ON THE GENERALIZED JOSEPHUS PROBLEM

by F. JAKÓBCZYK

(Received 4 January, 1972)

1. Introduction and statement of the problem. The problem of Josephus and the forty Jews is well known [1,3]. In its most general form, this problem is equivalent to the problem of m-enumeration of a set, as described below.

Define the ordered set

$$
Z_{n}=\{1,2, \ldots, n\}
$$

We choose and remove cyclically, from left to right, each m th element of Z_{n} until the set is exhausted. The chosen elements are ordered into a new ordered set

$$
Z_{n}^{(m)}=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}
$$

which is therefore a permutation of Z_{n}, obtained by what we call m-enumeration of the set Z_{n}.
The following two questions arise:
(i) For any $i(1 \leqq i \leqq n)$, which position in $Z_{n}^{(m)}$ is occupied by i ? In other words, when is the i th element of Z_{n} removed?
(ii) For any $k(1 \leqq k \leqq n)$, which element of Z_{n} occupies the k th position in $Z_{n}^{(m)}$? In other words, which element of Z_{n} is the k th to be removed?

The solution presented here is, as far as I am aware, essentially different from those of other authors. However, Rankin [2] used a somewhat similar method to answer the particular question: "Which element of Z_{n} is the nth to be removed? ".
2. Notation and method of solution. We introduce the following notations:

$$
\begin{gathered}
{[x]=\text { integer part of } x, \quad\{x\}=-[-x],} \\
e_{v}=\left[\frac{n_{v}}{m}\right], \quad E_{v}=\sum_{i=0}^{v} e_{i}, \quad r_{v}=R\left(n_{v}, m\right)=n_{v}-m\left[\frac{n_{v}}{m}\right],
\end{gathered}
$$

where $R\left(n_{v}, m\right)$ denotes the remainder on dividing n_{v} by m.
Let $n=n_{0}$, and denote the sequence of numbers in Z_{n} by \mathscr{S}_{0}. We assume that $n>m$. We have

$$
\mathscr{S}_{0}: 1,2, \ldots, e_{0} m+r_{0}=n_{0} .
$$

From the sequence \mathscr{S}_{0} we remove the numbers $m, 2 m, \ldots, e_{0} m$; they will form the 0 th class in $Z_{n}^{(m)}$, and the sequence \mathscr{S}_{0} becomes the sequence \mathscr{S}_{0}^{\prime}.

$$
\mathscr{S}_{0}^{\prime}: 1,2, \ldots, m-1, m+1, \ldots, 2 m-1,2 m+1, \ldots, e_{0} m+r_{0}
$$

We renumber the terms of the sequence \mathscr{S}_{0}^{\prime} consecutively from $r_{0}+1$ to obtain the sequence \mathscr{S}_{1}.

$$
\mathscr{S}_{1}: r_{0}+1, r_{0}+2, \ldots, e_{1} m+r_{1}=n_{1}
$$

From the sequence \mathscr{S}_{1} we remove the numbers $m, 2 m, \ldots, e_{1} m$; they will form the first class in $Z_{n}^{(m)}$, and the sequence \mathscr{S}_{1} becomes the sequence \mathscr{S}_{1}^{\prime}.

$$
\mathscr{S}_{1}^{\prime}=r_{0}+1, r_{0}+2, \ldots, m-1, m+1, \ldots, 2 m-1,2 m+1, \ldots, e_{1} m+r_{1}
$$

We renumber the terms of the sequence \mathscr{S}_{1}^{\prime} consecutively from $r_{1}+1$ to obtain the sequence \mathscr{S}_{2}.

$$
\mathscr{S}_{2}=r_{1}+1, r_{1}+2, \ldots, e_{2} m+r_{2}=n_{2}
$$

We proceed thus until we obtain the inequality

$$
n_{t}<m
$$

The last sequence \mathscr{S}_{t} will be

$$
\mathscr{S}_{t}=r_{t-1}+1, r_{t-1}+2, \ldots, n_{t},
$$

which contains $n_{t}-r_{t-1}=u$ numbers. Among them there is no number of type τm. Since $n_{\mathrm{t}}<m$, we have $u<m$.

