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Introduction

Let (X;x) be a normal surface singularity over C and f : (M;E) ! (X;x)
the minimal good resolution of the singularity (X;x), i.e., the smallest resolu-
tion for which an exceptional divisor E consists of non-singular curves inter-
secting transversally, with no three through one point. The geometric genus of the
singularity (X;x) is defined by pg(X;x) = dimC H

1(OM ). Watanabe [24]
introduced pluri-genera f�m(X;x)gm2N (for n(> 2)-dimensional normal isolat-
ed singularities) which carry more precise information of the singularity. It is
well-known that, for a normal surface singularity (X;x); �m(X;x) = 0 for any
m 2 N if and only if (X;x) is a log-terminal singularity (quotient singularity), and
�m(X;x) 6 1 for any m 2 N if and only if (X;x) is a log-canonical singularity
(see [8]).

In this paper we study the second pluri-genus of certain normal surface singu-
larities, so ‘a singularity’ always means a normal surface singularity over C .

In the first section, we summarize notations, definitions and basic facts which
will be used in this paper.

In the second section, we will show that �2(X;x) is determined by pg(X;x)
and the weighted dual graph of (X;x), and �2(X;x) > dimC H

1(�E) holds for
certain singularities.

In the last section, we consider relations among the invariants �2; pg; �; � and
the modality.
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1. Preliminaries

A. Basic facts on singularities

(1.1) Let (X;x) be a surface singularity and f : (M;E)! (X;x) a minimal good
resolution of the singularity (X;x). It is well-known that there is a unique minimal
good resolution. Let E =

Sk
i=1 Ei be the decomposition of the exceptional set E

into irreducible components. A cycle D is an integral combination of the Ei, i.e.,
D =

Pk
i=1 diEi with di 2 Z. There is a natural partial ordering between cycles

defined by comparing the coefficients. A cycle D is said to be positive if D > 0
and D 6= 0. For any two positive cycles V and W , there is an exact sequence

0 ! OW

O
OM

OM (�V )! OV+W ! OV ! 0: (1.1.1)

The weighted dual graph of (X;x) is the information of the genera of the Ei

and the intersection matrix (Ei � Ej), or the graph such that each vertex of which
represents a component of E weighted by its intersection number and each edge
corresponds to an intersection point of the components (cf. [9]). A component
Ei of E is called a central curve if which has positive genus or intersects more
than two other components. The weighted dual graph of a singularity is said to
be star-shaped, if it is a tree as the graph where at most one vertex is the central
curve. The connected components of a star-shaped graph minus the central curve
are called the branches.

NOTATION 1.2. Let Y be a normal variety over C ;M a sheaf of OY -modules, D
a divisor on Y and F a closed subset of Y . We use the following notation

M(D) =M
O
OY

OY (D);

Hi(M) = Hi(Y;M); Hi
F (M) = Hi

F (Y;M);

hi(M) = dimC H
i(M); hiF (M) = dimC H

i
F (M):

We denote by K the canonical divisor on M .

DEFINITION 1.3. (cf. [24]) We define the pluri-genera f�m(X;x)gm2N as follows

�m(X;x) = dimC

H0(OM�E(mK))

H0(OM (mK + (m� 1)E))
:

Note that �1(X;x) = pg(X;x).

(1.4) We take the following characterization of Du Bois singularity as its definition.
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PROPOSITION 1.5. (Steenbrink [17, (3.6)]). A normal surface singularity (X;x)
is a Du Bois singularity if and only if the natural map H1(OM )! H1(OE) is an
isomorphism.

THEOREM 1.6. (Steenbrink [17, (3.7), (3.8)]. cf. [6, Th. 2.3]). (1) If (X;x) is a
rational singularity, then (X;x) is Du Bois.

(2) Let (X;x) be a Gorenstein singularity. Then (X;x) is a Du Bois singularity
if and only if it is a rational double point, a simple elliptic or a cusp singularity.

