Compositio Mathematica 110: 263-276, 1998. 263
(© 1998 Kluwer Academic Publishers. Printed in the Netherlands.

The second pluri-genus of surface singularities

TOMOHIRO OKUMA
Ingtitute of Mathematics, University of Tsukuba, Tsukuba, Ibaraki 305, Japan;
e-mail: okuma@math.tsukuba.ac.jp

Received: 3 June 1996; accepted in final form 21 October 1996

Abstract. This paper studies the second pluri-genus of surface singularities. We give a formula for
thisinvariant of aGorenstein singularity, and several inequalitiesrelating theinvariant with the Milnor
number, Tjurina number and the modality of a hypersurface singularity.

M athematics Subject Classifications: 1991 Primary 32S10; Secondary 14J17, 32S30, 3245.

Key words: surface singularity, pluri-genus, deformation, Milnor number, Tjurina number,
modality.

Introduction

Let (X,z) be a norma surface singularity over C and f : (M, E) — (X, )
the minimal good resolution of the singularity (X, z), i.e., the smallest resolu-
tion for which an exceptional divisor E consists of non-singular curves inter-
secting transversally, with no three through one point. The geometric genus of the
singularity (X,z) is defined by p,(X,z) = dimec HY(Oy). Watanabe [24]
introduced pluri-genera {6,,, (X, z) }men (for n(> 2)-dimensional normal isolat-
ed singularities) which carry more precise information of the singularity. It is
well-known that, for a normal surface singularity (X, z), §,,(X,z) = 0 for any
m € Nif andonly if (X, z) isalog-terminal singularity (quotient singularity), and
om(X,z) < Lforany m € Nif and only if (X, z) isalog-canonical singularity
(see[8]).

In this paper we study the second pluri-genus of certain normal surface singu-
larities, so ‘asingularity’ always means a normal surface singularity over C.

In the first section, we summarize notations, definitions and basic facts which
will be used in this paper.

In the second section, we will show that §>(X, z) is determined by p, (X, )
and the weighted dual graph of (X, z), and 6»(X,z) > dim: H(©) holds for
certain singularities.

In the last section, we consider relations among the invariants 42, p,, 1+, 7 and
the modality.

https://doi.org/10.1023/A:1000265619270 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000265619270

264 TOMOHIRO OKUMA

1. Preliminaries
A. Basic facts on singularities

(1.1) Let (X, z) beasurfacesingularityand f : (M, E) — (X, z) aminimal good
resolution of the singularity (X, z). It iswell-known that there is a unique minimal
good resolution. Let £ = Ule E; be the decomposition of the exceptional set £
into irreducible components. A cycle D is an integral combination of the E;, i.e,,
D = Ele d; E; with d; € Z. Thereis a natural partial ordering between cycles
defined by comparing the coefficients. A cycle D is said to be positiveif D > 0
and D # 0. For any two positive cyclesV and W, there is an exact sequence

0— Ow Q) Om(—V) = Ovypw — Oy — 0. (1.1.2)
Oum

The weighted dual graph of (X, z) is the information of the genera of the E;
and the intersection matrix (E; - E;), or the graph such that each vertex of which
represents a component of £ weighted by its intersection number and each edge
corresponds to an intersection point of the components (cf. [9]). A component
E; of E is caled a central curve if which has positive genus or intersects more
than two other components. The weighted dual graph of a singularity is said to
be star-shaped, if it is a tree as the graph where at most one vertex is the central
curve. The connected components of a star-shaped graph minus the central curve
are called the branches.

NOTATION 1.2. Let Y beanormal variety over C, M asheaf of Oy-modules, D
adivisor onY and F' aclosed subset of Y. We use the following notation

M(D) = M) Oy (D),
Oy

H'(M)=H'(Y,M),  Hp(M)=Hp(Y, M),
(M) =dime H{(M),  h%%(M) = dime H(M).
We denote by K the canonical divisor on M.
DEFINITION 1.3. (cf.[24]) Wedefinethepluri-genera{d,,(X, z) }men asfollows

H°(Oyr p(mK))

Om (X, z) = dime HO(Op (mK + (m —1)E))’

Notethat 01 (X, z) = py(X, z).

