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LINEAR TRANSFORMATIONS ON SYMMETRIC SPACES II 

MING-HUAT LIM 

ABSTRACT. Let U be a finite dimensional vector space over an infinite field F. Let 
i / r ) denote the r-th symmetric product space over U. Let T: U^ —> l/-s^ be a linear 
transformation which sends nonzero decomposable elements to nonzero decomposable 
elements. Let dim U > s + 1. Then we obtain the structure of T for the following cases: 
(i) F is algebraically closed, (ii) F is the real field, and (iii) T is injective. 

1. Introduction. Let U be a finite dimensional vector space over an infinite field F. 
For each positive integer r > 2, let £/(r) denote the r-th symmetric product space over U. 
A linear mapping T from L7(r) to U^ is called a decomposable mapping if it maps nonzero 
decomposable elements to nonzero decomposable elements. If dim U > s + 1, we obtain 
the structure of T when F is algebraically closed or the real field or T is injective. When 
r — s and F is algebraically closed of characteristic either 0 or exceeding r, the structure 
of T was studied in [3,6,8]. 

A subspace of £/(r) is called a decomposable subspace if it consists entirely of de­
composable elements. A decomposable subspace is called maximal if it is not contained 
in any other decomposable subspaces. We first determine the form of an infinite family 
of certain maximal decomposable subspaces such that any two of them have a non-zero 
intersection and then use these results to determine the structure of decomposable map­
pings. 

Throughout this paper we assume that dim U > 2. 

2. Maximal decomposable subspaces. For any r vectors x\,..., xr in U, we shall 
use x\ • "Xr to denote a decomposable element of £/(r). For convenience we call x\ • • -xr 

a decomposable element of length r, any vector in U a decomposable element of length 1 
and any scalar in F a decomposable element of length 0. Let x and y be nonzero decom­
posable elements of length r and s respectively where r>s. Then y is called a factor of 
x if x = y • z for some decomposable element of length r — s. 

Let x be a nonzero decomposable element of length r — 1. Then the set {x • u : u G £/}, 
denoted by x • U, is a decomposable subspace and is called a type 1 subspace of U{r). Two 
distinct type 1 subspaces x- U and y • U in £/(r) are called adjacent if x and y have a common 
factor of length r — 2. 

A k-field is a field over which every polynomial of degree less than or equal to k splits 
completely. Let W be a 2-dimensional subspace of U. Then it is shown in [2, Proposi­
tion 10] that W^r) is a decomposable subspace if and only if Fis an r-field. The decompos­
able subspace W^ is called a type r subspace of Uir\ Let j i , . . . , )v_£ be vectors in U— W, 

Received by the editors April 4, 1991 . 
AMS subject classification: 15A69. 
© Canadian Mathematical Society 1993. 

357 

https://doi.org/10.4153/CJM-1993-017-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1993-017-2


358 M.-H. LIM 

1 < k < r, then the subspace {y\ • • -yr-k • z : z G W(Â:)} is denoted by yi • • ->v_̂  • W(/:). 
If F is a &-field, then y\ • • -yr^k • W{k) is a decomposable subspace and is called a fy/^ & 
subspace of £/(r). If F is an r-field with char F = 0 or char F > r then every maximal 
decomposable subspace of £/(r) is of type / for some 1 < / < r when dim U > 3 (see [2]). 

r times 

Let u G U. Then wr denotes the decomposable element u • • • u in £/(r). Proposition 9 
in [2] can be improved as follows: 

PROPOSITION 1. {ur : u E £/} /s a decomposable subspace ofU^r) if and only if F is 
a perfect field of characteristic p and r — pl for some positive integer t. 

