remark that equality holds in (ii) only if F is a k-field.
3. Intersections of maximal decomposable subspaces. Throughout this section U will denote a finite dimensional vector space over an infinite perfect field F of characteristic $p>0$. We study the intersection properties of maximal decomposable subspaces and determine the form of an infinite family of maximal decomposable subspaces of type 1 or power type such that any two members of the family have a nonzero intersection. These results will be used in Section 4.

LEMMA 1. Two power type decomposable subspaces $M=x \cdot U^{p^{\prime}}$ and $N=y \cdot U^{p^{\prime}}$ of $U^{(r)}, r>p^{t}$, are equal if and only if $x=\lambda y$ for some $\lambda \in F$.

Proof. The sufficiency is clear. We prove the necessity. Choose a vector $z \notin\left\langle y_{1}\right\rangle \cup$ $\cdots \cup\left\langle y_{r-k}\right\rangle$ where $y=y_{1} \cdots y_{r-k}, k=p^{t}$. Then $M=N$ implies that

$$
x \cdot z^{k}=y \cdot w^{k}
$$

for some $w \in U$. Since $\langle z\rangle \neq\left\langle y_{i}\right\rangle$ for all i, it follows that $\langle z\rangle=\langle w\rangle$. Therefore $x=\lambda y$ for some $\lambda \in F$.

LEMMA 2. Let $M=x \cdot U^{k}, k=p^{t}$ and $N=y \cdot U^{m}, m=p^{\ell}$, be two distinct decomposable subspaces of $U^{(r)}$ where $t \geq \ell \geq 0$ and $r=p^{t}$. Then $\operatorname{dim}(M \cap N)=1$ if and only if either
(i) $t>\ell$ and $y=\lambda x \cdot f^{k-m}$ for some $f \in U, \lambda \in F$ or
(ii) $r \geq m+k$ and $x=z \cdot a^{m}, y=z \cdot f^{k}$ for some $a, f \in U$ and nonzero decomposable element z of length $r-k-m$.

Otherwise $M \cap N=0$.
Proof. Suppose that $M \cap N \neq 0$. Then there are nonzero vectors f and $a \in U$ such that $x \cdot f^{k}=y \cdot a^{m} \neq 0$. Either $\langle f\rangle=\langle a\rangle$ or $\langle f\rangle \neq\langle a\rangle$. If $\langle f\rangle=\langle a\rangle$, then $t \neq \ell$, otherwise $M=N$, a contradiction. Hence $t>\ell$ and $y=\lambda x \cdot f^{k-m}$ for some $\lambda \in F$. If $\langle f\rangle \neq\langle a\rangle$, then clearly $r \geq k+m$ and $x=z \cdot a^{m}, y=z \cdot f^{k}$ for some nonzero decomposable element z of length $r-k-m$.

Conversely, if (i) holds, then $M \cap N=\left\langle x \cdot f^{k}\right\rangle$ and if (ii) holds, then $M \cap N=\left\langle z \cdot a^{m} \cdot f^{k}\right\rangle$.
Let $z \cdot U^{p^{t}}$ be a decomposable subspace of $U^{(r)}$ where $r>p^{t}, t \geq 0$. Then every factor of z is also called a factor of $z \cdot U^{p^{t}}$.

Let $P_{0}\left(U^{(r)}\right)$ denote the collection of all type 1 subspaces of $U^{(r)}$. For each positive integer t, let $\mathcal{P}_{t}\left(U^{(r)}\right)$ denote the collection of all power type decomposable subspaces of degree t in $U^{(r)}$. The following result was proved in [3, Proposition 6] for $t=0$.

PROPOSITION 3. Let $\mathcal{C} \subseteq \mathcal{P}_{t}\left(U^{(r)}\right)$ be an infinite family such that $M_{1}, M_{2} \in \mathcal{C}$ implies that $M_{1} \cap M_{2} \neq 0$. Then $r \geq 2 k, k=p^{t}$ and there exists a nonzero decomposable element y of length $r-2 k$ such that for any $M \in \mathcal{C}$,

$$
M=y \cdot a_{M}^{k} \cdot U^{k}
$$

for some $a_{M} \in U$.
PROOF. It follows from Lemma 2 that $r \geq 2 k$. If $r=2 k$, the assertion is clear from Lemma 2. Hence we assume that $r>2 k$. Let $M=x \cdot U^{k}$ be a fixed decomposable subspace in C. By Lemma 2 , each $N \in \mathcal{C}$ has a common factor of length $r-2 k$ with M. Since \mathcal{C} is infinite, it follows from Lemma 2 that there exist an infinite subset \mathcal{D} of \mathcal{C} and a nonzero decomposable element y of length $r-2 k$ such that

$$
\mathcal{D}=\left\{y \cdot v^{k} \cdot U^{k}: v \in V \subseteq U\right\}
$$

for some infinite subset V of U where $\left\langle v_{1}\right\rangle \neq\left\langle v_{2}\right\rangle$ for distinct $v_{1}, v_{2} \in V$. Let $z \cdot U^{k}$ be any member of C. Since V is infinite, there exists $v \in V$ such that v is not a factor of z. Hence by Lemma $2, z=y \cdot w^{k}$ for some $w \in U$. This completes our proof.

