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Abstract

The use of local natural and recycled feedstock is promising for sustainable construction.
However, unlike versatile engineered bricks, natural and recycled feedstock involves design
challenges due to their stochastic, sequential, and heterogeneous nature. For example, the
practical use of stone masonry is limited, as it still relies on human experts with holistic
domain knowledge to determine the sequential organization of natural stones with different
sizes/shapes. Reinforcement learning (RL) is expected to address such design challenges, as
it allows artificial intelligence (AI) agents to autonomously learn design policy, that is, iden-
tifying the best design decision at each time step. As a proof-of-concept RL framework for
design automation involving heterogeneous feedstock, a stone masonry design framework
is presented. The proposed framework is founded upon a virtual design environment,
MasonTris, inspired by the analogy between stone masonry and Tetris. MasonTris provides
a Tetris-like virtual environment combined with a finite element analysis (FEA), where AI
agents learn effective design policies without human intervention. Also, a new data collection
policy, almost-greedy policy, is designed to address the sparsity of feasible designs for faster/
stable learning. As computation bottleneck occurs when parallel agents evaluate designs
with different complexities, a modification of the RL framework is proposed that FEA is
held until training data are retrieved for training. The feasibility and adaptability of the pro-
posed framework are demonstrated by continuously improving stone masonry design policy
in simplified design problems. The framework can be generalizable to different natural and
recycled feedstock by incorporating more realistic assumptions, opening opportunities in
design automation for sustainability.

Introduction

The use of locally available natural and recycled feedstock for construction is being actively
studied, as it is a promising option for sustainability by reducing energy inputs and carbon
emissions during the fabrication and transportation of the feedstock. Aligned with this effort,
stone masonry, one of the oldest types of construction utilizing natural stones, is being redis-
covered due to its unique advantages: significantly lower embodied energy/carbon than other
building materials (Venkatarama Reddy and Jagadish, 2003). Figure 1 illustrates that stones
provide the strength of concrete with a thousandth less embodied energy of steel (ANSYS
Granta, 2019). In this context, stone masonry could become an attractive option to achieve
a sustainable construction industry, as embodied energy/carbon is one of the most important
factors to consider for the sustainability of the construction industry (Hegger et al., 2012). In
addition, the advancement of robotic construction is expected to remove a major obstacle in
stone masonry construction by automating labor-intensive tasks [e.g., bricklaying robots
(Sklar, 2015) and a masonry construction drone (Goessens et al., 2018)].

While labor-intensive tasks have been the obstacle in stone masonry construction, the high
dependence on domain knowledge is a major limiting factor in stone masonry design. Stone
masonry designs are typically done by highly experienced experts with a great amount of
(often ad hoc) domain knowledge in structural design, material science, and geometry.
Thus, the construction industry has moved toward engineered masonry units (EMUs) that
are highly regular and uniform, requiring less skill and domain knowledge during design
and construction. Current practices in the analysis and design of masonry structures mostly
assume the use of EMUs. Four categories of modeling are common: block-based models, con-
tinuum models, geometry-based models, and macro-element models (D’Altri et al., 2020).
Based on analytical modeling, masonry designs follow several design codes or empirical
rules (e.g., American code including ACI 530-02/ASCE 5-02/TMS 402-02 (Masonry
Standards Joint Committee, 2002), or employ design techniques such as limit state design
or allowable stress design (Theodossopoulos and Sinha, 2013). As their names imply, limit
state design and permissible stress design aim at enforcing “limit state” or “permissible stress”,
which is the boundary between feasible and infeasible design, to maintain the design within
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given constraints. In addition, computer-aided design methods to
support EMU masonry structure design have been also developed,
including the automatic unit layout method proposed by Liu et al.
(2021). However, unlike EMU masonry, applying the aforemen-
tioned approaches to stone masonry is not straightforward, as it
involves complex interactions among heterogeneous and irregular
natural stones and mortar joints. The high dependence on
domain knowledge (i.e., human experts) is an important chal-
lenge, as the architectural knowledge regarding stone masonry
design has been waning (Gentry, 2013). There are some pioneer-
ing works demonstrating the use of heterogeneous sizes of cuboi-
dal blocks to incorporate a wider range of construction materials
(e.g., from 3D printing or brick-making) (Zhang and Shea, 2022),
but the extension of the method to various shapes is necessary to
address stone masonry design problems.

Topology optimization (TO) – the optimization of material
distribution within a design space (Sigmund and Maute, 2013)
– is an established research area and has been successfully applied
to the design of customized structures made with additive manu-
facturing (Guo and Leu, 2013; Laureijs et al., 2017; Amir and
Mass, 2018). The two common TO approaches are density-based
TO and level-set methods. While most TO applications consider
the case where a design can be described as the distribution of a
single type of material (e.g., 3D printing filament), advances are
being made with heterogeneous materials like composite or cellu-
lar material (Andreassen and Jensen, 2014; Coelho et al., 2019)
and multiple materials (Wang and Wang, 2004; Vogiatzis et al.,
2017; Zuo and Saitou, 2017), opening the capability of TO beyond
isotropic solids. Additionally, the efficiency of TO has been
improved with machine learning (ML) methods such as support
vector regression (Lei et al., 2018) and deep neural networks
(DNN) (Chandrasekhar and Suresh, 2021). Design constraints
are an important aspect of TO for practical applications. For
example, 3D printing designs must be constrained to the feasible
ranges of feature size and overhang angle of the printer. However,

few, if any, TO approaches consider material availability con-
straints, such as the availability of different sizes of natural
stone. Further complicating the use of TO for stone masonry,
stone masonry structures with the same silhouette may exhibit
completely different performances, as heterogeneous masonry
units and their joints should be carefully organized in a proper
order to ensure the functionality of the stone masonry structure
as a whole. This also indicates that the continuity, convexity,
and smoothness of objective function are not guaranteed when
TO is used for stone masonry design, as just a single change of
design (e.g., changing a stone in the middle) can completely
change the behavior of the overall stone masonry structure.
Simply put, the nature of stone masonry design makes it difficult
to apply current TO methods.

