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1. Introduction. In this paper we shall examine the relationship between the
numerical ranges and the spectra for semi-normal operators on uniformly smooth spaces.

Let A' be a complex Banach space. We denote by X* the dual space of X and by
B(X) the space of all bounded linear operators on X. A linear functional F on B(X) is
called state if ||F|| = F(/) = 1. When xeX with \\x\\ = 1, we denote

D(x) = {feX*:\\f\\=f(x) = l}.
Let us set

n = {(x, fteXxX*: H/ll =/(*) = ||*|| = 1}.
The spatial numerical range V(T) and the numerical range V{B{X), T) of T e B(X)

are defined by
V(T) = {f(Tx):(x,f)eU}

and
V(B(X), T) = {F(T): F is a state on B(X)},

respectively.
If V(T) c U, then T is called hermitian. An operator T e B{X) is called hyponormal

(co-hyponormal) if there are hermitian operators H and K such that T = H + iK and
C = i(HK - KH) > 0 (£0).

An operator T e B(X) is called semi-normal if T is hyponormal or co-hyponormal.
An operator T is called normal if there are hermitians H and K such that T = H + iK

and HK = KH.
For an operator T e B(X), the spectrum, the approximate point spectrum, the point

spectrum, the kernel and the dual operator of T are denoted by o(T), o^T), op(T),
Ker(T) and T*, respectively.

The following results are well-known:
(1) co V(T) = V(B(X), T), where co E is the closed convex hull of E.
(2) co o(T) c V(T), where co E and E are the convex hull and the closure of E,

respectively.
(3)
(4) If T is normal, then o(T) = on(T) and co a(T) = V(T) = V(B(X), T).
REMARK 1. From (3), if T is hyponormal or co-hyponormal, then T* is co-

hyponormal or hyponormal, respectively.
We set, for t > 0:

p{t) = sup{i(||jc +y\\ + \\x-y\\) - 1;

A Banach space X is called uniformly smooth if

0 as ^
t
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REMARK 2. A Banach space X is uniformly smooth iff X* is uniformly convex. See
[3] for details.

We recall from [1] and [2] the construction of a larger space X° from a given Banach
space X. Then the mapping T-+T0 is an isometric isomorphism of B(X) onto a closed
subalgebra of B(X°). Let Lim be fixed Banach limit on the space of all bounded
sequences of complex numbers with the norm ||{An}|| =sup{|AJ :n e M}. Let X be the
space of all bounded sequences {xn} of X. Let N be the subspace of X consisting of all
bounded sequences {xn} with Lim ||xn||2 = 0. The space X° is defined as the completion of
the quotient space X/N with respect to the norm \\{xn} + N\\ = (Lim IKH2)"2. Then the
following results hold:

op(T°) and £

See [1] and [2] for details.
We need the following results.

THEOREM A [2, Theorem 4]. X is uniformly convex iff A"0 is uniformly convex.

THEOREM B [5, Lemma 20.3 and Corollary 20.10]. If H is hermitian and Hx = 0 with
\\x\\ = 1, then there exists f e X* such that (x, / ) 6 II and H*f = 0.

2. Semi-normal operators on uniformly smooth spaces.

THEOREM 1. Let X be uniformly smooth. Let T = H + iK be semi-normal on X.
(1) If a e o(H), then there is a real number b such that b e o(K) and a + ib e o(T).
(2) If b' e o{K), then there is a real number a' such that a' e o(H) and a' + ib' e

o(T).

Proof. (1) Since H is hermitian, there exists a sequence {*„} of unit vectors in A"
such that (H -a)xn-*0. Since X* is uniformly convex, by Theorem 3.11 in Mattila [11] it
follows that (H* - a)fn -> 0, where /„ e £>(*„). Consider the larger space X*° of X*. Then
Ker(//*° - a) is a non-zero subspace of X*°. If f0 e Ker(//*° - a) such that ||/0|| = 1, then
by Theorem B there is <p e X*°* such that ||<p|| = cp(f0) = 1 and (H*°* - a)q> = 0. We may
assume that C = i(HK - KH) > 0. Then C* = i(K*H* - H*K*) > 0 and

<p(C*°f0) = i<p(K*°(H*° - fl)/0) - ifo(K*°*(H*°* - a)q>) = 0,

where f0 is the Gel'fand representation of )b. Since, by Theorem A, the space A"*0 is
uniformly convex and C*°>0, it follows that C*% = 0 by Theorem 2.1 in [12].
Therefore, we have that

(H*°-a)K*°fo = 0.

It is easy to see that Ker(//*° - a) is invariant for K*°. Hence, there exist a real number b
and non-zero vector g0 in Ker(#*° - a) such that K*°gQ = bg0. It follows that b e op{K*°)
and a + ibe ap(T*°). And we have that b e o(K*) = o{K) and a + ibe o(T*) = o(T).

(2) is proved in the same way as (1).

THEOREM 2. Let X be uniformly smooth. Let T = H + iK be semi-normal. Then

\ = V{B{X),T).
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Proof. We assume that Rea(T)c!R+. Then by Theorem 1 it follows that o(H) <=
U+. Since co a{H) = V(H) = V(B(X), H), it follows that Re V(B(X), T)<=M+. Since
aT + /3 is semi-normal for every a, /3 e C, it follows that co a(T) = V(T) = V(B(X), T).

THEOREM 3. Let X be uniformly smooth. Let T = H + iK be co-hyponormal on X. If
a + ibe a(T), then a e o(H) and b e a{K).

Proof. If a + ib e a(T), then a + ibe a{T*). Thus there exists b' e U such that a + ib'
belongs to the boundary of o(T*). Therefore there exists a sequence {/„} of unit vectors
in X* such that (T* — (a + ib'))fn—»0. Since X* is uniformly convex and T* is
hyponormal on A'*, by Theorem 2.7 in [12] we have that (H* — a)fn—>0 and
(K* -b')fn^>0. It follows that a e o(H).

b G o(K) is proved analogously.

COROLLARY 4. Let X be uniformly smooth. Let T = H + iK be co-hyponormal on X.
Then Re o(T) = o(H) and Im o(T) = o(K).

Proof. The proof follows easily from Theorems 1 and 3.

PROBLEM. Does Theorem 3 hold for a hyponormal operator?

REMARK 3. The following theorem holds, which corresponds to Theorem 10.6 in [4].
Let A' be uniformly smooth. Then

It follows from the uniform convexity of A'* and V(T) = V(T*).
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