PROPOSITION 4. Let C be an infinite collection of decomposable subspaces of type 1 or power type in $U^{(r)}$ such that for every M_{1}, M_{2} in $\mathcal{C}, M_{1} \cap M_{2} \neq 0$. Then $\mathcal{C} \subseteq \mathcal{P}_{t}\left(U^{(r)}\right)$ for some integer $t \geq 0$, except possibly when $\operatorname{char} F=2$, in which case, there exist a
nonzero decomposable element x of length $r-2^{s+1}$ for some non-negative integer s and a subset W of U such that

$$
\begin{equation*}
\mathcal{C}=\left\{x \cdot U^{2^{s+1}}\right\} \cup\left\{x \cdot w^{2^{5}} \cdot U^{2^{s}}: w \in W\right\} . \tag{1}
\end{equation*}
$$

Proof. Let $\mathcal{D}_{i}=\mathcal{C} \cap \mathcal{P}_{i}\left(U^{(r)}\right)$. Then \mathcal{D}_{t} is infinite for some non-negative integer t. By Proposition 3, there exist a nonzero decomposable element x of length $r-2 k$ where $k=p^{t}$ and a subset W of U such that

$$
\mathcal{D}_{t}=\left\{x \cdot a^{k} \cdot U^{k}: a \in W\right\}
$$

Suppose that some decomposable subspace $y \cdot U^{m} \in \mathcal{C}$ where $y=y_{1} \cdots y_{r-m}, m=p^{\ell}$ and $\ell<t$. Choose $c \in W$ such that $\langle c\rangle \notin\left\{\left\langle y_{1}\right\rangle, \ldots,\left\langle y_{r-m}\right\rangle\right\}$. Since $x \cdot c^{k} \cdot U^{k}$ and $y \cdot U^{m}$ have a nonzero intersection, it follows from Lemma 2 that

$$
\begin{equation*}
x \cdot c^{k} \cdot u^{k}=y \cdot v^{m} \tag{2}
\end{equation*}
$$

for some u, v in U. Since c is not a factor y, it follows from (2) that c^{k} is a factor of v^{m}, a contradiction since $m<k$. Hence

$$
\mathcal{P}_{\ell}\left(U^{(r)}\right) \cap C=\emptyset
$$

for $\ell<t$.
Suppose now some $y \cdot U^{m} \in \mathcal{C}$ where $m=p^{\ell}, \ell>t$ and y is a nonzero decomposable element of length $r-m$. Choose $d \in W$ such that d is not a factor of x or y. We obtain from Lemma 2 that

$$
\begin{gather*}
x \cdot d^{k}=\lambda y \cdot f^{m-k} \quad \text { or } \tag{3}\\
x \cdot d^{k}=z \cdot f^{m} \tag{4}
\end{gather*}
$$

where $\lambda \in F, f \in U$ and z is a factor of length $r-m-k$ of y. If (4) holds, then $\langle d\rangle=\langle f\rangle$ and $k=m$ because of our choice of d. This yields a contradiction. Hence (3) holds. Thus $\langle d\rangle=\langle f\rangle, k=m-k$, and $x=b y$ for some $b \in F$. Since $m=p^{\ell}=2 k=2 p^{t}$, we get $p=2$ and $t+1=\ell$. Therefore C is the form (1).
4. t-regular decomposable mappings. Throughout this section U will denote a finite dimensional vector space over a perfect field F of characteristic $p>0$.

A decomposable mapping T from $U^{(r)}$ to $U^{(s)}$ is called t-regular if the images of any two adjacent type 1 subspaces of $U^{(r)}$ under T are distinct power type decomposable subspaces of degree t.

Let f be any injective semi-linear mapping on U with respect to the automorphism $\lambda \rightarrow \lambda^{\frac{1}{k}}, k=p^{t}$. Let z be any fixed nonzero decomposable element of $U^{\left(s-r p^{\prime}\right)}$. Then there exists a linear mapping S from $U^{(r)} \rightarrow U^{(s)}$ such that

$$
\begin{equation*}
S\left(x_{1} \cdots x_{r}\right)=z \cdot\left(f\left(x_{1}\right)\right)^{k} \cdots\left(f\left(x_{r}\right)\right)^{k} \tag{5}
\end{equation*}
$$

where $k=p^{t}$. Clearly S is a t-regular decomposable mapping. We shall show in this section that every t-regular decomposable mapping is of the form (5).

LEMMA 3. Let W be the subspace of $U^{(s)}$ spanned by the vectors $z \cdot u_{1}^{k} \cdot u_{2}^{k} \cdots u_{r}^{k}$ where $u_{t} \in U, z$ is a fixed nonzero decomposable element in $U^{(s-r k)}$ and $k=p^{t}$. Then every linear mapping S of the form (5) maps the set of all nonzero decomposable elements of $U^{(r)}$ onto the set of all nonzero decomposable elements of W. Moreover, $S: U^{(r)} \rightarrow W$ is bijective.