ML and artificial intelligence (AI) are also actively adopted in
architectural design and analysis in different stages (Sun et al.,
2021). For example, AI methods, especially evolutionary algo-
rithms, have been adopted to support the exploration of concep-
tual designs (Wang et al., 2020), layout designs (Su and Yan, 2015;
Baghdadi et al., 2020; Liu et al., 2020), and detailed designs of
structural members (Ahlquist et al., 2015; Hofmeyer and
Delgado, 2015). As ML and AI methods are founded upon com-
putational analysis (e.g., finite element method, FEA), building
surrogate models to accelerate the assessment of architectural
structure has been also investigated to facilitate design exploration
(Wortmann et al., 2015; Zheng et al., 2020). Other approaches
also include the evaluation of architectural designs in quantitative
aspects, such as visual design principles, esthetics, and creativity
(Mars et al., 2020; Demir et al., 2021). However, existing
approaches still cannot address the challenges involving stone
masonry designs: organizing heterogeneous shapes of natural
stones in proper order considering the complex interaction across
their joints, without prescribed knowledge.

RL has shown promising results to learn effective strategies
(i.e., taking a proper sequence of timely action), allowing gaming

Figure 1. The comparison chart of embodied energy
versus strength for different construction materials, cre-
ated with CES EduPack 2019 (ANSYS Granta, 2019).
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AI to conquer even extremely complex computer games. For
example, AlphaStar (Vinyals et al., 2019) and OpenAI Five
(OpenAI et al., 2019) triumphed against the world’s top profes-
sional human players in complex strategy computer games like
StarCraft II and DOTA 2. Due to the aforementioned capability,
RL has been actively adopted in many design problems, including
drug design (Popova et al., 2018), microfluidic device design uti-
lizing different micro-pillars to get desired fluid flow profile (Lee
et al., 2019), automatic generation of FEA meshes from heteroge-
neous boundary shapes (Pan et al., 2021), and plane truss design
using heterogeneous sizes of beams/columns for different stories
of a building (Hayashi and Ohsaki, 2021). In other words, the
challenges involving stone masonry design can potentially be
addressed when the demonstrated capabilities of RL are used in
a synergistic manner: solving design problems involving heteroge-
neous design units; and learning a proper sequence of action
shown through gaming AI. Therefore, if there is a virtual design
environment for stone masonry design, the success of RL in gam-
ing AI and design problems can be translated to stone masonry
design, due to its ability to learn optimal design decisions at
each time step without prescribed domain knowledge. In the
meantime, the classic computer game Tetris is analogous to
stone masonry in some ways as shown in Figure 2. Specifically,
both stone masonry and Tetris organize heterogeneous design
units to form an overall structure, where the order of placing
each design unit matters, and the score is determined by the
topology of the overall structure. Therefore, with some modifica-
tions to Tetris (e.g., design units, score calculation, etc.), it is pos-
sible to develop a virtual design environment, where AI agents
can autonomously learn effective stone masonry design policies
via trial-and-error in the context of RL.

In this context, this paper aims to answer the following
research question: “can an RL framework learn effective stone
masonry design policy without prescribed knowledge, when
coupled with a virtual design environment inspired by a similar
puzzle game (i.e., Tetris)”. It is an important research question,
as it will not only help investigate the stone masonry design prob-
lem, but also can be generalized to address other practical design

problems with similar design challenges, opening opportunities in
design automation for sustainability: the use of locally available
natural and recycled feedstock with stochastic, sequential, and
heterogeneous nature (e.g., timber feedstock with random
defects). To address the research question, a virtual design envi-
ronment, called MasonTris, is designed by integrating a custom
emulator of Tetris with an FEA tool, OpenSeesPy (Zhu et al.,
2018), to evaluate the fitness (i.e. weight and safety factor) of a
given stone masonry design (i.e., arrangement of polyominoes).
Founded upon MasonTris, the proposed RL framework autono-
mously explores topological structures by placing polyominoes
(i.e., Tetris-like workpieces), learning stone masonry design policy
to improve the fitness (i.e., reward). This iterative exploration is
guided by double deep Q-learning (DDQN) (Hasselt et al.,
2016) to learn effective stone masonry design policies (i.e., under-
stand where to place polyominoes to achieve higher rewards).
The DDQN approach has seen success in domains such as edge
scheduling (Zhang et al., 2019) and autonomous vehicle speed
control (Zhang et al., 2018). The feasibility of the proposed
framework is demonstrated in a simplified but still realistic
approximation of stone masonry design problems founded
upon Tetris, called MasonTris problems. If successful, such a
framework could be paired with advanced robotics to automate
the design and construction of sustainable stone masonry.
For example, a user (likely a building designer who is familiar
with building design in general but not familiar with stone
masonry design) can provide the requirements (e.g., safety con-
straints) to the proposed framework, and then monitor/review
the evolution of designs. Once the proposed framework learns
the design policy and the user is satisfied with the best design
so far, the user can retrieve the best design as the final design.
The final design may be the global optimal design if the user
has access to enough computation resource/time or a promising
design that the user can polish for the purpose. In other words,
the proposed framework will help the designer to save a signifi-
cant amount of time involving trial-and-errors during the stone
masonry design process. The novelties of the proposed work are
as follows:

Figure 2. The analogy between Tetris and stone masonry.
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• A virtual design environment for stone masonry, MasonTris, is
designed based on the analogy between Tetris and stone
masonry. MasonTris is a powerful, yet simple, analogy to
stone masonry, with core similarities shown in Figure 2,
where its components and reward structure are carefully
designed to represent stone masonry design.

• The proposed RL framework adopts a novel design exploration
policy, called almost-greedy policy, to balance exploration and
exploitation to improve the stability of learning. Almost-greedy
policy is especially useful for design problems with sparse
reward (i.e., only a small portion of designs are feasible in the
design space).

• Unlike typical RL frameworks, the proposed RL framework
evaluates and calculates the rewards only when the data is fed
to improve design policy. The proposed modification prevents
the computation bottleneck when multiple AI agents simul-
taneously explore and calculate rewards on-the-fly. This signif-
icantly improves the efficiency of design exploration in a
practical scenario, where the evaluation of each design candi-
date is time-consuming, thus desirable to be parallelized.

This work has three broader contributions in the areas of TO,
RL, and design automation. For the general TO community, this
work demonstrates RL as a tool to optimize topological structure
incorporating heterogeneous design units, as opposed to the
traditional uniform voxels, where typical TO methods are not
effective. It should be noted that design problems involving het-
erogeneous design units are becoming more important, as the
use of sustainable natural material (e.g., timber) and recycled/
reused material is limited by their heterogeneity in nature. In
other words, the proposed framework helps overcoming the bar-
rier to the broader adoption of such sustainable materials. For the
broader RL community, the proposed framework adopts
on-demand calculation of costly reward evaluation for efficient
parallelization, as well as an effective design collection policy to
address sparse reward problems. This will promote the use of
RL frameworks to solve challenging practical engineering prob-
lems. Lastly, for the broader design automation community, this
work illustrates the potential for RL to learn domain-specific
knowledge from scratch in a simplified virtual environment.
Upon the development of a corresponding virtual environment,
the framework can be applied to a wide variety of different design
problems at various scales and various materials, similar to the
way that a game was developed to allow game players to help pro-
tein structure design (Khatib et al., 2011).

