SEMI-NORMAL OPERATORS ON UNIFORMLY SMOOTH BANACH SPACES

by MUNEO CHŌ

(Received 7 March, 1989; revised 10 November, 1989)

1. Introduction. In this paper we shall examine the relationship between the numerical ranges and the spectra for semi-normal operators on uniformly smooth spaces.

Let X be a complex Banach space. We denote by X^* the dual space of X and by B(X) the space of all bounded linear operators on X. A linear functional F on B(X) is called *state* if ||F|| = F(I) = 1. When $x \in X$ with ||x|| = 1, we denote

$$D(x) = \{ f \in X^* : ||f|| = f(x) = 1 \}.$$

Let us set

$$\Pi = \{(x, f) \in X \times X^* : ||f|| = f(x) = ||x|| = 1\}.$$

The spatial numerical range V(T) and the numerical range V(B(X), T) of $T \in B(X)$ are defined by

$$V(T) = \{ f(Tx) : (x, f) \in \Pi \}$$

and

$$V(B(X), T) = \{F(T): F \text{ is a state on } B(X)\},$$

respectively.

If $V(T) \subset \mathbb{R}$, then T is called hermitian. An operator $T \in B(X)$ is called hyponormal (co-hyponormal) if there are hermitian operators H and K such that T = H + iK and $C = i(HK - KH) \ge 0$ (≤ 0).

An operator $T \in B(X)$ is called *semi-normal* if T is hyponormal or co-hyponormal.

An operator T is called *normal* if there are hermitians H and K such that T = H + iK and HK = KH.

For an operator $T \in B(X)$, the spectrum, the approximate point spectrum, the point spectrum, the kernel and the dual operator of T are denoted by $\sigma(T)$, $\sigma_{\pi}(T)$, $\sigma_{\rho}(T)$, Ker(T) and T^* , respectively.

The following results are well-known:

- (1) $\overline{\operatorname{co}} V(T) = V(B(X), T)$, where $\overline{\operatorname{co}} E$ is the closed convex hull of E.
- (2) co $\sigma(T) \subset \overline{V(T)}$, where co E and \overline{E} are the convex hull and the closure of E, respectively.
 - (3) $V(T) \subset V(T^*) \subset \overline{V(T)}$.
 - (4) If T is normal, then $\sigma(T) = \sigma_{\pi}(T)$ and co $\sigma(T) = \overline{V(T)} = V(B(X), T)$.

REMARK 1. From (3), if T is hyponormal or co-hyponormal, then T^* is co-hyponormal or hyponormal, respectively.

We set, for t > 0:

$$\rho(t) = \sup\{\frac{1}{2}(\|x+y\| + \|x-y\|) - 1; \|x\| = 1, \|y\| \le t\}.$$

A Banach space X is called uniformly smooth if

$$\frac{\rho(t)}{t} \to 0$$
 as $t \to 0$.

Glasgow Math. J. 32 (1990) 273-276.

REMARK 2. A Banach space X is uniformly smooth iff X^* is uniformly convex. See [3] for details.

We recall from [1] and [2] the construction of a larger space X^0 from a given Banach space X. Then the mapping $T \to T^0$ is an isometric isomorphism of B(X) onto a closed subalgebra of $B(X^0)$. Let Lim be fixed Banach limit on the space of all bounded sequences of complex numbers with the norm $\|\{\lambda_n\}\| = \sup\{|\lambda_n| : n \in \mathbb{N}\}$. Let \tilde{X} be the space of all bounded sequences $\{x_n\}$ of X. Let N be the subspace of \tilde{X} consisting of all bounded sequences $\{x_n\}$ with $\lim \|x_n\|^2 = 0$. The space X^0 is defined as the completion of the quotient space \tilde{X}/N with respect to the norm $\|\{x_n\} + N\| = (\lim \|x_n\|^2)^{1/2}$. Then the following results hold:

$$\sigma(T) = \sigma(T^0), \qquad \sigma_{\pi}(T) = \sigma_{\pi}(T^0) = \sigma_{\rho}(T^0) \quad \text{and} \quad \overline{\operatorname{co}} \ V(T) = V(T^0).$$

See [1] and [2] for details.

We need the following results.

THEOREM A [2, Theorem 4]. X is uniformly convex iff X^0 is uniformly convex.

THEOREM B [5, Lemma 20.3 and Corollary 20.10]. If H is hermitian and Hx = 0 with ||x|| = 1, then there exists $f \in X^*$ such that $(x, f) \in \Pi$ and $H^*f = 0$.

2. Semi-normal operators on uniformly smooth spaces.

THEOREM 1. Let X be uniformly smooth. Let T = H + iK be semi-normal on X.

- (1) If $a \in \sigma(H)$, then there is a real number b such that $b \in \sigma(K)$ and $a + ib \in \sigma(T)$.
- (2) If $b' \in \sigma(K)$, then there is a real number a' such that $a' \in \sigma(H)$ and $a' + ib' \in \sigma(T)$.