PROOF. Suppose {ur : u E U} is decomposable. Then Proposition 9 in [2] implies 
that char F = p > 0 and r = pl for some f. Let A E F- {0}, w E C/- {0}. Then \ur = vr 

for some v E £/, v ^ 0. Hence v = aw for some nonzero a in F. Hence ar — A. This 
shows that F is a perfect field. The sufficiency follows from the fact that \ur = (au)r

y 

ar — A and u\ + ur
2 — (u\ + ui)r (see [2]). 

Suppose F is a perfect field of characteristic p > 0 and r > p* for some positive 
integer J. Let x be a nonzero decomposable element of length r — pl over L/. Then the 
decomposable subspace {x • up : u E £/} is denoted by x • £/p and is called a power type 
subspace of degree t. 

The following result is obtained by modifying the proof of the theorem in [7]: 

PROPOSITION 2. Let M be a maximal decomposable subspace ofU(r) over the infinite 
field F Then one of the following holds: 

(i) M is a type 1 subspace; 
(ii) MCx-W(k)for some 2-dimensional subspace WofU and some nonzero decom­

posable element x of length r — k where 1 < k < r; 
(Hi) M is a power type subspace and F is a perfect field of prime characteristic p < r. 

We remark that equality holds in (ii) only if F is a /c-field. 

3. Intersections of maximal decomposable subspaces. Throughout thi s section U 
will denote a finite dimensional vector space over an infinite perfect field F of characteris­
tic/? > 0. We study the intersection properties of maximal decomposable subspaces and 
determine the form of an infinite family of maximal decomposable subspaces of type 1 or 
power type such that any two members of the family have a nonzero intersection. These 
results will be used in Section 4. 

LEMMA 1. Two power type decomposable subspaces M = x • Up and N — y - Up of 
U{r\ r > //, are equal if and only ifx — Xy for some X E F 

PROOF. The sufficiency is clear. We prove the necessity. Choose a vector z $ (y\ ) U 
• • • U (yr-k) where y = y\ • • -yr-k, k = pl. Then M = N implies that 

k k 

x- z =y -wK 

for some w E U. Since (z) ^ (yt) for all /, it follows that (z) = (w). Therefore x = Ay 
for some A E F. 

https://doi.org/10.4153/CJM-1993-017-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1993-017-2


LINEAR TRANSFORMATIONS 359 

LEMMA 2. Let M = x • Uk, k = p* and N = y • If1, m = pl, be two distinct 

decomposable subspaces of £/(r) where t > I > 0 and r — pl. Then dim(M Pl AO = I if 

and only if either 

(i) t > I andy = Xx • fk~m for some f G U, A G F or 

(ii) r>m + k andx = z • am, y = z -fkfor some a,f G U and nonzero decomposable 

element z of length r — k — m. 

Otherwise M (IN = 0. 

PROOF. Suppose that MON ^ 0. Then there are nonzero vectors/ and a G U such 

that x -fk = y • am ^ 0. Either (f) = (a) or (f) ^ (a). If If) = (a), then t ^ I, otherwise 

M = N, a contradiction. Hence t > I and y = Xx • fk~m for some A G F. If (f) ^ (a), 

then clearly r > k + m and JC = z • am, y = z-fk for some nonzero decomposable element 

z of length r — k — m. 

Conversely, if (i) holds, thenMHN = {x-fk) and if (ii) holds, thenA/flN = {z-am-fk). 

Let z - Up' be a decomposable subspace of U{r) where r>p*,t>0. Then every factor 

of z is also called a factor of z • £/^'. 

Let fPo(^(r)) denote the collection of all type 1 subspaces of U(r). For each positive 

integer t, let ^P,(£/(r)) denote the collection of all power type decomposable subspaces of 

degree t in £/(r). The following result was proved in [3, Proposition 6] for t = 0. 

PROPOSITION 3. Let C Q <Pt(U
(r)) be an infinite family such that MUM2 G C implies 

that M\ DM2 T̂  0. Then r >2k, k = p* and there exists a nonzero decomposable element 

y of length r — 2k such that for any M G C, 

M = yak
M-Uk 

for some a M G U. 