Proof. We first show that $S: U^{(r)} \rightarrow W$ is bijective. Clearly $S\left(U^{(r)}\right)=W$. Let v_{1}, \ldots, v_{n} be any basis of U. For any $w_{1}, \ldots, w_{r} \in U$, we have $w_{l}=\sum_{j=1}^{n} a_{y} v_{j}$. Since char $F=p$, it follows that

$$
\begin{aligned}
w_{1}^{k} \cdot w_{2}^{k} \cdots w_{r}^{k} & =\left(\sum_{J=1}^{n} a_{1 J} v_{J}\right)^{k} \cdots\left(\sum_{J=1}^{n} a_{r j} v_{J}\right)^{k} \\
& =\left(\sum_{J=1}^{n} a_{1,}^{k} J_{J}^{k}\right) \cdots\left(\sum_{J=1}^{n} a_{r J}^{k} j_{J}^{k}\right) \\
& \in\left\langle\left\{v_{t_{1}}^{k} \cdot v_{t_{2}}^{k} \cdots v_{t_{r}}^{k}: 1 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{r} \leq n\right\}\right\rangle
\end{aligned}
$$

Since $\left\{v_{t_{1}}^{k} \cdot v_{l_{2}}^{k} \cdots v_{l_{r}}^{k}: 1 \leq i_{1} \leq i_{2} \leq \cdots \leq i_{r} \leq n\right\}$ is a linearly independent set, it follows that $\operatorname{dim} W=\operatorname{dim} U^{(r)}$ and hence S is injective.

The proof of the lemma will be complete if we can show that every decomposable element B in W is of the form $A \cdot d_{1}^{k} \cdots d_{r}^{k}$ for some $d_{l} \in U$. Let $B=z_{1} \cdots z_{s}$. Using Lemma 1 in [7], we get

$$
B=A \cdot y_{1} \cdots y_{r k}
$$

for some $y_{t} \in U$. Suppose that

$$
y_{1} \cdots y_{r k} \neq d_{1}^{k} \cdot d_{2}^{k} \cdots d_{r}^{k}
$$

for all $d_{t} \in U$. Then

$$
y_{1} \cdots y_{r k}=g_{1}^{m} \cdot h_{1} \cdots h_{q}
$$

for some $g_{1} \in U, h_{l} \in U$ such that $k \nmid m$ and $\left\langle g_{1}\right\rangle \neq\left\langle h_{l}\right\rangle$ for all i. Extend g_{1} to a basis g_{1}, \ldots, g_{n} of U. Write $c=r k$. Let $Q_{c, n}$ denote the set of all increasing sequences of c integers from $1, \ldots, n$. For each $\alpha=\left(\alpha_{1}, \ldots, \alpha_{c}\right) \in Q_{c, n}$, let

$$
g_{\alpha}=g_{\alpha_{1}} \cdot g_{\alpha_{2}} \cdots g_{\alpha_{c}}
$$

Then $\left\{g_{\alpha}: \alpha \in Q_{c, n}\right\}$ is a basis of $U^{(c)}$. Now let

$$
h_{l}=\sum_{j=1}^{n} b_{y} g_{J}, \quad b_{l j} \in F
$$

For each $1 \leq i \leq q$, let j_{l} denote the largest integer such that $b_{l_{l}} \neq 0$. We have $j_{l}>1$ for all i. It is not hard to see that

$$
y_{1} \cdots y_{c}=\left(\prod_{\imath=1}^{q} b_{t_{l}}\right) g_{1}^{m} \cdot g_{J_{1}} \cdots g_{J_{q}}+\sum_{\alpha \in Q_{c n} \backslash \beta} b_{\alpha} g_{\alpha}
$$

where $b_{\alpha} \in F, \beta \in Q_{c, n}$ and $\left(\beta_{\sigma(1)}, \ldots, \beta_{\sigma(c)}\right)=\left(1, \ldots, 1, j_{1}, \ldots, j_{q}\right)$ for some permutation σ of $\{1, \ldots, c\}$. Hence

$$
y_{1} \cdots y_{c} \notin\left\langle\left\{g_{l_{1}}^{k} \cdots g_{t_{r}}^{k}: 1 \leq i_{1} \leq \cdots \leq i_{r} \leq n\right\}\right\rangle
$$

This implies that

$$
A \cdot y_{1} \cdots y_{c} \notin\left\langle\left\{A \cdot g_{t_{1}}^{k} \cdots g_{t_{r}}^{k}: 1 \leq i_{1} \leq \cdots \leq i_{r} \leq n\right\}\right\rangle=W
$$

Hence we obtain a contradiction and the proof is complete.
Lemma 4. Let V be a vector space over an infinite field. Let D be the set of all decomposable elements of $V^{(r)}$. If $D=\bigcup_{i=1}^{m} D_{l}$, then $\left\langle D_{j}\right\rangle=V^{(r)}$ for some j.

Proof. Let $\theta: \otimes{ }^{r} V \rightarrow V^{(r)}$ be the canonical mapping such that $\theta\left(x_{1} \otimes \cdots \otimes x_{r}\right)=$ $x_{1} \cdots x_{r}$. Let

$$
E_{l}=\left\{x_{1} \otimes \cdots \otimes x_{r}: \theta\left(x_{1} \otimes \cdots \otimes x_{r}\right) \in D_{l}\right\} .
$$

Then $\bigcup_{l=1}^{m} E_{l}$ is the set of all decomposable elements of $\otimes^{r} V$. By Proposition 1 in [8], $\left\langle E_{J}\right\rangle=\otimes^{r} V$ for some j. Since θ is surjective, it follows that $\left\langle D_{J}\right\rangle=V^{(r)}$.

Lemma 5. Let $T: U^{(r)} \rightarrow U^{(s)}$ be a t-regular mapping where $s>r p^{t}$. Then the images of all type 1 subspaces have a common factor of length $s-r p^{t}$.