(1.4) Wetakethefollowing characterization of Du Boissingularity asitsdefinition.
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PROPOSITION 1.5. (Steenbrink [17, (3.6)]). Anormal surfacesingularity (X, z)
isa Du Bois singularity if and only if the natural map H*(Oys) — H*(Og) isan
isomor phism.

THEOREM 1.6. (Steenbrink [17, (3.7), (3.8)]. cf. [6, Th. 2.3]). (1) If (X, z) isa
rational singularity, then (X, ) is Du Bois.

(2) Let(X,z) beaGorensteinsingularity. Then (X, z) isa Du Boissingularity
if and only if it isa rational double point, a simple elliptic or a cusp singularity.

THEOREM 1.7. (Ishii [7, Theorem 2.3]). Everyresolution of aDu Boissingularity
isa good resolution, where a good resolution means a resol ution of the singularity
for which the exceptional divisor is of normal crossings.

(1.8) Ishii [7] noted that there exist Du Bois singularities with arbitrarily large
geometric genus.

B. Deformations

(1.9) We use the notation above. We denote by D x the functor (on artin rings)
of deformations of a singularity (X, z). In [20], Wahl introduced the equisingular
functor ES); of deformations of (M, E) to which al E; lift, and which blow
down to deformations of (X, x). It is well-known that a deformations of M blows
down if and only if A*(Oyr) does not jump (cf. [20, (4.3)]). Hence equisingu-
lar deformations preserve the geometric genera and the weighted dual graphs of
singularities.

In[10, 11, 12], Laufer studied deformations of M in the analytic category. For
a Gorenstein singularity (X, z), an equisingular deformation of (M, E) inducesa
topologically constant deformation of (X, ), and the converse holds, too (see[12,
vV, VI)).

(1.10) Let Q% (E) bethe sheef of 1-forms with logarithmic polesalong £, and S
its dual. Then there are exact sequences (cf. [22])

k
0— Q3 — QU (E) = P O, = 0; (1.10.1)
i=1
k
08— Oy - PO (E) — 0 (1.10.2)
i=1
0—Oy(—E)—S—0g—0. (1.10.3)

By (1.10.2), we have the following exact sequence

0— HYS) —» HY(Oy) —» H? (é OEi(Ei)> — 0.
i=1
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There is a versal deformation 7 : M — (Q,0) of (M, E) with tangent space
Tg.. = HY(O)), and a submanifold (P, 0) with tangent space Tp, = H(S)
such that all of the E; lift to above P (cf. [10, 11]).

THEOREM 1.11. (Wahl [20]). (1) ES}, issmooth and the natural map Sy —
Dx isinjective.

(2) Ifany deformation of (M, E') towhichall E; lift blowsdownto a deformation
of (X,z), then T(ESy) = HY(S), where T(ES),) denotes the tangent space of
ESyr. 1fpy(X, z) < 1, then this condition is satisfied.

(1.12) A function h € C{z1,...,2,} = B is caled a quasi-homogeneous poly-
nomial of degree d with weights (aa,...,a,) € N, if h(t*21,...,t%2,) =
th(z1,...,2,) for any t € C. We assume that GCD(ay,...,qa,) = 1. A
singularity (X,z) is said to be quasi-homogeneous if (X,z) is defined by
quasi-homogeneous polynomials with common weights. Let (X, z) be a quasi-
homogeneous singularity defined by anideal I C B. Let usrecall that the tangent
space T+ of Dy isgiven by the exact sequence

Hom (05 R) A, A) — Homu (1/1%, A) — Ty — 0,

where A = B/I. Since Hom,(I/I?, A) is graded, so is Tx: we write T =
Dicz T (4).

THEOREM 1.13. (Pinkham [16, 4.6]). T(ESy) = ;-0 T (4).

2. Thesecond pluri-genus

(2.1) We use the same notation asin the first section. Let f (M, E) — (X, z) be
aminimal good resolution, except in Lemma 2.3.
The following theorem will be provedin (3.2).