PROOF. It follows from Lemma 2 that r > 2k. If r = 2k, the assertion is clear from 

Lemma 2. Hence we assume that r > 2k. Let M = x • Uk be a fixed decomposable 

subspace in C. By Lemma 2, each N £ C has a common factor of length r — 2k with M. 

Since C is infinite, it follows from Lemma 2 that there exist an infinite subset 2) of C 

and a nonzero decomposable element ;y of length r—2k such that 

<D= {yvk -Uk :veVCU} 

for some infinite subset V of U where (vj) ^ (V2) for distinct vi, V2 G V. Let z • Uk be 

any member of C. Since V is infinite, there exists v G V such that v is not a factor of z. 

Hence by Lemma 2, z = ;y • wk for some w Ç [ / . This completes our proof. 

PROPOSITION 4. Let C be an infinite collection of decomposable subspaces of type 1 

or power type in £/(r) such that for every M\,M2 in C, Mi (IM2 ^ 0. Then C Ç &t(U^) 

for some integer t > 0, except possibly when char F = 2, m which case, there exist a 

https://doi.org/10.4153/CJM-1993-017-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1993-017-2


360 M.-H. LIM 

nonzero decomposable element x of length r—2 for some non-negative integer s and 
a subset WofU such that 

(1) C = {x - Ur+l }U{x- wT -UT :we W}. 

PROOF. Let ©i = C n ^-(£/(r)). Then (Dt is infinite for some non-negative integer t. 
By Proposition 3, there exist a nonzero decomposable element x of length r — 2k where 
k — pl and a subset W of U such that 

<Dt = {x-ak -Uk :a<E W}. 

Suppose that some decomposable subspace y • IT1 G C where y — y\- • -yr-m, m — pl 

and t<t. Choose c G W such that (c) g {(y\),..., (yr-m)}- Since x-c*-Uk mdy U™ 
have a nonzero intersection, it follows from Lemma 2 that 

(2) x • ck • uk = y • v™ 

for some w, v in £/. Since c is not a factor y, it follows from (2) that & is a factor of v"\ a 
contradiction since m <k. Hence 

for £ < t. 
Suppose now some y-IF1 G C where m — pl,t > t and y is a nonzero decomposable 

element of length r — m. Choose d G W such that d is not a factor of JC or y. We obtain 
from Lemma 2 that 

(3) x-dk = \yfm~k or 

(4) x-dk = z-fm 

where X e F,f e U and z is a factor of length r — m — k of y. If (4) holds, then (d) = (f) 
and k = m because of our choice of d. This yields a contradiction. Hence (3) holds. Thus 
(d) = (/"), k — m — k, and ;c = fry for some b G F. Since m — pl — 2k — 2p\ we get 
p — 2 and r + 1 = £. Therefore C is the form (1). 

4. r-regular decomposable mappings. Throughout this section U will denote a 
finite dimensional vector space over a perfect field F of characteristic p > 0. 

A decomposable mapping 7 from £/(r) to £/(y) is called t-regular if the images of any 
two adjacent type 1 subspaces of £/(r) under T are distinct power type decomposable 
subspaces of degree t. 

Let / be any injective semi-linear mapping on U with respect to the automorphism 
À —> \ï,k = / / . Let z be any fixed nonzero decomposable element of f/(5_rp). Then 
there exists a linear mapping S from U{r) —> U(s) such that 

(5) S(xl-.'xr) = z'(f(xl))
k-..(f(xr))

k 

where /: = pt. Clearly S is a ^-regular decomposable mapping. We shall show in this 
section that every f-regular decomposable mapping is of the form (5). 
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LEMMA 3. Let W be the subspace of l/s^ spanned by the vectors z • u\ • u\ • • • uk 

where U[ G U, z is a fixed nonzero decomposable element in JJ^s~rk) and k = //. Then 
every linear mapping S of the form (5) maps the set of all nonzero decomposable elements 
ofU^ onto the set of all nonzero decomposable elements ofW. Moreover, S: lAr) —» W 
is bijective. 