Further m-enumeration leads to the sequence \mathscr{S}_{t} being permuted to yield the sequence

$$
\mathscr{C}=\left\{c_{1}, c_{2}, \ldots, c_{u}\right\}
$$

say, and this will be the t th and last class in $Z_{n}^{(m)}$.
The following relation is easy to verify:

$$
n_{v+1}=n_{v}-e_{v}+r_{v}-r_{v-1} \quad(v=0,1, \ldots, t-1)
$$

Now, for an integer $i(1 \leqq i \leqq n)$, we let i_{v} (respectively i_{v}^{\prime}) denote the value of that integer in \mathscr{S}_{v} (respectively \mathscr{S}_{v}^{\prime}) which has been derived from $i=i_{0}$ in $\mathscr{S}_{0}(1 \leqq v \leqq t-1)$, provided that such an integer exists. Then

$$
i_{v+1}=\left\{\frac{m-1}{m} i_{v}\right\}+r_{v}-r_{v-1}
$$

and conversely

$$
i_{v}^{\prime}=\left[\frac{m\left(i_{v+1}-r_{v}+r_{v-1}\right)-1}{m-1}\right]
$$

Therefore the sequences $\mathscr{S}_{v}, \mathscr{S}_{v+1}$ are related by

$$
\begin{equation*}
i_{v+1}=\left\{\frac{m-1}{m} i_{v}\right\}+r_{v}-r_{v-1} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
i_{v}=\left[\frac{m\left(i_{v+1}-r_{v}+r_{v-1}\right)-1}{m-1}\right] \tag{2}
\end{equation*}
$$

where $i_{v} \neq \tau m$ for any integer τ, and

$$
r_{v-1}+1 \leqq i_{v} \leqq n_{v} \text { for } v=0,1,2, \ldots
$$

The equivalence of the relations (1), (2) follows from the following easily proved lemma.
Lemma. If $m \nmid b$, then $a=\left\{\frac{m-1}{m} b\right\}$ if and only if $b=\left[\frac{m a-1}{m-1}\right]$.
We shall now provide algorithms to answer the two questions posed in §1. For this purpose, we require to construct a table of values of the parameters $n_{v}, e_{v}, E_{v}, r_{v}, r_{v}-r_{v-1}$ for $v=0,1,2, \ldots, t$.

Question 1. Given $i \in Z_{n}$, put $i=i_{0}=\tau_{0} m+\rho_{0}\left(0 \leqq \rho_{0} \leqq m-1\right)$. If $\rho_{0}=0$, then $i_{0}=\tau_{0} m$ and i_{0} belongs to the 0th class in $Z_{n}^{(m)}$ at the τ_{0} th position. Therefore $a_{\tau_{0}}=i_{0}$. If $\rho_{0}>0$, the number i_{0} will go over to the sequence \mathscr{S}_{0}^{\prime} and thence to the sequence \mathscr{S}_{1}, in which it will assume the value

$$
i_{1}=\left\{\frac{m-1}{m} i_{0}\right\}+r_{0}
$$

Let $i_{1}=\tau_{1} m+\rho_{1}$. If $\rho_{1}=0$, then $i_{1}=\tau_{1} m$ and the number i_{0} will occupy the τ_{1} th place of the first class of $Z_{n}^{(m)}$. Hence $a_{E_{0}+\tau_{1}}=i_{0}$. If $\rho_{1}>0, i_{1}$ will go over to the sequence \mathscr{S}_{1}^{\prime} and thence to the sequence \mathscr{S}_{2}, in which it will assume the value

$$
i_{2}=\left\{\frac{m-1}{m} i_{1}\right\}+r_{1}-r_{0}
$$

Let $i_{2}=\tau_{2} m+\rho_{2}$.
Proceeding in this way we have: Let $i_{v}=\tau_{v} m+\rho_{v}$. If $\rho_{v}=0$, then $i_{v}=\tau_{v} m$ and i_{0} occupies the τ_{v} th place of the v th class in $Z_{n}^{(m)}$. Thus

$$
i_{0}=a_{e_{0}+e_{1}+\ldots+e_{v-1}+t_{v}}=a_{E_{v-1}+t_{v}}
$$

If $\rho_{v}>0, i_{v}$ will go over to the sequence \mathscr{S}_{v}^{\prime} and thence to the sequence \mathscr{S}_{v+1}.
If finally, the number i_{0} goes over to the last sequence \mathscr{S}_{t}, it will be one of the numbers c_{1}, \ldots, c_{u}. If, then, $i_{0} \rightarrow i_{t}=c_{j}$, we have

$$
i_{0}=a_{E_{t-1}+j}
$$

We thus obtain the following rule for finding the position in $Z_{n}^{(m)}$ of i.

