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HYPERTYPES OF TORSION-FREE ABELIAN GROUPS
OF FINITE RANK

H . P . GOETERS, C. VlNSONHALER AND W . WlCKLESS

Let G be a torsion-free abelian group of finite rank n and let F be a full free subgroup
of G. Then G/F is isomorphic to 7\ © . . . © Tn , where T\ C T2 C . . . C Tn C Q/Z. It is
well known that type Tt = inner type G and type Tn = outer type G. In tliis note we
give two characterisations of type T; for 1 < i < n.

Ill 1963 Fuchs [2] introduced the notions of the inner type (IT) and outer type
(OT) of a torsion-free abelian group G of finite rank n. He showed that if F is a full
free subgroup of G and G/F = Ti © ... ©Tn where the % are subgroups of Q/Z with
71! C T2 C . . . C r n , then IT(G) = type(Ti) and OT{G) = type(rn). In this note
we generalise the result of Warfield by characterising type(Xi), the t'th hypertype of
G , for 1 ^ i ^ n .

Fundamental references are [1, 2,4] and [5]. In particular, the reader is assumed to
be familiar with the basic properties.of height and type in torsion-free abelian groups,
and with the notions of inner and outer type. We also assume familiarity with quasi-
isomorphism concepts.

If A and B are groups we write A < B to denote that A is isomorphic to a
subgroup of B . For an integral prime p, Ap denotes the usual localisation of A at p. If
G is a torsion-free abelian group and 5 is a subset of G , then (5), is the pure subgroup
generated by 5 . If x £ G, then h^(x) is the p-height of x computed in G. If G has
rank n and 0 ^ i < n, we define Pi(G) = {X | X is a pure subgroup of G of rank i}.
If T ^ Q/Z , then type T = type X , where Z C I C Q a n d T ^ X/Z .

If T ^ (Q/Z)n , then it is easy to see that T can be written as T = ©?=1T{ where
T\ ^ I2 ^ . . . ^ Tn ^ Q/Z. We say such a direct sum is a standard decomposition.
Thus, with each T < (Q/Z)" we can associate a set of types, typeset T = {type T] , . . . ,
type Tn} , where T = ©T; is a standard decomposition. It is easy to check that typeset

T is a complete set of quasi-isomorphism invariants for subgroups T of (Q/Z)" .
Let G be a torsion-free abelian group of rank n - henceforth simply called a

"group". The Richman type of G , RT(G), is the quasi-isomorphism class of the torsion
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group G/F, where F is any full free subgroup of G. The quasi-isomorphism class of
G/F, denoted [G/F], is independent of the choice of F so that RT(G) is an invariant
of <?((3])- Furthermore, since G/F < (Q/Z)n, our earlier remarks imply that RT{G)
is determined by the set of types typeset {G/F). If G/F - ©"=1Ti is a standard
decomposition, we call HTi(G) = type Ti the ith hypertype of G. As mentioned
above, HTt{G) = IT(G) and HTn(G) = OT(G).

The properties of HT2(G) will be investigated in a forthcoming paper [3]. Our
main result here, which leads to the desired characterisations of hypertypes, displays
the relationship between successive hypertypes.

THEOREM 1. Let G be a group of rank n > 1. Tiien for 2 < i ^ n,

X G P1{G)}.

PROOF: Let {xi,..., xn} be a maximal rationally independent subset (hereafter,
basis) of G , and F = ©JLj Zxi, a full free subgroup of G. Let G/F = ®"=1T{ be a stan-
dard decomposition of G/F. For each X G Pi(G), (F + X)/X is a full free subgroup
of G/X. Write {G/X)/((F + X)/X) = 5j © ... © 5n_i as a standard decomposition.
Since ©£7/5"; is a homomorphic image of (&™=1Ti it follows that (T"t)p ^ (Si-i)p for
all primes p and 2 < i ^ n. Since HTi{G) = type T; and HTi^{G/X) = type 5i_i
we have fTT^C) ^ HT^G/X) for all X e ^ ( G ) .

For a fixed prime p, choose an element Xi of minimal p-height among the basis
elements, and let X(p) = (a;j)» . Note that if ep =p-height(a;i) = min{p-height(a;J) | 1 <
j < n), then Ti = ©P^(pep)- Furthermore, for each p, the minimality of ep implies
that (X(p) + F)p/Fp is a pure subgroup of Gp/Fp and hence, a summand. Therefore,
Gp/(X(p) + F)p ~ (T2 © . . . © Tn)p, so that HT^G) < sup{^Til (G/(Xj)*) | 1 ^ j <
7i}. Thus, #!<((?) ^ sup{JffTi_1(G/X) | X € Pi(<?)} and the theorem foUows. |

Remark. Using induction, we may extend the results in the proof of Theorem 1 to show
that for each prime p , and 1 < i ^ n, there is a subset / of {1, 2, . . . , n} of cardinality
i, such that Y = Yt = (Xj | j G / ) , satisfies Yp/{YnF)p ~ (Ti©. . .©7i) p and
GP/(Y + F)p ~ (Ti+1 © •.. © Tn)p .