Background

Reinforcement learning

RL is a discipline of ML, which involves identifying an optimal
policy for a sequential decision-making problem (Sutton and
Barto, 1998) through the iterative improvement of the learned
policy. The improvement of the policy is guided by a reward
that is typically provided sporadically – that is, when a goal (or
an intermediate goal) is achieved. Therefore, the main focus of
RL is to identify which action can maximize the expectation of
the sum of future rewards, even when the reward is not provided
yet. Generally, the more sporadic the reward, the more challeng-
ing the RL problem. Many practical problems have been solved
with RL, for example, robot control, military planning, and
power management (Roijers et al., 2013).

In RL, a sequential decision-making problem is typically for-
mulated with the interactions between agents and the surround-
ing environment. Three variables can describe the evolution of
such a system in discrete time and space: (1) the state s that
describes the state of the surrounding environment, (2) action a
that the agent can take to trigger the transition between different
states, (3) and reward r that indicates how good or bad the out-
come of an action is. An agent has a policy π that maps the state
to an action that results in a new state (i.e., determines which action
to take given the state of the surrounding environment). At each
time step, the agent may earn a reward computed from the current
state. The agent’s goal is to improve the policy, towards an optimal
π*, at each step to maximize the reward earned over the time hor-
izon. The agent may learn from multiple episodes of actions from
initial to final states as the system evolves.

Double DDQN

Deep Q-Learning (DQN) (Mnih et al., 2013) is a widely adopted
RL method that learns an action-value function Qu(s, a), also
known as the Q-value, by using a DNN. θ is the vector of param-
eters of the DNN that defines the function. Practically, this func-
tion estimates the cumulative future rewards at time step t (i.e.,
Qu(s, a) = E

∑T−t
k=0 g

k rt+k|st = s, at = a
[ ]

) when an action a is
chosen at a state s, where γ is a discount factor to the future
reward and T is the unknown time step of the terminal state.

In each RL iteration, a DNN is updated to learn the action-
value function. The DNN is then used by the agent to identify
the action in the current state that maximizes this function. In
other words, the policy π of DQN is not explicitly modeled, but
indirectly modeled by deriving the value of each action in a finite
action space, and choosing the action yielding the maximum
value. DNN’s proven ability to precisely approximate complex
relations provides DQN with an effective policy, even for prob-
lems with a huge state space.

This paper uses DDQN (Hasselt et al., 2016), a more stable
variant of DQN. A DDQN agent improves its DNN approxima-
tion of the action-value function through the following procedure:

• Initialization: The untrained agent begins with a random policy
where a uniformly random action a is selected within the set of
feasible actions A (i.e., available polyominoes and rotations, or
episode termination) to explore a number of episodes. Each
action in each episode generates an experience that can be repre-
sented by the tuple et = {st, at, rt, st+1} that is added to an experi-
ence replay buffer (Lin, 1992). The agent then initializes a DNN
with parameters θ drawn from a Glorot uniform distribution
(Glorot and Bengio, 2010) with bounds determined by the num-
ber of inputs/outputs. This DNN is then trained from a random
sample of the experience replay using the process below.

• Exploration and training iterations: The agent begins each RL
iteration by exploring a small number of new episodes (saving
each experience in the replay buffer). Exploration and exploita-
tion are balanced with an 1-greedy policy. This policy is gener-
ally greedy, choosing an action according to Eq. (1), but may
choose a uniformly random feasible action with probability 1.
Training in each RL iteration uses a random subset of the expe-
rience replay to update the θ parameters of the DNN using gra-
dient descent. Choosing a random batch rather than the most
recent experiences significantly improves the training reliability
and sample efficiency (Mnih et al., 2013). The “double” in
DDQN refers to the joint use of two DNNs with the same
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architecture but different parameters: an online model Q where
its parameters are denoted as θ and a target model Q

′
where its

parameters are denoted as θ
′
(Hasselt et al., 2016). Exploration

of new experiences are done with Q. Then Q and Q
′
are jointly

used in the training of DNN to approximate the ground-truth
action-value function Q* via Eq. (2), where Q is used to identify
an action and Q

′
is used to evaluate the value of the selected

action to update the approximation of Q*. The target model,
Q

′
, is periodically updated by copying over the parameters θ

from Q according to Eq. (3) for the reliability of the training
(Mnih et al., 2013).

a = argmax
a[A

Qu(s, a) (1)

Q∗(st , at) ≈ rt + gQ′ st+1, argmax
a[A

Qu(st+1, a)

( )
(2)

u′ � gu+ (1− t)u′, 0 ≤ t ≤ 1 (3)

• Evaluation/termination: RL agents are typically trained for a
sufficiently-large fixed number of iterations or a fixed amount
of wall-clock time. Training duration is typically assumed to
be sufficient when the reward stabilizes to the observed maxi-
mum with the hope that the policy [Eq. (1)] approximates
the optimal policy.

Methods

Problem definition: MasonTris problem

This manuscript considers a simplification of the stone masonry
design problem illustrated by Figure 3. This problem, herein
named MasonTris problem, is inspired by Tetris combined with
a structural analysis using FEA. It includes the following compo-
nents: (1) a 2D design space and outer shell, (2) a source of poly-
ominoes, which are the geometric shapes composed of one or
multiple squares connected orthogonally (e.g., Tetris workpieces
are 4-block “tetrominoes”), to be stacked within the design
space to form a structure to support (3) an external load applied
to the outer shell surface(s). MasonTris incorporates the most dis-
tinct characteristics of stone masonry design, irregular sizes/
shapes of natural stones, by approximating natural stones with

polyominoes, which can be regarded as low-resolution pixelized
versions of natural stones. As polyominoes can represent various
shapes (i.e., not necessarily versatile cuboidal shapes found in
EMUs), similar to the shapes of natural stones found in stone
masonry, we assume that such polyominoes are suitable to vali-
date the feasibility of the proposed framework in a simplified set-
ting. Note, unlike the classic video game, various polyomino sizes
are considered, there is an unbounded supply of each polyomino
considered (i.e., any available polyomino can be selected for an
action), complete lines are not eliminated, and an agent can
decide when an episode terminates; otherwise, the episode termi-
nates when no polyomino can be placed.