THEOREM 2.2. Let (X, x) be a Gorenstein singularity which is not a rational
double point. Then

HY Oy (2K + E)) =0.

LEMMA 2.3. Let f: (M, E) — (X, z) beaminimal resolution of the singularity
(X,z),i.e, K- E; >0forall i If (X,z)isnot arational double point, then

HY Oy (2K + E)) =0.
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Proof of Lemma 2.3. There is an exact sequence
0— OMm(2K) - Om(2K + E) —» Op(2K + E) — 0.

Since K isnef, H(Oy;(2K)) = 0,andhence HY(Oy (2K +E)) = HY(Op (2K +
E)). By dudity, h*(Og(2K + E)) = h%Og(—K)). We will show that
H°(Og(-K)) = 0. By assumption, (X, z) is not arational double point. Hence
we may assumethat K - 7 > 0. Let {Z;},—0,1,... x be acomputation sequence for
E: Zy=0,Z1=F1 =E;,....Z; = ijl—i-Eij,...,Zk =Zr1+E;, =FE,
where Z; ;- E;; > Oforj = 2,...,k. Since (-K — Z; 1) - E;; < O for
i=1,...,kitfollowsthat H(Op, (-K — Z;j_1)) = 0forj = 1,...,k. From
the following exact sequences (cf. (1.]1.1))

0— OEij (—K — Zj,]_) — Ozj (—K) — Ozj_l(—K) — O,

we have inductively that H°(Oz, (—K)) = 0 for j = 1,...,k. We have thus
proved the l[emma. O

THEOREM 2.4. Let (X, 2) beaDu Boissingularity whichisnot arational double
point. Then

HY Oy (2K + E)) =0.

Proof. Letg: (My, F1) — (X, z) bethe minimal resolution. Then the excep-
tional divisor F; is of norma crossings and HY(Oyy, (2K, + F1)) = 0 by
Theorem 1.7 and Lemma 2.3. Let 7 : (My, F») — (M, F1) be the blow-up
of a double point w of F1, and C = ©~(w). We have Oy, (2K, + F2) =
™ On, (2K, + F1) @ O, (C). By the projection formula,

R'm,Op,(2K 1, + F2) = R'm 01, (C) Q) Oniy (2K s, + Fu).
From the following spectral sequence
EbY = HP (R, O, (2K pp, + F2)) = HP (O, (2K yr, + F2)),
we have an exact sequence
0 — HY(m,.011,(C) Q) Onsy (2K ns, + F1))
— HY O, (2K, + F2))
— HYR'71,01,(C) Q) Onr, (2K s, + F1)).
From the exact sequence

0— O, = O, (C) = Oc(C) — 0,
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we get T,04,(C) = Oy and Rm,.0,(C) = 0. Hence HY(Oyy, (2K )y, +
F)) &2 HY O, (2K, + F1)) = 0.

Since M is obtained by resolving the double points of the irreducible compo-
nents of the exceptiona set, applying the argument above, if it is needed, we have
HY Oy (2K + E)) = 0. O

COROLLARY 2.5. Let (X, z) bea Gorenstein or a Du Bois singularity. Then

02(X, ) = hi(OM (2K + E)) = B (Oy(~K — E)).

Proof. By dudlity, h1(Oy (2K + E)) = h}(Oy (=K — E)). If (X,z) isa
rational double point, then h1(O;(—K — E)) = h1 (O (—E)) = 0(since (X, z)
is a Du Bois singularity), and (X, z) = 0 (cf. Introduction). If (X, z) is not a
rational double point, using the theorems above, we have an exact sequence

0— H°%Oy (2K + E)) = HY(Oy_£(2K))
— HL(On (2K + E)) — 0.
By definition, 5»(X, z) = hi,(Oy (2K + E)). O
COROLLARY 2.6. If (X, z) isa Gorenstein singularity with p, (X, ) > 1, then

02(X,z) = py(X,z) — (2K + E) - (K + E).
Proof. Using (O (2K + E)) = 0, the theorem of Riemann-Roch (e.g.,
[15]) implies the result. O

COROLLARY 2.7. [25]. Let (X, 2) beahypersurfacesingularity withp, (X, z) =
1. Then (X, z) < 4.