Proof. Let $M_{1}=x_{1} \cdots x_{r-1} \cdot U$, and $M_{1}=y_{1} \cdots y_{r-1} \cdot U$ be any two type 1 subspaces. Let

$$
M_{l}=y_{1} \cdots y_{t-1} \cdot x_{t} \cdots x_{r-1} \cdot U, \quad i=1, \ldots, r-1 .
$$

Since $M_{l} \cap M_{l+1} \neq 0$, we have $T\left(M_{l}\right) \cap T\left(M_{l+1}\right) \neq 0$. Hence $T\left(M_{l}\right)$ and $T\left(M_{l+1}\right)$ have a common factor of length $s-2 p^{t}$. Consequently $T\left(M_{1}\right)$ and $T\left(M_{r}\right)$ have a common factor of length $s-r p^{t}$.

Suppose $T\left(M_{1}\right)=Z \cdot U^{p^{t}}$ where $Z=z_{1} \cdots z_{s-p^{t}}, z_{l} \in U$. Let $\left\{Z_{1}, \ldots, Z_{m}\right\}$ be a maximal set of factors of Z of length $s-r p^{t}$ such that $\left\langle Z_{i}\right\rangle \neq\left\langle Z_{J}\right\rangle$ for $i \neq j$. Then the image of any type 1 subspace has a factor Z_{l} for some i. Let D_{l} be the set of all nonzero decomposable elements $v_{1} \cdots v_{r-1}$ such that $T\left(v_{1} \cdots v_{r-1} \cdot U\right)$ has Z_{l} as a factor. Then $\left(\bigcup_{l=1}^{m} D_{l}\right) \cup\{0\}$ is the set of all decomposable elements of $U^{(r-1)}$. In view of Lemma 4 $\left\langle D_{J}\right\rangle=U^{(r-1)}$ for some j. By Lemma 1 in [7] we see that Z_{J} is a factor of the image of any type 1 subspace of $U^{(r)}$.

Lemma 6. Let $T: U^{(r)} \rightarrow U^{(s)}$ be a t-regular mapping. Let $x=a \cdot b, y=a \cdot c$ where a is a nonzero decomposable element of length $r-3$, and b, c are linearly independent vectors in U. Let $m=p^{t}$. If z is a common factor of length $s-2 m$ for all $T(x \cdot u \cdot U)$, $u \in U-\{0\}$, then z cannot be a common factor for all $T(y \cdot u \cdot U), u \in U-\{0\}$.

Proof. For each nonzero g in U, let $M_{g}=x \cdot g \cdot U$ and $N_{g}=y \cdot g \cdot U$. Suppose that z a common factor for all $T\left(M_{g}\right)$ and $T\left(N_{g}\right), g \in U-\{0\}$. Let d be a nonzero vector in U such that $\langle d\rangle \neq\langle c\rangle$ and $\langle d\rangle \neq\langle b\rangle$.

Since M_{c}, M_{d} are adjacent and M_{d}, N_{d} are adjacent, it follows from Lemma 2 that

$$
\begin{align*}
& T\left(M_{c}\right)=z \cdot f^{m} \cdot U^{m} \tag{6}\\
& T\left(M_{d}\right)=z \cdot d_{1}^{m} \cdot U^{m} \tag{7}\\
& T\left(N_{d}\right)=z \cdot d_{2}^{m} \cdot U^{m} \tag{8}
\end{align*}
$$

for some $f, d_{1}, d_{2} \in U$. Since T is t-regular, $\langle f\rangle \neq\left\langle d_{1}\right\rangle$ and $\left\langle d_{1}\right\rangle \neq\left\langle d_{2}\right\rangle$. Note that M_{c} and N_{d} are adjacent and hence $\langle f\rangle \neq\left\langle d_{2}\right\rangle$.

Now in view of (6), (7) and (8),

$$
\begin{aligned}
T(a \cdot b \cdot c \cdot d) & =z \cdot f^{m} \cdot u^{m} \\
& =z \cdot d_{1}^{m} \cdot v^{m} \\
& =z \cdot d_{2}^{m} \cdot w^{m}
\end{aligned}
$$

for some $u, v, w \in U$. Since $\left\langle d_{1}\right\rangle \neq\left\langle d_{2}\right\rangle$, we have $\left\langle d_{1}\right\rangle=\langle w\rangle,\left\langle d_{2}\right\rangle=\langle v\rangle$. It then follow that either

$$
\langle f\rangle=\left\langle d_{1}\right\rangle=\langle w\rangle \text { or }\langle f\rangle=\left\langle d_{2}\right\rangle=\langle v\rangle,
$$

a contradiction. Hence the lemma is proved.
The following result follows from Theorem 1 in [8] and the proof of Theorem 6 in [8].

Proposition 5. Let V be a finite dimensional vector space over an infinite field. If $L: V^{(r)} \rightarrow V^{(r)}$ is a linear mapping such that the images of any two adjacent type 1 subspaces of $U^{(r)}$ are distinct type 1 subspaces, then $L=\lambda P_{r}(g)$ where λ is a nonzero scalar and $P_{r}(g)$ is the r-th induced power of a nonsingular linear mapping g on V.