PROOF. We first show that S: U(r) —• W is bijective. Clearly S{U(r)) = W. Let 
v i , . . . , vn be any basis of U. For any vt>i,..., wr G U, we have w, = EJLi aijvj- Since 
char F = /?, it follows that 

( n \k ( n \k 

wrw2---wr = [Z<*W) '"[£a^j) 
7=1 7 7=1 y 

7=1 y 7=1 J 

£{{vk
h-v

k
h...v

k
ir'A<ix<i2<-..<ir<n}). 

Since {vf, • vf • • • v£ : 1 < J'I < *2 < • • • < ir < n} is a linearly independent set, it 
follows that dim W — dim U(r) and hence 5 is injective. 

The proof of the lemma will be complete if we can show that every decomposable 
element B in W is of the form A • d\ • • -dk for some dt G £/. Let B = zi • • z5. Using 
Lemma 1 in [7], we get 

B = A'y\--yrk 

for some v, G £/. Suppose that 

for all dt G £/. Then 

y\ --y* = g™ -hi-'-hq 
for some g\ G £/, /i/ G £/ such that & /m and (gi) ^ (fy) for all i. Extend g\ to a basis 
gi,...,gnof U. Write c = r&. Let Qc,« denote the set of all increasing sequences of c 
integers from 1,. . . , n. For each a — {au • •., occ) G Qc,n, let 

Then {ga : a G <2c,«} is a basis of L^c). Now let 

n 

y=i 

For each 1 < / < q, letj, denote the largest integer such that b^ ^ 0. We havej, > 1 for 
all /. It is not hard to see that 

yi'"yc = (flbij)gT• gh •••gjq+ £ baga 
V ' = l aG(2c,«\/3 
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where ba GF ,^G ôc,n and (/?<,( D , . . . ,f5G{c)) = ( 1 , . . . , l,j\9... Jq) for some permutation 
cr of {1 , . . . ,c}. Hence 

yi • • -̂ c ^ <{4 • • - ^ : 1 < M < • - • < iV < n}>. 

This implies that 

A • yi • • -yc $ ({A • & • • • gk
ir : 1 < M < • • • < ir < n}) = W. 

Hence we obtain a contradiction and the proof is complete. 

LEMMA 4. Let V be a vector space over an infinite field. Let D be the set of all 
decomposable elements ofV^r\ IfD — U£li A, then (Dj) — V^r) for some j . 

PROOF. Let 9: (g/V —• \ftr) be the canonical mapping such that 6(x\ 0 • • • 0 xr) = 
X[ - • -xr. Let 

Ei = {xi®'-'®xr: 9(xi <g) • • • <g> xr) G A } . 

Then |J/li Et is the set of all decomposable elements of 0 rV. By Proposition 1 in [8], 
(Ej) = ®rV for some j . Since 6 is surjective, it follows that (Dj) — V*r). 

LEMMA 5. Let T: U^ —• U^ be a t-regular mapping where s > rp1. Then the 
images of all type 1 subspaces have a common factor of length s — rp1\ 

PROOF. Let M\ = x\ • • • jcr_i • U, and Mr — y\ • • -yr-\ • U be any two type 1 sub-
spaces. Let 

Mi = yx • • -yi-x • xr • -xr-\ • U, i = 1, . . . , r - 1. 

Since M; H MI+1 ^ 0, we have T(Mt) D T(Mi+{) ^ 0. Hence T(Mt) and T(Mi+l) have a 
common factor of length s — 2pl\ Consequently T(M\) and T(Mr) have a common factor 
of length s — rp1. 