Proof. If (X, z) isaDu Bois singularity (see Theorem 1.6), we may assume
K = —E.Then 62(X, z) = 1 by Corollary 2.6.

We assume that (X, ) is not a Du Bois singularity. Then H(Og) = 0 by
Proposition 1.5. Hence —F - (K + E)/2 = x(Og) = 1. Then we have that
d(X,z) =2—- K - (K + E) by Corollary 2.6.

If f: (M,E) — (X,z) is not minimal, then by [9, Prop. 3.5], we have
the star-shaped graph which consists of four rational curves, such that the self-
intersection number of the central curve E; is —1. Then we obtain that K =
—2F1—FE,— FE3— Esand K - (K + E) =1 Henceéz(X,x) =1

If f: (M,E) — (X,z) is minimal, then by [9, Th. 3.4, Th. 3.13], we get
K-K>-3.SnceK-E >0,wehaved(X,z)=2—-K-K—-K-E<4. O

Remark 2.8. In exactly the same way as above, we can prove the following: If
(X, z) isacompleteintersection singularity withp, (X, z) = 1,thend»(X, z) < 5.
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COROLLARY 2.9. Let (X, z) bea Gorenstein or a Du Bois singularity. Then
02(X, ) > h'(Op).

Proof. For alocally freesheaf  of rank 2 on M, F = Homo,, (F, Onr) Qo,,
A? F. Hence we get isomorphisms

Ou(-E) =20} (-K - E) and S= 0} (E)(-K — E).

Then the exact sequences (1.10.1) and (1.10.3) give

h(OF) = (é Op,(—K — E)) : (2.9.1)
i=1

From the following exact sequence (cf. [17, (1.5)])

k
0— O = P O, = P Ornr, — 0,
i=1 1<j

we have a surjective map
k
HYOp(-K — E)) —» H*! (QB Op,(-K — E)) :
i=1
By Corollary 2.5 and (2.9.1), we get

02(X,z) > h*(Op(—K — E)) > h*(0p). 0

3. Completeintersections

(3.1) We use the same notation as in the first section. Let (X, z) be a Gorenstein
singularity with contractible X. Let Z be acycle suchthat O/ (K) = Op(—Z).
If (X, ) isnot arational double point, then Z > E.

Let C be the sheaf on M defined by an exact sequence

0—-C—Cy —Cg —0.

If Z > E, then the exterior differentiation gives an exact sequence (cf. [22, (1.5),

(1.6)))

05C—Oyu(-2)% 0L (B)(~2) % 0%(~Z + E) — 0. (3.1.1)
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As X iscontractible, H'(C) = Oforall i. Hence H (O (—Z)) = H'(dOn(—Z))
for dl . In particular, H'(dOn (—Z)) = H'(Oy(K)) = Ofori > 1.

(3.2) Proof of Theorem2.2. From (3.1.1), we have an exact sequence
HYQ43(E)(-Z)) — HY9},(-Z + E))
— H?(dOy(—Z)) = 0.
By Wahl’s vanishing theorem [19], H1(Q},(E)(-Z)) = 0. Hence
HY Oy (2K + E)) = HY(Q%,(-Z + E)) = 0. O

(3.3) In the rest of this section, we always assume that (X, z) is a complete
intersection singularity which is not a rational double point. Let u(X,z) and
7(X, z) denote Milnor number and Tjurina number of (X, x), respectively. We
need the following results of Greuel [4, 5] (cf. [14]).

PROPOSITION 3.4. (1) u(X,z) = h%m}(dﬁ}(), and 7(X,z) = h}x}(Q}() [5,
p. 168].

2 ng}(Q{’Y) = 0forp+¢q < 1[5, Prop. 2.3].

(3) Thefollowing sequencesare exact [4, Satz 4.4].