Theorem 1. Let $T: U^{(r)} \rightarrow U^{(s)}$ be a t-regular mapping. Then $s \geq r p^{t}$ and T is of the form (5).

PRoof. If $r=2$, by Proposition $3, s \geq 2 p^{t}$. Let $r \geq 3$. Let $k=p^{t}$. Let y_{1}, \ldots, y_{r-1} be nonzero vectors of U such that $\left\langle y_{i}\right\rangle \neq\left\langle y_{j}\right\rangle$ for $i \neq j$. Let $M=y_{1} \cdots y_{r-1} \cdot U$ and $T(M)=$ $B \cdot U^{k}$ where B is a nonzero decomposable vector in $U^{(s-k)}$. In view of Proposition 3 and Lemma 5 we have for each $i=1, \ldots, r-1$,

$$
\begin{equation*}
\left\{T\left(y_{1} \cdots \hat{y}_{t}^{\prime} \cdots y_{r-1} \cdot u \cdot U\right): u \in U-\{0\}\right\} \subseteq\left\{B_{l} \cdot u^{k} \cdot U^{k}: u \in U-\{0\}\right\} \tag{9}
\end{equation*}
$$

for some nonzero decomposable element B_{l} of length $s-2 k$. Since

$$
T(M) \in\left\{T\left(y_{1} \cdots \hat{y}_{t} \cdots y_{r-1} \cdot u \cdot U\right): u \in U \backslash\{0\}\right\}
$$

it follows that

$$
\begin{equation*}
B \cdot U^{k}=B_{l} \cdot u_{l}^{k} \cdot U^{k} \tag{10}
\end{equation*}
$$

for some nonzero u_{t} in U. Hence u_{t}^{k} is a factor of B by Lemma 1. Since $\left\langle y_{m}\right\rangle \neq\left\langle y_{J}\right\rangle$ for $m \neq j$, by Lemma 6 we have $\left\langle B_{m}\right\rangle \neq\left\langle B_{J}\right\rangle$ for $m \neq j$. This shows that $\left\langle u_{m}\right\rangle \neq\left\langle u_{j}\right\rangle$ for
$m \neq j$. Consequently B is a decomposable element of length $\geq(r-1) k$. This implies that $s-k \geq(r-1) k$ and thus $s \geq r k$. Suppose $s>r k$. Then Lemma 5 implies that there exists a decomposable element A of length $s-r k$ such that A is a factor of the image of any type 1 subspace of $U^{(r)}$. Hence from (9) we obtain A is a factor of B_{i} for each i. Hence (10) implies that $A \cdot u_{1}^{k} \cdots u_{r-1}^{k}$ is a factor of B.

Let $W=\left\langle\left\{A \cdot v_{1}^{k} \cdots v_{r}^{k}: v_{i} \in U\right\}\right\rangle$. Then $T(M) \subseteq W$. Using induction on $r-1$, it is easily shown that $\left\{y_{1} \cdots y_{r-1}: y_{i} \in U,\left\langle y_{i}\right\rangle \neq\left\langle y_{j}\right\rangle\right.$ for $\left.i \neq j\right\}$ spans $U^{(r-1)}$ and hence we have $T\left(U^{(r)}\right) \subseteq W$. Let S be any linear mapping of the form (5). Then Lemma 3 implies that $S^{-1}: W \rightarrow U^{(r)}$ sends any two distinct power type decomposable subspaces in W of degree t to distinct type 1 subspaces of $U^{(r)}$. Hence $S^{-1} \circ T: U^{(r)} \rightarrow U^{(r)}$ sends any two adjacent type 1 subspaces to distinct type 1 subspaces. In view of Proposition 5, $S^{-1} \circ T=\lambda P_{r}(g)$ for some nonsingular linear map g on U and $\lambda \in F-\{0\}$. Thus $T=\lambda S \circ P_{r}(g)$ is of the form (5).

The following result is obtained by modifying the proof of Theorem 1 and putting $t=0$.

Theorem 2. Let V be a finite dimensional vector space over an infinite field. If L is a linear mapping from $V^{(r)}$ to $V^{(s)}$ such that the images of any two adjacent type 1 subspaces of $V^{(r)}$ are distinct type 1 subspaces, then $r \leq s$ and

$$
\begin{equation*}
L\left(v_{1} \cdots v_{r}\right)=A \cdot g\left(v_{1}\right) \cdots g\left(v_{r}\right) \tag{11}
\end{equation*}
$$

for some nonzero decomposable element A of length $s-r$ and some nonsingular linear mapping g on U.
5. Main results. In this section U is a finite dimensional vector space over an arbitrary infinite field F.