Suppose T(M\) — Z - Upt where Z = zi - -zs-pu Zt G £/. Let {Z\,... ,Zm} be a 
maximal set of factors of Z of length s — rp1 such that (Z/) ^ (Z7) for / =̂  y. Then the 
image of any type 1 subspace has a factor Z; for some /. Let A be the set of all nonzero 
decomposable elements vi • • • vr_i such that T(v\ • • • vr_i • U) has Z; as a factor. Then 
(\JJL\ A ) U {0} is the set of all decomposable elements of £/(r-1). In view of Lemma 4 
(Dj) = lftr~l) for some/ By Lemma 1 in [7] we see that Zj is a factor of the image of 
any type 1 subspace of U{r). 

LEMMA 6. Let T: f/(r) —> U^ be a t-regular mapping. Let x = a • b} y — a • c where 
a is a nonzero decomposable element of length r — 3, and b, c are linearly independent 
vectors in U. Let m — pl. If z is a common factor of length s — 2m for all T(x • u • U), 
u G U — {0}, then z cannot be a common factor for all T(y • u • U), u G U — {0}. 

PROOF. For each nonzero g in U, let Mg = x • g • U and Ng = y • g • U. Suppose that 
z a common factor for all T(Mg) and T(Ng), g G U — {0}. Let d be a nonzero vector in 
£/ such that (d) ± (c) and (d) ^ (b). 
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Since Mc, Md are adjacent and Md, Nd are adjacent, it follows from Lemma 2 that 

(6) T(Mc) = Z'fm-Um 

(7) T(Md) = Z'd™-Um 

(8) T(Nd) = Z'(%.Um 

for some/,Ji,^2 £ £/• Since T is r-regular, (/") ^ (Ji) and (di) ^ (dz). Note thatMc 

and Â j are adjacent and hence (f) ^ (di). 
Now in view of (6), (7) and (8), 

T(a-b-c- d) = z-fm-um 

= z-d?.vm 

= Z'd^wm 

for some w, v, w G £/. Since (di ) ^ (di), we have (di ) = (w), (di) = (v). It then follow 
that either 

(f) = (dl) = (w)or(f) = (d2) = {v), 

a contradiction. Hence the lemma is proved. 
The following result follows from Theorem 1 in [8] and the proof of Theorem 6 in 

[8]. 

PROPOSITION 5. Let V be a finite dimensional vector space over an infinite field. 
If L: V^r) —> V^r) is a linear mapping such that the images of any two adjacent type 1 
subspaces of U^ are distinct type 1 subspaces, then L = XPr(g) where X is a nonzero 
scalar and Pr(g) is the r-th induced power of a nonsingular linear mapping g on V. 

THEOREM 1. Let T: U^r) —> U^ be a t-regular mapping. Then s > rp* and T is of 
the form (5). 

PROOF. If r = 2, by Proposition 3, s > 2//. Let r > 3. Let k = / / . Let y{,...,yr-\ be 
nonzero vectors of U such that (y;) ^ (yy-) for / ^ j . Let M = y\ • • -yr-\ • U and T(M) — 
B • Uk where £ is a nonzero decomposable vector in lfts k\ In view of Proposition 3 and 
Lemma 5 we have for each / = 1, . . . , r — 1, 

(9) {T{yx • • . # • • -yr_i • u • 60 : u G t / - {0}} Ç {ft • K* • I/* : u G £ / - {0}} 

for some nonzero decomposable element Bt of length s — 2k. Since 

T(M) G {r(v! • • .fr • -)V-i • « • « : « G t / \ {0}} 

it follows that 

(10) BUk = BiUkUk 

for some nonzero w,- in £/. Hence wf is a factor of 5 by Lemma 1. Since (ym) ^ (y/) for 
m ^ y, by Lemma 6 we have (Z?m) ^ (#/) for m ^ j . This shows that (wm) ^ (UJ) for 
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m ^ j . Consequently B is a decomposable element of length > (r — l)k. This implies 
that s — k>(r—l)k and thus s > rk. Suppose s > rk. Then Lemma 5 implies that there 
exists a decomposable element A of length s — rk such that A is a factor of the image 
of any type 1 subspace of £/(r). Hence from (9) we obtain A is a factor of Bt for each /. 
Hence (10) implies that A • u\ • • • uk