0—+Cx —0Ox —-dOx —0;
0— dOx — Q% — d2% — 0.
(4) HY,,(dQ%) = O[4, Lemma 4.5].
(3.5 From (3.1.1), we have an exact sequence
0 — Hp(dOy(=2)) = Hp(Q(E)(K))
— HY (012K + E)) — H2(dOy (—2))
— Hp(23(B)(K)).

By Corollary 2.5, hi(On(2K + E)) = 6(X,r), and by the duality,
hL(Q} (E)(K)) = h1(S). If we set

p = dimcker (HE(dOn (- 7)) - HE(Q4,(E)(K))) ,
we have
02(X, ) = h*(S) + p — b (dOm (—7)).

We note that h,(dOy (—Z)) < h1(S).
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LEMMA 3.6. hi,(dOy(—2)) = h%m}(dox) +pg(X,z) — 1.
Proof. From the following exact sequence

0— HYdOwy(-Z)) = HYdOy—g) = Hi(dOy(—Z)) — 0,
and isomorphisms

H°(dOw (- 7)) = HO(Oum(K)) = HO(£.0M(K)),
we see that

HO(dOx_(43)

Using (2) and (3) of Proposition 3.4, we obtain

It

HE(dOw (- Z))

HO(dOx _(4y)
HO(dOx)

1%

H{,y (dOx)

Let M be an ideal sheaf of Ox which defines the singular point . Since X is
contractible

HO(M) = H%(dM) = H(dOy).

As(X, z) isaGorensteinsingularity withp, (X, z) > 1, wehave .0y (K) C M.
It is well-known that

H°(Ox)

pg(X,z) = dimg .00 (K))

for aGorenstein singularity (X, z). Now the result follows from

HO(M)

HO(f. 0y (k) P& -8

hi(dOn (= Z)) — by (dOx) = dime

LEMMA 3.7. p = (X, 2) — 7(X, z) + i,y (dOx).

Proof. Since HY(dOy(—2)) = H*(dOy(—2Z)) = 0, we have

HZ(dOy(—2)) = HY(dOy—p) = HYdOx_ ()

12

Similarly, we get

HE(Q3(B)(K)) = H,y (%)
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Then
p = dime ker (H?,,(dOx) — HE,y(9%)).
From Proposition 3.4, we have an exact sequence
0 — Hi,y (dOx) — Hi,y (%) = Hi,y (d92%)
= Hf,y(dOx) — H{,y (%),
and hencep = u(X, z) —T(X,x)—l—h%x}(d(’)x). O

THEOREM 3.8. 02(X, z) = hX(S) + u(X,7) — 7(X, 1) — py(X,z) + 1.
Proof. The theorem is immediately obtained from (3.5), Lemma 3.6 and
Lemma3.7. a

COROLLARY 3.9. Let 7: X — T be a deformation of (X, z) which is obtained
froman equisingular deformation of (M, E). Weset X; = 7—(t) for t € T. Then

T(Xt) > p(X,z) —02(X,z) forany teT. (3.9.1)

In particular, if py (X, z) = 1, then 7(X;) > pu(X,z) — 5.

Proof. We note that X, is a complete intersection isolated singularity for any
t € T. From (3.5) and Lemma 3.6, h1(S) > p, — 1. By Theorem 3.8, we have
that 62(X;) > p(X;) — 7(X;). By Corollary 2.6, 6, is determined by p, and the
weighted dual graph of the singularity, and sois i by [17, (2.26)]. The property of
the equisingular deformations implies that

02(X¢) = 02(X,2) and p(Xy) = p(X, 2).

Then we get (3.9.1). If py(X,z) = 1, then d2(X, z) < 5 by Remark 2.8. We have
thus proved the corollary. O

(3.10) Let h € C{zo,21,22} = O, define an isolated singularity (X, o)
at the origine. Let J, be an ided of O, generated by 0h/0zo,0h/0z and
Oh/0z. Qn = Ogs ,/Jy, is caled Jacobian algebra. It is well known that

O, i O,
= and 7(X,0) =dim =
Jh ( ) . (Jhah)

andthat u(X,0) = 7(X, o) if andonly if h isquasi-homogeneous (after achangeof
coordinates). If h isaquasi-homogeneouspolynomial of degreed, then ), isgraded
withQp, = @, Qn (i), andtherearethenatural isomorphismsT: (i—d) = Qp(4).