$$
\begin{aligned}
& \text { Rule. If } i=i_{0} \rightarrow i_{1} \rightarrow \ldots \rightarrow i_{v}=\tau_{v} m \text {, then } i=a_{E_{v-1}+\tau_{v}}(v<t) . \\
& \text { If } i=i_{0} \rightarrow i_{1} \rightarrow \ldots \rightarrow i_{t}=c_{j} \text {, then } i=a_{E_{t-1}+j}
\end{aligned}
$$

Question 2. We apply a procedure converse to the former. We consider two cases.
(i) If $k>E_{t-1}$, then let $k=E_{t-1}+j$, where $j \leqq u$. To the number a_{k} there will correspond the number $c_{j}=i_{i}$. Applying formula (2) several times, we get:

$$
\begin{aligned}
i_{t-1} & =\left[\frac{m\left(i_{t}-r_{t-1}+r_{t-2}\right)-1}{m-1}\right] \\
i_{t-2} & =\left[\frac{m\left(i_{t-1}-r_{t-2}+r_{t-3}\right)-1}{m-1}\right] \\
i_{0} & =\left[\frac{m\left(i_{1}-r_{0}\right)-1}{m-1}\right]
\end{aligned}
$$

Therefore $a_{k}=i_{0}$. In this way, we can find a_{n}, the last element of Z_{n} to be removed.
(ii) If $k \leqq E_{t-1}$, we choose v so that $E_{v-1}<k \leqq E_{v}$, and put $k=E_{v-1}+\tau_{v}$, where $\tau_{v} \leqq e_{v}$, $v \leqq t-1$. In this case, the number a_{k} will occupy the τ_{v} th place in the v th class of $Z_{n}^{(m)}$. Then $i_{v}=\tau_{v} m$, and applying formula (2) several times we get

$$
\begin{aligned}
i_{v-1} & =\left[\frac{m\left(i_{v}-r_{v-1}+r_{v-2}\right)-1}{m-1}\right] \\
i_{v-2} & =\left[\frac{m\left(i_{v-1}-r_{v-2}+r_{v-3}\right)-1}{m-1}\right] \\
& \cdot \cdot \cdot \\
i_{0} & =\left[\frac{m\left(i_{1}-r_{0}\right)-1}{m-1}\right]
\end{aligned}
$$

Therefore $a_{k}=i_{0}$.
3. Illustration by an example. Suppose that $n=117, m=6$. We draw up the table of parameters $n_{v}, e_{v}, E_{v}, r_{v}, r_{v}-r_{v-1}$ for $v=0,1, \ldots, n-E_{t-1}=117-113=4$, so that the t th class in $Z_{117}^{(6)}$ is $\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\}$, obtained by 6 -enumeration of $\left\{r_{17}+1, r_{17}+2, r_{17}+3, r_{17}+4\right\}=$ ($1,2,3,4$) , and so

$$
\left\{c_{1}, c_{2}, c_{3}, c_{4}\right\}=\{2,1,4,3\}
$$

ν	n_{v}	e_{v}	E_{v}	r_{v}	$r_{v}-r_{v-1}$
0	117	19	19	3	3
1	101	16	35	5	2
2	87	14	49	3	-2
3	71	11	60	5	2
4	62	10	70	2	-3
5	49	8	78	1	-1
6	40	6	84	4	3
7	37	6	90	1	-3
8	28	4	94	4	3
9	27	4	98	3	-1
10	22	3	101	4	1
11	20	3	104	2	-2
12	15	2	106	3	1
13	14	2	108	2	-1
14	11	1	109	5	3
15	13	2	111	1	-4
16	7	1	112	1	0
17	6	1	113	0	-1
18	4	0	-	4	4

Examples of Question 1.

(a) When is the number 64 removed?