In this paper, the objective ofMasonTris problem is to learn an
action-value function Q* that yields an optimal policy π*, for
sequentially building a structure with polyominoes that satisfies
a maximum-stress safety factor, with minimal weight. The follow-
ing actions, states, and rewards define this objective as an RL
problem. The actions a are the type of polyomino to place and
where to place it (i.e., with a “hard drop” from the top of the
board). The state s is in a 2D grid state space indicating the loca-
tion of each polyomino and interstitial grout. The reward r is
increased by reducing the weight of a structure, while maintaining
an adequate safety factor calculated from the maximum stress of
the FEA. Traditional Q-learning would construct a table for each
possible action in each possible state, which is intractable for all
but the smallest structural design spaces. For example, a standard
Tetris game (i.e., board size: 10 × 20) is estimated to have 7 × 2200

states (Algorta and Şimşek, 2019). Instead, this paper proposes a
DDQN as an efficient way to learn such a policy with reasonable
computational resources. The findings may be applicable to more
sophisticated stone masonry problem (e.g., by adopting more
sophisticated reward calculation) or extended to other domains
with problems that can be defined similarly (e.g., mass timber
building design).

Proposed framework overview

The proposed RL framework, shown in Figure 4, consists of the
MasonTris environment (top-left of Fig. 4), a DDQN agent (top-
right of Fig. 4), and a trainer (bottom of Fig. 4). The MasonTris
environment defines the available polyominoes and how they
can be stacked within the design space. The DDQN agent explores
(in parallel) many episodes in the design space to learn a policy
(periodically updated by the trainer) for stacking polyominoes

Figure 3. The motivating example of the autonomous stone masonry design framework (MasonTris problem).

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 5

https://doi.org/10.1017/S0890060423000100 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060423000100


that maximize its reward. The trainer keeps a record of all the
agent’s experiences (i.e., the tuple {st, at, rt, st+1}) and feeds a ran-
dom subset to the agent in the RL iteration. The trainer also cal-
culates the reward using FEA.

To solve theMasonTris problem, the following three innovations
were introduced in the following sub-sections respectively: (1) The
MasonTris environment was developed to test different AI/RL
approaches to the stone masonry design problem; (2) In addition
to typical ε-greedy policy, additional ε-greedy policy called almost-
greedy policy is jointly used. Almost-greedy policy is designed to
facilitate exploration in the sparse space of feasible designs in
MasonTris problem; (3) A modification to the experience replay
technique such that rewards are only calculated on-demand (and
in parallel) to address the significant computational cost of reward
calculation compared to other applications of DDQN.

MasonTris environment

The proposed RL framework incorporates MasonTris environ-
ment, which can be regarded as a modified version of Tetris to
address stone masonry design problems. Figure 5 provides an
overview of the MasonTris environment. MasonTris environment
provides a meaningful example of designing a virtual environ-
ment based on a simple puzzle game but designed to address a
practical design problem. In other words, a similar virtual envi-
ronment can be designed to address a practical design problem
if the analogy between a game and the design problem exists
(e.g., the analogy between protein structure and a puzzle game
is used (Khatib et al., 2011)). In the rest of this section, each com-
ponent of the MasonTris environment is explained.

Representation of states
In MasonTris environment, state s is defined as a 2D matrix
derived from a board. Figure 5 shows an example of a state
derived from a 5 × 5 board with 2 tetrominoes (i.e., natural stones)
placed. It is shown that a board is augmented to a state, such that
it can represent the mortar between the natural stones as well as
the mortar between the natural stones and the outer shell. As a
result, a board of size w × h yields a state of size (2w + 1) × 2h,
since mortar is not applied between the natural stones and the

ground. Each entity of the state has the value corresponding to
its occupancy: empty (−1), natural stone (0), or mortar (1).
This design choice ensures the following. First, the state can expli-
citly classify different types of materials (i.e., stone and mortar).
By assigning empty space and mortar the value with a higher
magnitude, the agent can focus more on the location of empty
space and mortar, which plays an important role in the overall
performance of the stone masonry. Second, by assigning 0 to nat-
ural stone, the outside of the design space (i.e., the outer shell) is
also assumed to be made of natural stone. This is due to the typ-
ical behavior of DNNs (especially convolutional neural networks)
(Abadi et al., 2015), which regards that the value outside of the
input matrix is zero (called “zero-padding”).

Representation of actions
In MasonTris environment, action a is defined as a scalar value
(integer) representing possible actions, and its value ranges
from 0 to amax. Here, the number of possible actions is identified
by multiplying the board width and the number of available poly-
ominoes (assuming an infinite supply to each polyomino), and
then adding one additional action representing “terminate the
episode and calculate reward”. When the number of available
polyominoes is counted, rotated variants of each polyomino
(e.g., ①–④ of Fig. 5) are assumed to be different from each
other. In other words, action a can be regarded as a categorical
value, where the value is assigned based on (1) the x-coordinate
where a polyomino is dropped, (2) the type of polyomino to be
dropped, and (3) whether the agent terminates the episode or
not. For example, for a 5 × 5 board using tetrominoes, the number
of possible actions is 96, which is derived by (5 × 19) +1, as shown
in Figure 5, thus action a spans from 0 to 95. It should be noted
that some of the actions might be infeasible, when there is no
space to place the corresponding polyomino or when it is not
desired in masonry (e.g., inserting a brick into a closed slot
involves additional efforts, thus is not desired). To prevent such
infeasible actions from being chosen, the proposed framework
calculates and applies a feasibility mask for the action, which is
a vector of binary values corresponding to actions. The agent
only chooses from the actions where corresponding values in
the feasibility mask are one.

Figure 4. An overview of the proposed stone masonry design AI framework.
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Calculation of reward
In MasonTris environment, reward r is defined as a scalar value
representing the expected performance of a stone masonry design.
First, once the last action “terminate the episode and calculate
reward” is chosen, the current 2D board (i.e., terminal state) is
converted into the equivalent FEA model. Here, each coordinate
of state s is regarded as a standard eight-node brick element,
thus each polyomino and mortar gap is composed of multiple
brick elements connected each other. Then OpenSeesPy (Zhu
et al., 2018) is used to evaluate the deformation and stress distri-
bution. Based on this analysis, the performance of the equivalent
stone masonry is calculated to provide the reward. It should be
noted that a reward is provided only when an episode terminates,
which means that intermediate states do not provide rewards. In
other words, the policy of an agent also involves whether it should
continue placing additional natural stones for higher reward or it
should terminate the episode to retrieve the reward at the current
time step.