r_x is a factor of B. 
Let W = ({A -v\ • • • v* : v,G [/}). Then 7(M) Ç W. Using induction on r - 1, it is 

easily shown that {y\ • • -yr-\ : y, G U, (y;) ^ (35) for / ^ j} spans t/(r_1) and hence we 
have r((/(r)) Ç W. Let 5 be any linear mapping of the form (5). Then Lemma 3 implies 
that 5 _ 1 : W —> U^ sends any two distinct power type decomposable subspaces in W 
of degree t to distinct type 1 subspaces of U^r\ Hence 5 _ 1 o T: U^ —-> t/(r) sends any 
two adjacent type 1 subspaces to distinct type 1 subspaces. In view of Proposition 5, 
S~l o T = XPr(g) for some nonsingular linear map g on U and À G F — {0}. Thus 
T = XS o pr(g) is of the form (5). 

The following result is obtained by modifying the proof of Theorem 1 and putting 
f = 0. 

THEOREM 2. Let V be a finite dimensional vector space over an infinite field. IfL 
is a linear mapping from V^r) to V^ such that the images of any two adjacent type 1 
subspaces ofV^^ are distinct type 1 subspaces, then r < s and 

(11) L(vi •••vr) =A - g(v\) " -g(yr) 

for some nonzero decomposable element A of length s — r and some nonsingular linear 
mapping g on U. 

5. Main results. In this section U is a finite dimensional vector space over an arbi­
trary infinite field F. 

We shall need the following: 

LEMMA 7. Let T: l/r) —• U^^ be a decomposable mapping such that the images of 
any two adjacent type 1 subspaces are distinct. Let dim U > 2. Let char F = 2. Let x be 
a fixed nonzero decomposable element of length r — 2 over U. Let m — 2k where k is a 
non-negative integer. Then it is impossible that 

(12) {T(x-yU):y G U - {0}} = {z • U2m} U {z • wm • Um : w G W} 

for some nonzero decomposable element z of length s — 2m over U and some W Ç U. 

PROOF. Suppose that (12) holds. Let My = x • y • U9 y G U - {0}. Assume that 

T(Me) = z • U2m. 

Let M, v be linearly independent vectors of U such that e = u + v. Then 

(13) T{Mu) = Z'vt?'ir, 

(14) T(Mv) = z-V?'Um, 
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for some u\, v\ G U where (u\) ^ (v\ ) . Let a, b be two linearly independent vectors of 
U such that a,b & (ui,vi). Since T(Me) = z • Ulm, it follows that 

T(x-e-f) = z-a2m 

T(xeg) = z- b2m 

for some/, g in U. Clearly (a) ^ (Z?) implies that If) ^ (g). We have either if) ^ (e) or 
(g) ^ (e). We may assume that (e) ^ If). Let A = JC • e •/. In view of (13) and (14), we 
have 

B^X'U-f^z-ff'vl? 

for some/1,/2 in £/. Since If) ^ (e), we have 

T(Mf) = z-j?-Um 

for some/3 in U. Since 7(A), r(£), 7(C) ez-ff-U"1, it follows that 

<f3> = <«> = </*> = <&> 

by our choice of a. 
Now, let/i = aa, /2 = (3a, a, (3 G F. We obtain 

7X#+ C) = z • (aa)w • < +z • (/fa)m • v^ 

= z - am • (CHII + /?vi)m since char F = 2 

= T(A) 

= z • a2m. 

This implies that a = au\ +(3v\, contradicting our choice of a. This completes the proof. 