We shall need the following:
LEMMA 7. Let $T: U^{(r)} \rightarrow U^{(s)}$ be a decomposable mapping such that the images of any two adjacent type 1 subspaces are distinct. Let $\operatorname{dim} U>2$. Let char $F=2$. Let x be a fixed nonzero decomposable element of length $r-2$ over U. Let $m=2^{k}$ where k is a non-negative integer. Then it is impossible that

$$
\begin{equation*}
\{T(x \cdot y \cdot U): y \in U-\{0\}\}=\left\{z \cdot U^{2 m}\right\} \cup\left\{z \cdot w^{m} \cdot U^{m}: w \in W\right\} \tag{12}
\end{equation*}
$$

for some nonzero decomposable element z of length $s-2 m$ over U and some $W \subseteq U$.
Proof. Suppose that (12) holds. Let $M_{y}=x \cdot y \cdot U, y \in U-\{0\}$. Assume that

$$
T\left(M_{e}\right)=z \cdot U^{2 m}
$$

Let u, v be linearly independent vectors of U such that $e=u+v$. Then

$$
\begin{align*}
& T\left(M_{u}\right)=z \cdot u_{1}^{m} \cdot U^{m}, \tag{13}\\
& T\left(M_{v}\right)=z \cdot v_{1}^{m} \cdot U^{m}, \tag{14}
\end{align*}
$$

for some $u_{1}, v_{1} \in U$ where $\left\langle u_{1}\right\rangle \neq\left\langle v_{1}\right\rangle$. Let a, b be two linearly independent vectors of U such that $a, b \notin\left\langle u_{1}, v_{1}\right\rangle$. Since $T\left(M_{e}\right)=z \cdot U^{2 m}$, it follows that

$$
\begin{aligned}
& T(x \cdot e \cdot f)=z \cdot a^{2 m} \\
& T(x \cdot e \cdot g)=z \cdot b^{2 m}
\end{aligned}
$$

for some f, g in U. Clearly $\langle a\rangle \neq\langle b\rangle$ implies that $\langle f\rangle \neq\langle g\rangle$. We have either $\langle f\rangle \neq\langle e\rangle$ or $\langle g\rangle \neq\langle e\rangle$. We may assume that $\langle e\rangle \neq\langle f\rangle$. Let $A=x \cdot e \cdot f$. In view of (13) and (14), we have

$$
\begin{aligned}
& B=x \cdot u \cdot f \rightarrow z \cdot f_{1}^{m} \cdot u_{1}^{m} \\
& C=x \cdot v \cdot f \rightarrow z \cdot f_{2}^{m} \cdot v_{1}^{m}
\end{aligned}
$$

for some f_{1}, f_{2} in U. Since $\langle f\rangle \neq\langle e\rangle$, we have

$$
T\left(M_{f}\right)=z \cdot f_{3}^{m} \cdot U^{m}
$$

for some f_{3} in U. Since $T(A), T(B), T(C) \in z \cdot f_{3}^{m} \cdot U^{m}$, it follows that

$$
\left\langle f_{3}\right\rangle=\langle a\rangle=\left\langle f_{1}\right\rangle=\left\langle f_{2}\right\rangle
$$

by our choice of a.
Now, let $f_{1}=\alpha a, f_{2}=\beta a, \alpha, \beta \in F$. We obtain

$$
\begin{aligned}
T(B+C) & =z \cdot(\alpha a)^{m} \cdot u_{1}^{m}+z \cdot(\beta a)^{m} \cdot v_{1}^{m} \\
& =z \cdot a^{m} \cdot\left(\alpha u_{1}+\beta v_{1}\right)^{m} \text { since char } F=2 \\
& =T(A) \\
& =z \cdot a^{2 m} .
\end{aligned}
$$

This implies that $a=\alpha u_{1}+\beta v_{1}$, contradicting our choice of a. This completes the proof.
THEOREM 3. Let $T: U^{(r)} \rightarrow U^{(s)}$ be a decomposable mapping such that the images of any two adjacent type 1 subspaces are distinct. If $\operatorname{dim} U \geq s+1$, then T is of the form (11), except possibly when F is a perfect field of prime characteristic p and $s \geq r p^{t}$, $t>0$, in which case T may be of the form (5).

PROOF: CASE 1. F is a perfect field of prime characteristic $p \leq s$. Let M be a type 1 subspace of $U^{(r)}$. Then $T(M)$ is a decomposable subspace of $U^{(s)}$ and

$$
\operatorname{dim} U=\operatorname{dim} M=\operatorname{dim} T(M) \geq s+1 .
$$

Suppose that $T(M) \subseteq x \cdot W^{(k)}$ for some 2-dimensional subspace W and some nonzero decomposable element x of length $s-k$ where $1<k \leq s$. We shall show that this leads to a contradiction. First note that

$$
\operatorname{dim} T(M) \leq \operatorname{dim} W^{(k)}=k+1 \leq s+1
$$

This implies that $k=s$ and $T(M)=W^{(s)}, \operatorname{dim} U=s+1$ and F is an s-field. Let $M=x \cdot y \cdot U$ where x is a nonzero decomposable element of length $r-2$ and $y \in U-\{0\}$. Let $M_{u}=x \cdot u \cdot U$ and $\mathcal{C}=\left\{T\left(M_{u}\right): u \in U, u \neq 0\right\}$. We shall show that $W^{(s)}$ is the only type s subspace \mathcal{C}. Suppose there is another type s subspace $V^{(s)}$ in \mathcal{C}. Then $W^{(s)} \cap V^{(s)} \neq\{0\}$ implies that $W \cap V$ is 1-dimensional. Choose a nonzero vector z in U such that

$$
T(x \cdot y \cdot z)=w_{1} \cdots w_{s}
$$

where $\left\langle w_{l}\right\rangle \neq\left\langle w_{J}\right\rangle$ for $i \neq j,\langle y\rangle \neq\langle z\rangle$ and $W \cap V \neq\left\langle w_{l}\right\rangle$ for all $i=1, \ldots, s$. Since $w_{1} \cdots w_{s} \in T\left(M_{z}\right)$, clearly $T\left(M_{z}\right)$ is not a power type decomposable subspace. If

$$
T\left(M_{z}\right)=z_{1} \cdots z_{s-1} \cdot U
$$

for some z_{l} in U, then

$$
T\left(M_{z}\right) \cap W^{(s)} \neq 0
$$

and

$$
T\left(M_{z}\right) \cap V^{(s)} \neq 0
$$

imply that $z_{1} \cdots z_{s-1} \in W \cap V$ and hence

$$
\left\langle z_{1}\right\rangle=\cdots=\left\langle z_{s-1}\right\rangle=W \cap V .
$$