Computational structural analysis: Structural analysis is per-
formed to evaluate stone masonry designs assuming that the nat-
ural stones and mortar are made of elastic isotropic materials.

To facilitate the structural analysis, the boundary conditions are
applied such that the translations of all nodes at the ground
level are not allowed (i.e., “pin-connected”), as shown in
Figure 3. It should be noted that even though the input board
is 2D, the FEA model is 3D considering the depth of the brick ele-
ments. In this paper, the gravitational load, friction force, and
self-weight of stone masonry are not incorporated. Given the
aforementioned configuration, the structural analysis evaluates
the deformation (as shown in Fig. 5, where the degree of deforma-
tion is exaggerated for visualization) and the distribution of stress
across the stone masonry design (as shown in Fig. 6). Then the
distribution of principal stresses is derived to determine if any
natural stones or mortar joints are subject to failure. The failure
of material can be identified via the maximum-stress criterion.
In this paper, the computational structural analysis tool called
OpenSeesPy (Zhu et al., 2018) is used. With a slight modification,
the framework can perform more sophisticated analysis of
masonry structures, as OpenSeesPy supports a wide variety of ele-
ments for finite element analysis (FEA) (e.g., truss, joint, inter-
face) and material models [e.g., Drucker–Prager yield criterion
(Drucker and Prager, 1952)].

Figure 5. An overview of MasonTris environment illustrating state, action, and reward for RL.
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Safety factor: To evaluate the relative strength of different stone
masonry designs, the proposed framework evaluates their safety
factor, denoted as sf. Here, the safety factor represents how
much stronger a structure is than it needs to be for an intended
load (i.e., how much margin does it has). Typically, it is defined
as the minimum ratio of maximum allowable strength to the cal-
culated load across each element. For example, if a vertical stress
of 10 MPa is applied on top of a structure (i.e., the typical amount
of stress during the service of the structure), and the maximum
allowable vertical stress of the structure is 20 MPa, then the resul-
tant safety factor is 2. In this paper, the safety factor sf of a struc-
ture, with elements indexed with i, is defined as Eq. (4) where σs,i
and σc,i are tensile strength (positive, if nonzero) and compressive
strength (negative) of i-th element respectively, and σp1,i and σp2,i
are maximum principal stress and minimum principal stress of
i-th element. In other words, the minimum safety factor across
all the elements, considering both tensile and compressive stress,
is used as the safety factor of an overall stone masonry design. It
should be noted that different elements may have different σs,i and
σc,i, since a stone masonry consists of heterogeneous materials
(i.e., natural stones and mortar).

sf =min
i

min
ss,i

sp1,i
,
sc,i

sp2,i

( )
, if sp1,i≥ 0.sp2,i orsp1,i.0≥sp2,i

ss,i/sp1,i, if sp2,i. 0
sc,i/sp2,i, if sp1,i, 0orss,i=0
1, if sp1,i=sp2,i=0

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(4)

Derivation of reward: Given the structural analysis results, the
final reward is derived to grade stone masonry designs. The pro-
posed framework explores the optimal design with DDQN, aim-
ing at maximizing the reward. In other words, the formulation
of reward can be regarded as an objective function of an optimi-
zation (maximization) problem. In this paper, the reward is
designed to identify the optimal design satisfying the following
conditions:

• The optimal design is the lightest feasible design, where feasible
designs have the safety factors higher than a pre-defined thresh-
old. In other words, a lighter feasible design should always have

a higher reward. The weight of stone masonry is calculated by
counting the number of coordinates occupied by natural stones
in the design space (e.g., a tetromino is regarded to occupy four
coordinates) for the outer shell and internal structure. It should
be noted that the weight of the mortar is not counted.

• The design with a higher safety factor has a higher reward, in
the case of ties for the lightest feasible design.

• The reward is bounded between −1 and 10, since a DQN agent
cannot learn well if the magnitude of the reward is too low
(does negligible update the parameters) or too high (neural net-
work can be unstable). Here, the magnitude of the upper
boundary is higher than that of the lower boundary to encou-
rage the DDQN agent to explore positive rewards. The bound-
ary is manually determined based on the observations of the
loss function of the DNN during the development of the
framework.

To satisfy the conditions, the reward is derived as Eq. (5)
where m is the weight of the overall stone masonry, sf is the safety
factor of the stone masonry, sfth is the threshold of safety factor to
identify if a stone masonry is feasible or not, and mmax and sfmax

are the upper limits of m and sf derived by assuming that the
stone masonry is made of a complete solid natural stone (i.e.,
the internal structure is fully occupied with natural stones).

r =

10
mmax + 1

mmax −m+ sf − sfth
sfmax

[ ]
,

1
sfmax

(sf − sfth),

−1,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

if sf . sfth
else if sfth . sf . sfth − 1

otherwise (sf ≤ sfth − 1 or OpenSeesPy fails)

(5)
Figure 7 illustrates the calculation and scaling procedure of

positive rewards [i.e., when sf > sfth in Eq. (5)]. First, rmass is cal-
culated to evaluate the contribution of the weight m to the reward.
Since m is the number of coordinates occupied with natural stone,
rmass has a discrete integer value ranging from 0 to mmax. Then rsf

Figure 6. The distribution of stress (z-direction) across the stone masonry design in Figure 5.
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is calculated to evaluate the contribution of the safety factor to the
reward. rsf has a continuous value ranging from 0 to 1, as sf− sfth
is divided by sfmax, which is the upper limit of the magnitude of sf.
Bounding rsf between 0 and 1 ensures that a lighter feasible design
always has a higher reward, regardless of the difference in safety
factor. Lastly, the final positive reward r+ is derived by dividing
the sum of rmass and rsf by 10/(mmax + 1). This ensures the positive
reward to be bounded by 10.

Design exploration via DDQN

The proposed framework adopts DDQN, where its DNN archi-
tecture and design exploration strategy are tuned to solve
MasonTris problems. In this section, the details on the DNN
and exploration strategy are presented.

Deep neural network architecture
In stone masonry design, the spatial correlation among empty
space, natural stones, and mortar is important. To capture such
spatial correlation, the proposed framework adopts a convolu-
tional neural network (CNN) (LeCun et al., 2015), which can cap-
ture spatial correlations from 2D/3D data, as a part of the neural
network approximating action-value function. Figure 8 shows the
DNN architecture used in this paper, which includes three convo-
lutional layers followed by two fully connected layers. It is shown
that the 2D convolution kernels sweep the input data (i.e., state s)
to learn spatial features, and the fully connected layers to derive
the action-value function for each action based on the spatial fea-
tures. Here, the number of layers and the number of hidden nodes
in each layer are manually tuned based on the observation during
the framework development. The hyperparameters (e.g., kernel
size, hidden node size, etc.) can be adjusted depending on the
complexity of the problem (e.g., the size of the board). For

example, the hidden node size can be increased when the board
size increases, or additional workpieces are allowed (i.e., the num-
ber of available action increases).