(X, 0) = dime
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Weset i = pu(X, 0). Let ¢y, ..., ¢, be C-basis of O ,/J,. Then we define a
function H(z,t) € C{zo0, 21, 22, t1,- - -, tu} = Oy , aSTollowing

o
H(z,t) =h+ ) tip;,
i=1

and we set

Y(X,0) = {(to) € (C*, 0)|u(H(2,t0)) = n},

where 1.(H (z, tp)) denotes Milnor number of the singularity defined by H(z, o).
ThenY (X, o) isan analytic subset of (C*,0).

DEFINITION 3.11. The modality m (X, o) of the singularity (X, o) isthe dimen-
sion of Y (X, 0) (cf. [2]). If (X,0) is defined by a quasi-homogeneous polyno-
mial h of degree d, then the inner modality mo(X, o) of the singularity (X, o)
is defined as the dimension of the vector space ;4 Qr (i) (cf. [26]). Note that
mo(X,0) < m(X, o).

COROLLARY 3.12. Let (X, 0) be a hypersurface singularity with p,(X,0) = 1
defined by h € Oz . Then 6(X, 0) < m(X, o).

If (X, 0) isquasi-homogeneous, then §2( X, 0) = mo(X,0) < 4.

Proof. Let (C7(X9), o) betheversal deformation spaceof thesingularity (X, o)
andp: (CHX0) 0) — (C7X9) ) be a projection corresponding to the natural
map of the tangent spaces Ocs ,/J — Ogs ,/(Jn, h). There is a submanifold P
of (C7(X0) o) which represents ESy; (cf. B of Preliminaries). By the property of
the equisingular deformations, p~1(P) C Y (X, o). By Theorem 1.11, we see that
the dimension of p~1(P) ish(S) 4+ u(X,0) — 7(X,0). Hence

RY(S) + (X, 0) — 7(X,0) < m(X, o).

From Theorem 3.8, we get d2( X, 0) < m(X, o).
We assume that / is a guasi-homogeneous polynomial of degreed. Then The-
orems 3.8, 1.11 and 1.13 and (3.10) imply that

02(X, 0) = h*(S) = dimc @ Qn(i) = mo(X, 0).

i>d
By Corollary 2.7, 62(X, 0) < 4. We have thus proved the corollary. O

Remark 3.13. If the invariance of Milnor number implies the invariance of the
topological type for two-dimensional hypersurface singularities (cf. [13]), then, in
the proof above, we have p~1(P) = Y (X, 0) (cf. (1.9)). In this case, Y (X, 0) is
nonsingular, and d2(X, 0) = m(X, o) holds.

It isknown that for any quasi-homogeneous hypersurface singularity (X, o), an
inequality d2(X, 0) > mo(X, o) holds (see[26]).
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DEFINITION 3.14. A function i € Ogs , is said to be semi-quasi-homogeneous
of degree d with weights (o, a1, ap) if it is of the form h = ho + h1, where ho
is a quasi-homogeneous polynomial of degree d with weights (ag, a1, a2) which
defines an isolated singularity and all of the monomials of 4, have degree strictly
greater than d (cf. [1, 12.1]).

COROLLARY 3.15. Let (X,0) be a singularity defined by a semi-quasi-
homogeneousfunction € Ocs , withweights (1, 1,1). Then d2(X, 0) > m(X,0).