COROLLARY 1. Suppose there exists x £ G such that type x = IT(G). Then, if
X = (a?), , RT(G) = [©JL,ri] impiies tha< RT(G/X) = [©?=2ri].

PROOF: Choose a basis {a; = x i , . . . , z n } of C? such that hp{x) ^ hp(xi) for all
p and 2 ^ t ^ n. Then in the notation of Theorem 1, X(p) = {x). for all p, and
the argument in the second half of the proof of Theorem 1 shows that (Ti) = (S^i)
for all primes p and 2 < i < n, where G/(X + F) = 5j © ... © 5n is a standard
decomposition. Thus RT(G/X) = [©"J"/^] = [®r=2Ti]. R
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Note that the hypothesis of Corollary 1 holds if G is homogeneous. This corollary
is proved for homogeneous groups in [3] using different techniques.

COROLLARY 2. Let G be a group of rani: n. Then, for 1 < i < n, HTi(G) =

Snp{IT(G/X)\XePi_1{G)}.

PROOF: The proof is by induction on i. For i - 1, HT^G) = IT(G) =
IT(G/(0)), and the result is true. Assume i > 1 and that the result holds for i — 1.
By Theorem 1 and the induction hypothesis, HTi(G) = sup{JffTi_i(G/A') | X E
Pi(G)} = sup{sup{/T((G/X)/r) | Y' E Pi-2{G/X)} | X E Pi(G)}. However,
each Y' € P^G/X) is of the form Y' = Y/X for a unique Y € Pi-i(G). Thus,
HTi{G) = sup{sup{iT(G/Y) | X C Y G Pi-i(G)} | X € Pi(G)} = sup{/T(G/r) |
Y e Pi-i{G)}, as required. H

Note that for i = n we have OT(G) = HTn(G) = sup{IT(G/X) \ X E
Pn-i(G)} = sup{type(G/A") | X £ Pn-i(G)}, the standard definition of the outer
type of G.

Arguing as in the proof of Corollary 2, it is easy to show:

COROLLARY 3. Let G be a group of rank n and 1 < j < i < n. Then HTi(G) =
suP{HTi-.j(G/X)\X£Pj(G)}.

If T is a type, a group G is called a hyper- r group if every proper homomorphic
image of G is r-homogeneous completely decomposable. These groups are investigated
in [3]. One of the results in that paper may be generalised as follows (see [3], Theorem
3.1).

COROLLARY 4. Let G be a hyper-r group. Then RT(G) ~ [5 © T"""1], where
type S = IT{G) and type T = r .

PROOF: If G is a hyper-T group then, clearly, HTn(G) = OT(G) = r . But by
Theorem 1, HT2(G) = snp{IT(G/X) \ X 6 Pi(G)} = r. Thus, HT{{G) = r for
i = 2, . . . ,n and the result follows. H

THEOREM 2. Let G be a torsion-free group of rank n. Then for 1 ^ i ^ n,
HTi{G) = ini{OT{X) | X

PROOF: Fix y in Fi(G). If F is a full free subgroup of G, then F C\ Y and
(F + F ) / y are full free, subgroups of Y and G/Y, respectively. Write G/F = Ti ©
... ® Tn , Y/(F D F) = Ui © . . . © C/i and (G/Y)/({F + F ) / y ) = 5j © . . . © 5n_i as
standard decompositions. Then there is an exact sequence,

o -»®;- = 1 ^ -»©7=Ir> - ©"^5,- -+ o.
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It is routine to show that type Uj ^ type Tj for 1 < j < i. Since OT(Y) = type £/;
and HTi(G) = type Ti} we have shown OT(Y) ^ HT{{G) for all Y 6 ^ ( G ) . How-
ever, by the remark following the proof of Theorem 1, for each prime p, there is a
subset I of {1,2, . . . , n} of cardinality i such that Y = Yi - (XJ \ j 6 / ) . £ Pi(G)
satisfies V ( y n F ) p ~ (T2 ®...®Ti)p. Thus, ifT^G) = type ^ < inf{Or(y» |
/ is a subset of {1, . . . , n} of cardinality i} , and the proof is complete. R
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