Design exploration strategy
Typically, a DQN agent adopts an ε-greedy policy with ε decaying
from a large value to a small value. In other words, the agent ini-
tially focuses on exploration and then gradually focuses more on
exploitation later. While this approach provides reasonable results
for many standard environments, it is observed that this approach
may lead to the scarcity of positive rewards due to the following
characteristics of MasonTris problem:

(1) In case the safety factor threshold is high, there are only a few
feasible designs providing positive rewards. Therefore, it is
difficult to locate a feasible design with an ε-greedy policy
due to the random action chosen at each time step.

(2) For a large design space, even selecting a few random actions
in the middle of the design may yield a completely different
result, while the standard ε-greedy policy is intended to pro-
vide a sequence of action slightly deviated from the current
best one to balance between exploration and exploitation. In
other words, the agent could not exploit well based on the
current state. This makes it difficult for the agent to locate
the designs with positive rewards, which are already sparse
in the design space.

The scarcity of positive rewards can significantly slow down
the training process, since the update of the DNN parameters θ
is guided to maximize the expected reward achieved by the
agent. In other words, if no positive reward is provided, the
agent can only learn “how to avoid the lowest negative rewards”
rather than “how to achieve a positive reward”, since none of
the actions will yield a positive action-value function Qu(s, a).

To address the issue, the framework jointly utilizes additional
exploration strategies, called almost-greedy policy, complementing
the standard ε-greedy policy. Almost-greedy policy is an ε-greedy
policy with a small constant value of ε, such that at most only one
action is randomly chosen on average during an episode. In other
words, ε equals to one divided by the theoretically maximum
length of an episode, which is driven by dividing the minimum
size of polyominoes with the number of coordinates in a board.
For example, ε equals 0.16 = 4/(5 × 5) when a 5 × 5 board and
tetrominoes are used (for the environment in Fig. 5). By occasion-
ally adopting almost-greedy policy for some of the RL iterations,
the framework better exploits the current policy, thus more likely
to locate a design with a positive reward earlier to speed up the
training process. The proposed design exploration strategy via

Figure 7. The calculation and scaling procedure of positive rewards yielding a
bounded reward.

Figure 8. The DNN architecture to approximate action-value function Q∗
u(s, a).
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the joint utilization of regular ε-greedy and almost-greedy policy
can be applied to solve any design problems, where only few fea-
sible solutions exist across a broad design space.

On-demand calculation of rewards for efficient parallelization

A typical RL framework calculates the reward during the explora-
tion, such that the reward values are stored in the experience
replay as a part of experiences. However, for the motivating exam-
ple, calculation of reward (i.e., FEA for structural analysis) is com-
putationally the most expensive part of exploration, where the
calculation time significantly varies depending on the topological
structures (i.e., some design requires small computation time
while others may require significantly more time). For example,
during the development of MasonTris in 10 × 20 board, it is
observed that the evaluation of a complex design candidate
takes 20+ s while the evaluation of a simple design candidate
takes 2 s. Therefore, when multiple exploration sessions are simul-
taneously running, the efficiency of the exploration is limited by
the session involving the most time-consuming calculation.
Considering the number of design candidates to be evaluated
(10,000+ for even a simple design problem), it can be a significant
bottleneck in more realistic applications, as the evaluation time
roughly scales with the size of the board and will dramatically
increase when the framework is extended to 3D design problem.

To address the issue and allow efficient parallelization, the pro-
posed framework has a component called trainer, which inter-
venes across the MasonTris environment, experience replay, and
DDQN agent as follows. First, MasonTris environment does not
calculate reward during the exploration, but only provides the
flag (0 for intermediate states and 1 for terminal states) to expe-
rience replay. When the random batches of sequential experiences
are retrieved from the experience replay to train the agent, the
trainer utilizes parallelized structural analysis module to calculate
the rewards, only when the retrieved rewards are 1’s. Second, for
efficient calculation of rewards, the trainer utilizes parallel work-
ers of structural analysis module with Dask (Rocklin, 2015), which
is a Python library for efficient parallel computation. This allows
queuing the calculation of rewards, such that calculations are
simultaneously done with multiple workers without bottleneck
as shown in Figure 4 (bottom-right). Third, as the actual rewards
are not explicitly stored in the experience replay, the trainer does
book-keeping of state-reward pair, such that it can re-use the
reward without calculation, if the same state is explored in the
future. This ensures the efficiency of the proposed framework
by preventing redundant calculations. The proposed practical
modification can improve the efficiency of any RL framework uti-
lizing experience replay (e.g., DQN and DDQN), especially when
the evaluation of rewards is computationally costly.

Experiments

Experimental settings

In this section, the feasibility of the proposed framework is vali-
dated by solving MasonTris problems. Specifically, the initial
experiment is performed where the scale of the design space is
the same as Tetris (i.e., design space is 10×20 board, and tetromi-
noes are used). Figure 9 illustrates the MasonTris problem for
the experiment where the vertical pressure (P) of 1 MPa and the
safety factor threshold (sfth) of 2 are applied. In addition, the
properties of natural stone and mortar are configured as close

as the actual masonry to provide realistic results based on the
Internet resources and academic papers (Mohamed and Djamila,
2018; Schiavi et al., 2019). The dimensions and material properties
used for structural analysis are provided in the Appendix
(Table A1).

Given the aforementioned configuration, the proposed frame-
work is used to learn stone masonry design policy under a high-
performance computing resource based on AMD-EPYC CPU
with 18 cores and 128 GB RAM assigned for each run. The con-
figuration of tuning parameters for DDQN is provided in the
Appendix (Table A2).

Results and observation

The performance of the framework is measured by periodically
evaluating the reward obtained by the agent assuming the agent
follows greedy policy [Eq. (1)]. Figure 10 shows the behavior of

Figure 10. An example of the result from a single agent, and the average rewards
obtained from eight repetitions with/without almost-greedy policy.

Figure 9. MasonTris problem for the initial experiment.
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the reward achieved by a single agent. It is shown that the agent
gradually but non-monotonically achieves higher rewards as it
learns design policy. Also, the performance of the agent some-
times significantly drops, which typically happens when the tran-
sition from a local optimum to another local optimum happens.