Proof. We write h = hg + h; as the definition above. Let (Xo, 0) be a sin-
gularity defined by hg. Then by [3], mo(Xo,0) = m(Xo, o). Hence we have that
d2(Xo,0) > m(Xo, 0) by [26]. Onthe other hand, (X, o) isafibrein an equisingu-
lar deformation of (X, 0) by [1, Th. 12.1] and Theorem 1.13. Since the modality
is upper semi-continuous by [2], we have

62(Xa 0) = 62(X030) Z m(XOaO) Z m(Xv 0)‘ g

(3.16) We assume that the Weighted dual graph of (X, z) is a star-shaped graph.
Weset E = EoEV J---|JE®, where Ey is the central curve, and E(*) the
branches. The curves of E() are denoted by E;;,1<j <ri,where Eg- F;1 =
Ei,j . Ei,j—i—l = 1. We set bi,j = _Ei,j . Ei,j-

Let usintroduce someresult of [18]. Let F' beadivisor on Eg with O, (—Ep) =
Og,(F'), and P; the intersection point Eo N E; 1 fori = 1,..., 3. We definea Q-
divisor D on Eg asfollows: D = F — Zle q; P;, where ¢; € Q isdefined by

[EnY
|
o

fori=1,...,0.

1,7

Let R = @50 H%(Op,(nD))T" C C(Eo)|T], where C(Ey) isthefield of ratio-
nal functions of Ep, and T' an indeterminate. Then Spec(R) is a normal surface
singularity, we denote by (Y, y), and the weighted dual graph of (Y, y) isthe same
asthat of (X, z).

By contracting the branches E® U --- U E(®)| we get a normal surface M’
with cyclic quotient singularities. Let ®: (M',E') — (X, z) be the morphism
induced canonically, where E’ is the image of Ey. We define afiltration on Ox
by F" = ®,0p(—nE') forn € Z.Notethat F* = Ox forn < 0. Let R =
@pez F'T", andlet G = @,,5o(F"/F")T™. Then the natural map C[T 1] —
R definesadeformation of Spec(G ) G') with general fibreisomorphicto (X, z), since
G2R/T*RandOx 2 R/(T~—a)R fora € C— {0} (cf. [18, (5.15)]).

By [18,(6.3)], we havethat p,(Y,y) = p,(X,z) if andonly if R = G.

COROLLARY 3.17. Let (X, 0) be a hypersurface singularity with p,(X,0) = 1
such that the weighted dual graph of it is a star-shaped graph. Then (X, o) is
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defined by a semi-gquasi-homogeneous function of which the quasi-homogeneous
part defines a singularity (Xo, o) with mg(Xo, 0) = 62(X, 0).

In particular, for such a singularity with d»(X,0) < 2, we have d»(X,0) =
m(X,o).

Proof. We use the notation of (3.16). The weighted dual graph of (X, o) deter-
mines the embedding dimension of (Y,y) and p,(Y,y) (cf. [9]): then (Y,y)
is a quasi-homogeneous hypersurface singularity with p,(Y,y) = 1. Let hg
be a quasi-homogeneous function of degree d which defines (Y,y), i.e, R =
C[z0, 21, 22)/ (ho). By (3.16) and [23, (1.12), (3.4)], (X, 0) isafibrein adeforma-
tion of (Y, y) which is obtained from an equisingular deformation. Then there is
afunction hy € Ogs , of which the image of the natural map O , — Qp, iSin
Di>a Qno() such that o + hy defines (X,0) (cf. Th. 1.13, (3.10)). Since R = G,
we may assume that all of monomials of h; have degree strictly greater than d.
Hence ho + h1 is a semi-quasi-homogeneous function. Let (Xp,0) = (Y, y). We
have 52(X, 0) = (52(Xo,0) = mo(Xo,O) by Corollary 3.12.

Quasi-homogeneous hypersurface singularities with p, = 1 and mo < 4 are
listed in [26]. The lists of al the singularities for which m < 2 are givenin [1,
15.1]. Then we see the last assertion. O

(3.18) In[25], we proved the equality of Corollary 2.6 for Gorenstein singularities
with p, = 1, and classified the weighted dual graphs of those with 6> < 2. Then
we have the following.

Let (X, z) beaGorenstein singularity with py(X,z) = 1. Then d>(X,z) = 1
if and only if (X, ) isasimple elliptic, a cusp or a singularity obtained (in the
sense of [21, (5.2)]) from aunimodular singularity, and d2(X, =) = 2if and only if
(X, z) isasingularity obtained (in the sense above) from a bimodular singularity.
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