Since $w_{1} \cdots w_{s} \in z_{1} \cdots z_{s-1} \cdot U$, it follows that $\left\langle w_{t}\right\rangle=W \cap V$ for some i, a contradiction. Hence $T\left(M_{z}\right)=N^{(s)}$ for some 2-dimensional subspace N of U because of Proposition 2 . Note that

$$
x \cdot y \cdot z \in M_{z} \cap M_{v}
$$

implies that $w_{1}, \ldots, w_{s} \in W \cap N$. Hence

$$
\left\langle w_{1}, \ldots, w_{s}\right\rangle=W=N
$$

a contradiction to our hypothesis on T since M_{z} and M_{v} are adjacent. This shows that $W^{(s)}$ is the only type s subspace in \mathcal{C}. Let $\mathcal{C}-\{T(M)\}=\mathcal{D}$. Then \mathcal{D} consists of decomposable subspaces of type 1 or power type in $U^{(s)}$. In view of Proposition 4,

$$
\mathcal{D}-T\left(M_{g}\right) \subseteq \mathcal{P}_{t}\left(U^{(s)}\right)
$$

for some integer $t \geq 0$ and some $g \in U$. By Proposition 3,

$$
\mathcal{D}-T\left(M_{g}\right)=\left\{e \cdot u^{m} \cdot U^{m}: u \in Z\right\}
$$

where $m=p^{t}, Z \subseteq U$ and e is a nonzero decomposable element of length $s-2 m$. Let v and w be linearly independent vectors in U such that

$$
\begin{aligned}
T\left(M_{v}\right) & =e \cdot v_{1}^{m} \cdot U^{m} \\
T\left(M_{w}\right) & =e \cdot w_{1}^{m} \cdot U^{m}
\end{aligned}
$$

Then there exists $h \in U$ such that $h \notin\langle g\rangle \cup\langle y\rangle \cup\langle v\rangle \cup\langle w\rangle$ and

$$
T(x \cdot v \cdot h)=e \cdot v_{1}^{m} \cdot d_{1}^{m}
$$

where $d_{1} \notin\left\langle v_{1}, w_{1}\right\rangle$. Then

$$
T\left(M_{h}\right)=e \cdot h_{1}^{m} \cdot U^{m}
$$

for some h_{1} in U. Clearly h_{1}^{m} is a factor of $v_{1}^{m} \cdot d_{1}^{m}$. But $\left\langle h_{1}\right\rangle \neq\left\langle v_{1}\right\rangle$, hence $\left\langle d_{1}\right\rangle=\left\langle h_{1}\right\rangle$. Since $T\left(M_{h}\right), T\left(M_{v}\right), T\left(M_{w}\right)$ all have a nonzero intersection with $T\left(M_{y}\right)$, it follows that $\left\langle d_{1}, v_{1}, w_{1}\right\rangle \subseteq W$, a contradiction since $\operatorname{dim} W=2, \operatorname{dim}\left\langle d_{1}, v_{1}, w_{1}\right\rangle=3$. This contradiction shows that $T(M)$ is not contained in $x \cdot W^{(k)}$ for any 2-dimensional subspace W of U and any nonzero decomposable element x. Hence by Proposition 2 the image of any type 1 subspace is either a type 1 or a power type subspace.

Suppose that $T(Q) \in \mathcal{P}_{t}\left(U^{(s)}\right)$ for some type 1 subspace Q and some $t \geq 0$. Let R be any type 1 subspace of $U^{(r)}$. Clearly there exist type 1 subspaces Q_{1}, \ldots, Q_{r} such that $Q_{1}=Q, Q_{r}=R$ and Q_{i}, Q_{i+1} are adjacent. In view of Proposition 4 and Lemma 7, $T\left(Q_{i}\right) \in \mathcal{P}_{t}\left(U^{(s)}\right)$ implies that $T\left(Q_{i+1}\right) \in \mathcal{P}_{t}\left(U^{(s)}\right)$. Hence $T(R) \in \mathcal{P}_{t}\left(U^{(s)}\right)$. This shows that T sends type 1 subspaces to type 1 subspaces or T is a t-regular mapping. Hence the theorem follows from Theorems 1 and 2.

CASE 2. $\quad F$ is not a perfect field of characteristic $p \leq s$.
Note that there are no power type decomposable subspaces in $U^{(s)}$. It is easily seen from the proof of Case 1 that T sends type 1 subspaces to type 1 subspaces. Hence the theorem follows from Theorem 2.

Theorem 4. Let $T: U^{(r)} \rightarrow U^{(s)}$ be a decomposable mapping and $\operatorname{dim} U \geq s+1$. If (i) F is algebraically closed or (ii) F is the field of real numbers or (iii) T is injective, then T is of the form (11), except possibly when F is a perfect field of prime characteristic $p, s \geq r p^{t}, t>0$, in which case T may be of the form (5).