To demonstrate the effectiveness of adopting the proposed
almost-greedy policy, the performances with/without almost-
greedy policy are compared. Figure 10 also shows the results
based on eight repetitions per case. In each iteration, the baseline
only adopts standard exploration, while the baseline + almost-
greedy policy adopts standard exploration with 80% and almost-
greedy exploration with 20%. For the almost-greedy policy, ε of
0.02 is chosen. This is to ensure that the expected number of ran-
dom actions is at most one, as the maximum number of actions in
an episode is 50 in the target problem. It is shown that adopting
the proposed almost-greedy exploration helps the agent achieve
higher rewards much faster than the baseline.

Figure 11 shows the progression of stone masonry design as
the agents improve their policies (eight agents are simultaneously
trained for 24 h). To illustrate the overall progression of the agents
(i.e., not affected by temporary policy transitions of some agents),
the values above 25th percentiles are used to generate Figure 11.
The central red line indicates the average reward, and the shaded
area indicates the range of minimum/maximum rewards obtained
by the top 75% of the agents. It is observed that the agents try dif-
ferent design geometries and gradually derive lighter structures
with maintaining their safety factors above 2. As the training
goes on, the resultant design converges to the design with a
thin single column with capital on top (similar to human
designed columns), having a reward of around 6.96. The global
optimal design has not been confirmed via brute-force search as
it takes too much time. However, as the design with a single
thin center column without capital (i.e., using five straight bars)
does not satisfy the safety constraint (sf≈ 1.6), the resultant
design is expected to be the global optimal design. The results
indicate that the proposed framework could address the research
question by learning effective stone masonry design policy, sim-
ilar to what is actually designed by human, without prescribed
knowledge.

Adaptability of the framework and discussion

To demonstrate the adaptability of the proposed framework, a
slightly more complex MasonTris problem is tested, which is
shown in Figure 12 (left), with mostly the same parameters

used (Table A1 and Table A2 in the Appendix). For this
MasonTris problem, the design space is wider (i.e., 20×10
board), additional polynominoes are allowed (i.e., including dom-
inoes, trominoes, and tetrominoes), and lateral pressure PL is
applied to the left side of the top of the outer shell. This problem
is much more complex than the initial problem with respect to
RL, since it has a larger number of actions (190 versus 540)
and initial conditions (i.e., the horizontal location of the initial
block). To address the challenge, the number of hidden nodes
in the DNN has been increased to learn more complex action-
value function (Table A2 in the Appendix). With respect to
stone masonry design, this problem represents a realistic approx-
imation of an actual stone masonry problem for the following
reasons:

• 20 × 10 board has a large number of states, about 7 × 2200

(Algorta and Şimşek, 2019). Assuming that the evaluation of
each state requires FEA and the distribution of the reward
across the design space is not smooth, it is extremely time-
consuming to identify an effective design policy without pre-
scribed knowledge in stone masonry design.

• The problem utilizes heterogeneous units of different sizes to
represent a stone masonry design problem. Considering the
rotation of polyominoes, 27 heterogeneous shapes are used,
making this problem more challenging.

• Combination of vertical pressure (representing the load on top
of the masonry structure) and lateral pressure (representing the
load from lateral ground movement) is applied. It is a realistic
configuration to test the typical failure modes of masonry
under in-plane seismic loads (Oyguc and Oyguc, 2017).

Figure 12 (right) shows the progression of the stone masonry
design under the proposed framework, where 20 agents are simul-
taneously trained for 96 h and the values above 25th percentile are
used to generate the plot. Similar to the initial experiment, it is
observed that the agents gradually derive lighter designs with
safety factors above 2. However, as this MasonTris problem
involves more complex external excitation, it is shown that the
agents took more time to design complex design geometries, gra-
dually forming more and larger cavities in the structure. Another
notable feature is that the agent jointly utilizes dominoes/tromi-
noes/tetrominoes in order to form arch-like patterns, to respond
to the vertical and lateral load. The resultant design has several
columns with cavities within them, in addition to the capital on

Figure 11. The progression of stone masonry design under the proposed framework for the design problem is shown in Figure 9 (eight agents are simultaneously
trained for 24 h).
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top of some of the columns. The columns are slightly diagonal to
counter the lateral load and vertical pressure at the same time. In
the meantime, the final design has two long horizontal compo-
nents sticking to the ceiling, which may not be feasible in actual
stone masonry where the self-weight of natural stones is incorpo-
rated (i.e., should be replaced with shorter horizontal components
to make sure they do not fall). While it does not violate the sim-
plified environments, such practical design considerations, similar
to the orientation constraints used in the previous works
(Whiting et al., 2012), can be incorporated into the creation of
feasibility masks to prevent infeasible designs when the frame-
work is applied to actual design problems. Also, it is confirmed
that the two blue and orange T-shaped components at the bottom
of the final design can be replaced with straight elements to
improve reward value (i.e., the bumps of the column can be
removed). Such redundancy of design is expected to be present
as the AI agent was not sure at the beginning of the design
whether the column is going to be a part of an arch pattern or
not. The aforementioned observations indicate that the final
design is not the global optimal design yet, and there might be
still a better design. In this problem, it is impossible to confirm
a global optimal design via brute-force search, as it takes too
much time. However, the results justify the adaptability of the
proposed framework to more complex stone masonry design
problems, such that it can continuously improve design policy
to address practical design problems, gradually approaching the
global optimal design.

Based on the results, future research direction lies in investigat-
ing the computational scalability with different board sizes (i.e., dif-
ferent numbers of nodes and elements for FEA). Another direction
lies in the use of pre-trained models through transfer learning
(Torrey and Shavlik, 2010) or curriculum learning (Bengio et al.,
2009). The core concept of curriculum learning lies in providing
gradually more difficult problems to the agent similar to the way
that a curriculum for a student is designed. For the stone masonry

design problem, the safety factor threshold can be gradually
increased to allow the agent to learn from an easier problem
(small safety factor threshold) to a more difficult problem (high
safety factor threshold). Adoption of curriculum learning for
autonomous parameter tuning will be an interesting direction, as
the experimental results indicate that the DNN architecture needs
to be tuned based on the scale/complexity of the target problem.

Conclusion

In this paper, an RL-based stone masonry design framework is
proposed, which can learn stone masonry design policies from
virtual experiences in MasonTris environment. The feasibility
and adaptability are demonstrated in a simplified version of
stone masonry problems, called MasonTris problems. It is
shown that the framework autonomously improves its design pol-
icy via DDQN, guided by the physical interpretation of different
structures with computational structural analysis. The proposed
framework can efficiently learn effective design patterns (e.g., col-
umns with capital on top, arch-like patterns, and forming cavities
inside the structure) without prescribed knowledge, otherwise
takes a huge amount of time via exhaustive exploration.