Proof. (1) Since H is hermitian, there exists a sequence $\{x_n\}$ of unit vectors in X such that $(H-a)x_n \to 0$. Since X^* is uniformly convex, by Theorem 3.11 in Mattila [11] it follows that $(H^*-a)f_n \to 0$, where $f_n \in D(x_n)$. Consider the larger space X^{*0} of X^* . Then $Ker(H^{*0}-a)$ is a non-zero subspace of X^{*0} . If $f_0 \in Ker(H^{*0}-a)$ such that $||f_0|| = 1$, then by Theorem B there is $\varphi \in X^{*0*}$ such that $||\varphi|| = \varphi(f_0) = 1$ and $(H^{*0*}-a)\varphi = 0$. We may assume that $C = i(HK - KH) \ge 0$. Then $C^* = i(K^*H^* - H^*K^*) \ge 0$ and

$$\varphi(C^{*0}f_0)=i\varphi(K^{*0}(H^{*0}-a)f_0)-i\hat{f}_0(K^{*0*}(H^{*0*}-a)\varphi)=0,$$

where \hat{f}_0 is the Gel'fand representation of f_0 . Since, by Theorem A, the space X^{*0} is uniformly convex and $C^{*0} \ge 0$, it follows that $C^{*0} f_0 = 0$ by Theorem 2.1 in [12]. Therefore, we have that

$$(H^{*0}-a)K^{*0}f_0=0.$$

It is easy to see that $Ker(H^{*0}-a)$ is invariant for K^{*0} . Hence, there exist a real number b and non-zero vector g_0 in $Ker(H^{*0}-a)$ such that $K^{*0}g_0=bg_0$. It follows that $b \in \sigma_p(K^{*0})$ and $a+ib \in \sigma_p(T^{*0})$. And we have that $b \in \sigma(K^*)=\sigma(K)$ and $a+ib \in \sigma(T^*)=\sigma(T)$.

(2) is proved in the same way as (1).

THEOREM 2. Let X be uniformly smooth. Let T = H + iK be semi-normal. Then

$$\operatorname{co} \sigma(T) = \overline{V(T)} = V(B(X), T).$$

Proof. We assume that Re $\sigma(T) \subset \mathbb{R}^+$. Then by Theorem 1 it follows that $\sigma(H) \subset \mathbb{R}^+$. Since co $\sigma(H) = \overline{V(H)} = V(B(X), H)$, it follows that Re $V(B(X), T) \subset \mathbb{R}^+$. Since $\alpha T + \beta$ is semi-normal for every $\alpha, \beta \in \mathbb{C}$, it follows that co $\sigma(T) = \overline{V(T)} = V(B(X), T)$.

THEOREM 3. Let X be uniformly smooth. Let T = H + iK be co-hyponormal on X. If $a + ib \in \sigma(T)$, then $a \in \sigma(H)$ and $b \in \sigma(K)$.

Proof. If $a+ib \in \sigma(T)$, then $a+ib \in \sigma(T^*)$. Thus there exists $b' \in \mathbb{R}$ such that a+ib' belongs to the boundary of $\sigma(T^*)$. Therefore there exists a sequence $\{f_n\}$ of unit vectors in X^* such that $(T^* - (a+ib'))f_n \to 0$. Since X^* is uniformly convex and T^* is hyponormal on X^* , by Theorem 2.7 in [12] we have that $(H^* - a)f_n \to 0$ and $(K^* - b')f_n \to 0$. It follows that $a \in \sigma(H)$.

 $b \in \sigma(K)$ is proved analogously.

COROLLARY 4. Let X be uniformly smooth. Let T = H + iK be co-hyponormal on X. Then $\text{Re } \sigma(T) = \sigma(H)$ and $\text{Im } \sigma(T) = \sigma(K)$.

Proof. The proof follows easily from Theorems 1 and 3.

PROBLEM. Does Theorem 3 hold for a hyponormal operator?

Remark 3. The following theorem holds, which corresponds to Theorem 10.6 in [4]. Let X be uniformly smooth. Then

$$\{\lambda \in \overline{V(T)} : |\lambda| = ||T||\} \subset \sigma_{\pi}(T).$$

It follows from the uniform convexity of X^* and $\overline{V(T)} = \overline{V(T^*)}$.

ACKNOWLEDGMENT. I would like to express my thanks to the referee for his kind advice.

REFERENCES

- 1. G. de Barra, Some algebras of operators with closed convex numerical range, *Proc. Roy. Irish Acad.* 72 (1972), 149-154.
- 2. G. de Barra, Generalized limits and uniform convexity. Proc. Roy. Irish Acad. 74 (1974), 73-77.
 - 3. B. Beauzamy, Introduction to Banach spaces and their geometry (North-Holland, 1985).
- 4. F. F. Bonsall and J. Duncan, Numerical ranges of operators on normed spaces and of elements of normed algebras (Cambridge, 1971).
 - 5. F. F. Bonsall and J. Duncan, Numerical ranges II (Can.oridge, 1973).
 - 6. M. Chō, Joint spectra of operators on Banach space, Glasgow Math. J. 28 (1986), 69-72.
- 7. M. Chō, Joint spectra of commuting normal operators on Banach spaces, *Glasgow Math J.* 30 (1988), 339-345.
- 8. M. Chō, Hyponormal operators on uniformly convex spaces, Acta Sci. Math. (Szeged), to appear.
- 9. M. Chō and A. T. Dash, On the joint spectra of doubly commuting *n*-tuples of semi-normal operators, *Glasgow Math. J.* 26 (1985), 47-50.
- 10. M. Chō and H. Yamaguchi, Bare points of joint numerical ranges for doubly commuting hyponormal operators on strictly c-convex spaces, preprint.
- 11. K. Mattila, Normal operators and proper boundary points of the spectra of operators on Banach space, Ann. Acad. Sci. Fenn. AI Math. Dissertationes 19 (1978).

- 12. K. Mattila, Complex strict and uniform convexity and hyponormal operators, Math. Proc. Cambridge Philos. Soc. 96 (1984), 483-497.
 13. C. R. Putnam, Commutation properties of Hilbert space operators and related topics.
- (Springer, 1967).

DEPARTMENT OF MATHEMATICS JOETSU UNIVERSITY OF EDUCATION JOETSU, NIIGATA 943 JAPAN