Proof. We shall show that the images of any 2 adjacent type 1 subspaces under T are distinct. When F is algebraically closed, this can be shown by using exactly the same argument as in the proof of Proposition 5 in [3]. When T is injective, clearly the images of any 2 adjacent type 1 subspaces are distinct.

We now consider the case when $F=\mathbb{R}$, the real field. Suppose that there exist 2 adjacent type 1 subspaces $M_{1}=x \cdot y_{1} \cdot U, M_{2}=x \cdot y_{2} \cdot U$ such that $T\left(M_{1}\right)=T\left(M_{2}\right)$ where x is a decomposable element of length $r-2$. Let y be any nonzero vector in U. Let $M=x \cdot y \cdot U$. Then $T(M)$ is a decomposable subspace of dimension $\geq s+1$. Note that $T(M) \neq W^{(s)}$ for any 2-dimensional subspace W of U since \mathbb{R} is not a s-field. Using this we see from Proposition 2 that $T(M)$ is a type 1 subspace since $\operatorname{dim} T(M) \geq s+1$. Since $\left\langle x \cdot y_{1} \cdot y, x \cdot y_{2} \cdot y\right\rangle \subseteq M$, it follows that $T(M)$ contains a 2 -dimensional subspace of $T\left(M_{1}\right)$. This implies that $T(M)=T\left(M_{1}\right)$ since both $T(M)$ and $T\left(M_{1}\right)$ are type 1 subspaces. Let $H=\langle\{x \cdot y \cdot u: y \in U, u \in U\}\rangle$. Then $T(H)$ is a type 1 subspace. Hence $\left.T\right|_{H}$ induces a linear mapping T_{1} from $U^{(2)}$ to U sending every nonzero decomposable element to a nonzero vector in U. Let $\theta: \otimes^{2} U \rightarrow U^{(2)}$ be the linear mapping such that $\theta(u \otimes v)=u \cdot v$.

Then $T_{1} \circ \theta$ is a linear mapping sending every nonzero decomposable element to a nonzero vector in U. By Theorem 4 in [1], we see that $\operatorname{dim} U=4$ or 8 . Now the mapping T_{1} induces a symmetric bilinear mapping f from $\mathbb{R}^{n} \times \mathbb{R}^{n}$ to $\mathbb{R}^{n+1}, n=\operatorname{dim} U$, such that $f(a, b)=0$ implies $a=0$ or $b=0$. The existence of f implies by a theorem of Hopf [4,5] that the real projective space of dimension $n-1$ can be differentiably embedded into \mathbb{R}^{n}, $n=4$ or 8 . But it is known that such an embedding is not possible (see [9], [12]). Hence we obtain a contradiction. This proves that the images of any 2 adjacent type 1 subspaces under T are distinct.

Hence the theorem follows from Theorem 3.
The following example shows that Theorem 4 is false if neither of the conditions (1) to (iii) hold:

Example. Let Q_{n} be a field extension of the rational field Q of degree $n \geq 2$. Let e be a fixed nonzero decomposable element in $Q_{n}^{(s-1)}$ where $s>2$. Then there exists a linear mapping $\theta: Q_{n}^{(r)} \rightarrow Q_{n}^{(s)}$ such that

$$
\theta\left(x_{1} \cdots x_{r}\right)=\left(\prod_{l=1}^{r} x_{l}\right) \cdot e
$$

where $\prod_{l=1}^{r} x_{l}$ denotes the product of the x_{l} 's in the field Q_{n}. Clearly θ is a decomposable mapping and $\theta\left(Q_{n}^{(r)}\right)=e \cdot Q_{n}$. Hence θ is not of the form (11).

References

1. G H Chan and M H Lim, Linear transformatoons on tensor spaces, Linear and Multhlinear Alg 14(1983), 3-9
2. L J Cummings, Decomposable symmetric tensors, Pacific J Math 35(1970), 65-77
3. \qquad Transformations of symmetric tensors, Pacific J Math 42(1972), 603-613
4. H Hopf, Systeme symmetrischer Bllinearformen und euklidische Modelle der projectiven Raume, Vierteljschr Naturforsch Ges, Zurich 85(1940), 165-177
5. I M James, Euclıdean models of projective Spaces, Bull London Math Soc 3(1971), 257-276
6. M H Lim, Linear transformations on symmetric spaces, Pacıfic J Math 55(1974), 499-505
7. \qquad , A note on maximal decomposable subspaces of symmetric spaces, Bull London Math Soc 7(1975), 289-293
8.

__, Linear transformations on symmetry classes of tensors, Linear and Multilnear Alg 3(1976), 267-280
9. M Mahowald, On the embeddability of the real projective spaces, Proc Amer Math Soc 13(1962), 763-764
10. M Marcus, Linear transformatoons on matrices, Journal of Research of the National Bureau of Standards (U S) (B) 75(1971), 107-113
11. \qquad , Finite Dimensional Multilinear Algebra, Part 1, Marcel Dekker, New York, 1973
12. W S Massey, On the embeddabilty of the real projective spaces in Euclidean space, Pacific J Math 9(1959), 783-789

Department of Mathematics
University of Malaya
Kuala Lumpur
Malaysia