THEOREM 3. Let T: £/(r) —• £/*s) be a decomposable mapping such that the images 
of any two adjacent type 1 subspaces are distinct. If dim U > s + 1, then T is of the 
form (11), except possibly when F is a perfect field of prime characteristic p and s > rpl, 
t > 0, in which case T may be of the form (5). 

PROOF: CASE 1. F is a perfect field of prime characteristic p < s. Let M be a type 1 
subspace of U^r\ Then T(M) is a decomposable subspace of l/s) and 

dim U = dimM = dimT(M) > s + 1. 

Suppose that T(M) Ç x • W^® for some 2-dimensional subspace W and some nonzero 
decomposable element x of length s — k where 1 < k < s. We shall show that this leads 
to a contradiction. First note that 

dimT(M) < dimW^ = ifc+ 1 < j + 1. 
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This implies that k = s and T(M) — W^s\ dimU = 5 + 1 and F is an s-field. Let 
M = x • y • U where x is a nonzero decomposable element of length r—2 and y G U — {0 }. 
Let Mu = x • u • U and C = {7WM) : « G (/,« / 0}.We shall show that W^ is 
the only type s subspace C. Suppose there is another type s subspace V^ in C. Then 
fyr(s) p| y(5) _̂  jQj impiies that ^ n V is 1-dimensional. Choose a nonzero vector z'mU 
such that 

7X*-;y-z) = w\ • • -ws 

where (w/) ^ (w/) for / ^ 7, (y) ^ (z) and i ^ n V ^ (w,) for all / = 1,... ,s. Since 
w\ - • • ws G T(MZ), clearly T(MZ) is not a power type decomposable subspace. If 

r(Afz) = z i . . . ^ _ 1 . I 7 

for some zt in £/, then 
T(MZ) D W<s) ^ 0 

and 
T(MZ) n V*5) ^ 0 

imply that z\ • • • zs-\ £ W Pi V and hence 

(zi) = -' = (zs-i) = wnv. 

Since wi • • • ws G z\ • • • zs_i • £/, it follows that (w,-) = WH V for some /, a contradiction. 
Hence T(MZ) = N^s) for some 2-dimensional subspace NofU because of Proposition 2. 
Note that 

x-y-zeMzC\My 

implies that w\,...,ws G WDN. Hence 

(wi,. . . ,ws) = W = N, 

a contradiction to our hypothesis on T since Mz and Mv are adjacent. This shows that W(s) 

is the only type s subspace in C- Let C—{T(M)} = (D. Then © consists of decomposable 
subspaces of type 1 or power type in U^s\ In view of Proposition 4, 

<D-T(Mg)C ¥t(rfs)) 

for some integer t > 0 and some g G £/. By Proposition 3, 

2) - r(Afg) = { r M
m - ( / f f l : M G Z } 

where m—p^ZÇ- U and e is a nonzero decomposable element of length s — 2m. Let v 
and w be linearly independent vectors in U such that 

T{MV) = e • < • £/m, 

r(Mw) = g • < • ir. 
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Then there exists h £ U such that h g (g) U (y) U (v) U (w) and 

T(x • v • h) = e • vf • df 

where di ^ (vi, w\ ). Then 
T(M^) = e-hy -Um 

for some &i in £/. Clearly hf is a factor of v^ • df. But (h\) ^ (vi), hence (di) = (h\). 
Since T(Mh), T(MV), T(MW) all have a nonzero intersection with T(My), it follows that 
(d\,v\,w\) Ç W, a contradiction since dim W = 2, dim(di, vi, w\) — 3. This contradic­
tion shows that T(M) is not contained in x • W^k) for any 2-dimensional subspace W of 
U and any nonzero decomposable element x. Hence by Proposition 2 the image of any 
type 1 subspace is either a type 1 or a power type subspace. 