This paper presents the first step in developing an innovative
framework to address stone masonry design problem. While the
current framework is not tested in an actual stone masonry design
problem, it demonstrated its capability to autonomously improve
its design policy using heterogeneous sizes/shapes of masonry
units, thus the framework can be applied to practical stone
masonry design problems upon improving the scalability of the
framework and incorporating more realistic assumptions. For
example, increasing the board size and the resolution of work-
pieces will allow representing more realistic pixelated natural
stones. The framework can contribute to addressing an important
challenge in stone masonry design, which is the high dependence
on domain experts and/or prescribed domain knowledge.

Figure 12. A more complex stone masonry design problem (left) and the progression of stone masonry design under the proposed framework (right, 20 agents are
simultaneously trained for 96 h)
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On top of its potential to address the important challenges in
stone masonry design problems, the proposed methodology has
meaningful contributions to the relevant research fields. First, in
terms of TO, the proposed RL framework allows the optimization
of topological structures consisting of heterogeneous design units,
where typical TO methods are not effective. Therefore, the pro-
posed work can be generalized to open opportunities in design
automation for sustainability, as the use of locally available natural
and recycled feedstock involves similar design challenges (i.e., sto-
chasticity and heterogeneity in nature). For example, the proposed
RL framework can be applied to mass timber construction design, a
promising way to reduce carbon emission in construction, which
should address the inherent variability of wood products. Second,
in terms of RL, the proposed RL framework provides a practical
modification of on-demand reward evaluation, to address the bottle-
neck involving the evaluation of rewards. This will promote the use
of RL to solve various practical engineering problems involving
time-consuming computer simulations (e.g., fluid flow design).
Lastly, in terms of design, the proposed RL framework is a meaning-
ful case study utilizing a gaming AI environment to solve a practical
design problem without prescribed knowledge. The proposed
framework can be applied to a wide variety of domains, readily
available in different practical scenarios. For example, similar to
the way that game players contributed to the discovery of protein
structure (Khatib et al., 2011), the proposed framework can be
extended to a different practical design problem based on the anal-
ogy between a game and the design problem. The following future
investigations can contribute to the further improvement of the
framework, leading to its acceptance in a practical scenario.

Incorporating stochastic natures of natural stones: Stone
masonry utilizing local natural stones is a sustainable option for
construction, but involves stochastic availability of workpieces
as well as stochastic material property. Incorporating such sto-
chastic natures (i.e., making MasonTris a stochastic environment)
will be a further step for the framework to address and represent
actual stone masonry design problem.

Extension to different design problems: The proposed frame-
work demonstrated different variants of column-type designs
under the design problem where vertical pressure is the major
component of external forces. However, the framework will be
able to derive completely different types of designs under different
design problems (e.g., designing a structure withstanding horizon-
tal hydrostatic pressure). Therefore, extension to different design
problems will be one of the future works to validate the general-
izability of the proposed framework.

Approximating FEA for faster learning: As the current frame-
work utilizes time-consuming FEA to evaluate each design candi-
date, it may not be feasible to evaluate a number of possible
designs in a larger-scaled practical problem. It is an important
barrier to applying the proposed method to a practical problem,
as the computation time of FEA significantly increases as the
board size increases. To address the challenge, simultaneously
training a surrogate model of FEA for faster evaluation of design
candidates can be a future direction to speed up the training. This
will allow the proposed framework to incorporate more realistic
settings (e.g., self-weight, friction force, more sophisticated mate-
rial models) representing actual stone masonry design.

Extraction of domain knowledge and incorporation in the
future design: The scope of this manuscript is to introduce an
RL-based design automation framework without prescribed
knowledge, as the knowledge on stone masonry design has been
waning (i.e., there is not enough knowledge that can be jointly

used with data-driven or other ML methods). However, one of
the promising research directions in the RL research community
is called model-based RL, which aims at incorporating existing
domain knowledge to guide the AI agents. Aligned with this
research direction, future works include (1) the extraction of gen-
eralizable domain knowledge on stone masonry design based on
the experience of AI agents and (2) the incorporation of extracted
domain knowledge to guide AI agents in different scenarios.
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Appendix

Table A1 and Table A2

Table A1. Dimensions and material properties for computational structural
analysis

Category Value

Dimension of each location of a
board (width × depth × height)

193 mm × 92 mm × 193 mm
(same as standard 8-Square
Brick)

Dimension of the mortar joints
(width × depth × height)

9.5 mm × 9.5 mm × 9.5 mm

Material properties for natural
stones

Value

Elastic modulus 37,000 MPa

Poisson ratio 0.2

Density 0.002162 g/mm

Tensile strength 2.8 MPa

Compressive strength 80 MPa

Material properties for mortar Value

Elastic modulus 20,000 MPa

Poisson ratio 0.2

Density 0.002 g/mm

Tensile strength 1.4 MPa

Compressive strength 35 MPa

Artificial Intelligence for Engineering Design, Analysis and Manufacturing 15

https://doi.org/10.1017/S0890060423000100 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060423000100


Table A2. The configuration of double deep Q-learning (DDQN).

Experience Replay Tuning
Parameters Value

# of parallel environments 12/24

# of initial episodes to build the
experience replay

40,000/80,000 experiences

Batch size for random retrieval 50

The length of sequential
experiences for each batch

10

Deep Neural Network Tuning
Parameters

Value

Kernel sizes for convolutional
layers 1/2/3

(9, 7, 5)

Filter sizes for convolutional
layers 1/2/3

(3, 3, 3)/(2, 4, 8)

Hidden node sizes for fully
connected layers 1/2

(3000, 1500)/(3000, 7500)

Online network update
frequency

Every 5th steps in the environment

DDQN Agent Tuning Parameters Value

# of episode added to the
experience replay per iteration

1

ε of the standard exploration
policy

Linearly decays from 1.0 to 0.1
(within the first 20,000th steps)

Probability of choosing random
data collection policy

0.1

Period of updating target
network

3 iterations

The weight to update the target
network (τ)

0.8

Discount factor (γ) 1.0

Learning rate Linearly decays from 0.001 to 0.0005
(within the first 20,000th steps)

Reward evaluation interval for
record

Every 250th iterations

When different values are used for the initial example (Fig. 9) and the second example
(Fig. 12), the values are delimited with a slash (/).
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