We have

$$
i_{0}=64 \rightarrow 57 \rightarrow 50 \rightarrow 40 \rightarrow 36=6 \times 6
$$

as

$$
v \rightarrow 0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4,
$$

so that $64=a_{E_{3}+6}=a_{66}$; i.e., 64 is the 66 th element of Z_{117} to be removed.
(b) When is the number 80 removed?

$$
\begin{aligned}
i_{0}=80 & \rightarrow 70 \rightarrow 61 \rightarrow 49 \rightarrow 43 \rightarrow 33 \rightarrow 27 \rightarrow 26 \rightarrow 19 \rightarrow 19 \rightarrow 15 \rightarrow 14 \rightarrow 10 \rightarrow 10 \rightarrow 8 \rightarrow 10 \rightarrow \\
& \rightarrow 5 \rightarrow 4=c_{3}
\end{aligned}
$$

as

$$
\begin{aligned}
v= & 0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 7 \rightarrow 8 \rightarrow 9 \rightarrow 10 \rightarrow 11 \rightarrow 12 \rightarrow 13 \rightarrow 14 \rightarrow 15 \rightarrow \\
& 16 \rightarrow 17 \rightarrow 18 \text {, so that }
\end{aligned}
$$

$80=a_{E_{17}+3}=a_{116}$; i.e., 80 is the 116th element to be removed.

Examples of Question 2.

(a) What is the 46th element to be removed?

$$
46=E_{1}+11
$$

so that 46 occupies 11 th place in the 2 nd class of $Z_{117}^{(6)}$. Applying formula (2), we get

$$
i_{v}=66 \rightarrow 76 \rightarrow 87
$$

as

$$
v=2 \rightarrow 1 \rightarrow 0
$$

i.e., 87 is the 46 th element to be removed.
(b) What is the last (117th) element to be removed?

$$
\begin{gathered}
117=E_{17}+4, a_{117} \rightarrow c_{3}=4 . \\
i_{v}=3 \rightarrow 4 \rightarrow 4 \rightarrow 9 \rightarrow 7 \rightarrow 9 \rightarrow 9 \rightarrow 13 \rightarrow 14 \rightarrow 17 \\
\rightarrow 16 \rightarrow 22 \rightarrow 22 \rightarrow 27 \rightarrow 35 \rightarrow 39 \rightarrow 49 \rightarrow 56 \rightarrow 63
\end{gathered}
$$

as

$$
\begin{aligned}
v=18 & \rightarrow 17 \rightarrow 16 \rightarrow 15 \rightarrow 14 \rightarrow 13 \rightarrow 12 \rightarrow 11 \rightarrow 10 \rightarrow 9 \\
& \rightarrow 8 \rightarrow 7 \rightarrow 6 \rightarrow 5 \rightarrow 4 \rightarrow 3 \rightarrow 2 \rightarrow 1 \rightarrow 0 ;
\end{aligned}
$$

i.e., 63 is the last element to be removed.

Remark. In the last step of the above method, we have to carry out the m-enumeration of the set $\left\{r_{t-1}+1, r_{t-1}+2, \ldots, n_{t}\right\}$, containing $u=r_{t}$ elements, where $r_{t}<m$.

If m is small, this operation may be carried out directly. However, if m is relatively large, we may, as in the general case of $n \leqq m$, use, for example, the method of increasing divisors, which is based on the following principle:

If $a_{s, n}$ is the s th element from the right in $Z_{n}^{(m)}$, where $s<n$, then $a_{s, n+1}=R\left(a_{s, n}+m, n+1\right)$ is the s th element from the right in $Z_{n+1}^{(m)}$. For $s=n$ we have $a_{s, s}=R(m, s)$.

REFERENCES

1. W. Ahrens, Mathematische Unterhaltungen und Spiele (Leipzig, 1918), 118-169.
2. R. A. Rankin (R. A. MacFhraing), Àireamh muinntir Fhinn is Dhubhain, agus sgeul Iosephuis is an dà fhichead Iudhaich, Proc. Roy. Irish Acad. Sect. A. 52 (1948), 87-93.
3. W. W. Rouse Ball and H. S. M. Coxeter, Mathematical recreations and essays (London, 1939), 32-35.

Katolicki Uniwersytet Lubelski
 Lublin, Poland.