Suppose that T(Q) G !Pt(U
(s)) for some type 1 subspace Q and some t > 0. Let R be 

any type 1 subspace of U{r). Clearly there exist type 1 subspaces Q\,...,Qr such that 
Q\ — Q, Qr = R and Qi9 Qi+\ are adjacent. In view of Proposition 4 and Lemma 7, 
T(Qi) G Pt(U

(s)) implies that T(Qi+l) G Pt(U
(s)). Hence T(R) G ^(£/(*}). This shows 

that T sends type 1 subspaces to type 1 subspaces or T is a ^-regular mapping. Hence the 
theorem follows from Theorems 1 and 2. 

CASE 2. F is not a perfect field of characteristic p < s. 
Note that there are no power type decomposable subspaces in U(s\ It is easily seen 

from the proof of Case 1 that T sends type 1 subspaces to type 1 subspaces. Hence the 
theorem follows from Theorem 2. 

THEOREM 4. Let T: U(r) —> U(s) be a decomposable mapping and dim U > s + 1. 
If(i) F is algebraically closed or (U) F is the field of real numbers or (Hi) T is injective, 
then T is of the form (11), except possibly when F is a perfect field of prime characteristic 
p, s > rp\ t > 0, in which case T may be of the form (5). 

PROOF. We shall show that the images of any 2 adjacent type 1 subspaces under T 
are distinct. When F is algebraically closed, this can be shown by using exactly the same 
argument as in the proof of Proposition 5 in [3]. When T is injective, clearly the images 
of any 2 adjacent type 1 subspaces are distinct. 

We now consider the case when F = R, the real field. Suppose that there exist 2 
adjacent type 1 subspaces M\ = x • y\ • U, Mi — x • yi • U such that T(M\) = T(Mi) 
where x is a decomposable element of length r — 2. Let y be any nonzero vector in U. Let 
M — x - y • U. Then T(M) is a decomposable subspace of dimension > s + 1. Note that 
T(M) ^ Wis^ for any 2-dimensional subspace W of U since IR is not a s-field. Using this 
we see from Proposition 2 that T(M) is a type 1 subspace since dim T(M) > s + 1. Since 
(x-yi'y,x-y2-y) Ç M, it follows that T(M) contains a 2-dimensional subspace of T(M\). 
This implies that T(M) = T(M\) since both T(M) and T(M\) are type 1 subspaces. Let 
H = ({x • y • u : y G U, u G U}). Then T(H) is a type 1 subspace. Hence T\H induces 
a linear mapping T\ from L^(2) to U sending every nonzero decomposable element to a 
nonzero vector in U. Let 6:®2U —»• £/(2) be the linear mapping such that 9(u (g) v) = M • v. 
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Then T\ o9 is a linear mapping sending every nonzero decomposable element to a nonzero 
vector in U. By Theorem 4 in [1], we see that dim U = 4 or 8. Now the mapping T\ 
induces a symmetric bilinear mapping/ from W1 x Rn to Rn+1, n = dim U, such that 
f(a, b) = 0 implies a = 0 or & = 0. The existence off implies by a theorem of Hopf [4,5] 
that the real projective space of dimension n—\ can be differentiably embedded into Rn, 
n = 4 or 8. But it is known that such an embedding is not possible (see [9], [12]). Hence 
we obtain a contradiction. This proves that the images of any 2 adjacent type 1 subspaces 
under T are distinct. 

Hence the theorem follows from Theorem 3. 
The following example shows that Theorem 4 is false if neither of the conditions (i) 

to (iii) hold: 

EXAMPLE. Let Qn be a field extension of the rational field Q of degree n > 2. Let 
e b e a fixed nonzero decomposable element in Q^~1^ where s > 2. Then there exists a 
linear mapping 9: Q^ —> Q^ such that 

0(*i •••*,-) = (i[xi)-e 

where n£=i */ denotes the product of the JC,-'S in the field Qn. Clearly 6 is a decomposable 
mapping and 9(Q^) = e • Qn. Hence 6 is not of the form (11). 
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