THEOREM 1.7. (Ishii [7, Theorem 2.3]). Every resolution of a Du Bois singularity
is a good resolution, where a good resolution means a resolution of the singularity
for which the exceptional divisor is of normal crossings.

(1.8) Ishii [7] noted that there exist Du Bois singularities with arbitrarily large
geometric genus.

B. Deformations

(1.9) We use the notation above. We denote by DX the functor (on artin rings)
of deformations of a singularity (X;x). In [20], Wahl introduced the equisingular
functor ESM of deformations of (M;E) to which all Ei lift, and which blow
down to deformations of (X;x). It is well-known that a deformations of M blows
down if and only if h1(OM ) does not jump (cf. [20, (4.3)]). Hence equisingu-
lar deformations preserve the geometric genera and the weighted dual graphs of
singularities.

In [10, 11, 12], Laufer studied deformations of M in the analytic category. For
a Gorenstein singularity (X;x), an equisingular deformation of (M;E) induces a
topologically constant deformation of (X;x), and the converse holds, too (see [12,
V, VI]).

(1.10) Let 
1
M hEi be the sheaf of 1-forms with logarithmic poles along E, and S

its dual. Then there are exact sequences (cf. [22])

0 ! 
1
M ! 
1

M hEi !
kM
i=1

OEi
! 0; (1.10.1)

0 ! S ! �M !
kM
i=1

OEi
(Ei)! 0; (1.10.2)

0 ! �M (�E)! S ! �E ! 0: (1.10.3)

By (1.10.2), we have the following exact sequence

0 ! H1(S)! H1(�M )! H1

 
kM
i=1

OEi
(Ei)

!
! 0:
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There is a versal deformation � : M ! (Q; o) of (M;E) with tangent space
TQ;o �= H1(�M ), and a submanifold (P; o) with tangent space TP;o �= H1(S)
such that all of the Ei lift to above P (cf. [10, 11]).

THEOREM 1.11. (Wahl [20]). (1) ESM is smooth and the natural mapESM !

DX is injective.
(2) If any deformation of (M;E) to which allEi lift blows down to a deformation

of (X;x), then T (ESM ) = H1(S), where T (ESM ) denotes the tangent space of
ESM . If pg(X;x) 6 1, then this condition is satisfied.

(1.12) A function h 2 C fz1 ; : : : ; zng = B is called a quasi-homogeneous poly-
nomial of degree d with weights (�1; : : : ; �n) 2 Nn , if h(t�1z1; : : : ; t

�nzn) =
tdh(z1; : : : ; zn) for any t 2 C . We assume that GCD(�1; : : : ; �n) = 1. A
singularity (X;x) is said to be quasi-homogeneous if (X;x) is defined by
quasi-homogeneous polynomials with common weights. Let (X;x) be a quasi-
homogeneous singularity defined by an ideal I � B. Let us recall that the tangent
space T 1

X of DX is given by the exact sequence

HomA(

1
B

O
A;A)! HomA(I=I

2; A)! T 1
X ! 0;

where A = B=I . Since HomA(I=I
2; A) is graded, so is T 1

X : we write T 1
X =L

i2ZT
1
X(i).

THEOREM 1.13. (Pinkham [16, 4.6]). T (ESM ) =
L

i>0 T
1
X(i).

2. The second pluri-genus

(2.1) We use the same notation as in the first section. Let f (M;E) ! (X;x) be
a minimal good resolution, except in Lemma 2.3.

The following theorem will be proved in (3.2).

THEOREM 2.2. Let (X;x) be a Gorenstein singularity which is not a rational
double point. Then

H1(OM (2K +E)) = 0:

LEMMA 2.3. Let f : (M;E)! (X;x) be a minimal resolution of the singularity
(X;x), i.e., K �Ei > 0 for all i. If (X;x) is not a rational double point, then

H1(OM (2K +E)) = 0:
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Proof of Lemma 2.3. There is an exact sequence

0 ! OM (2K)! OM (2K +E)! OE(2K +E)! 0:

SinceK is nef,H1(OM (2K)) = 0, and henceH1(OM (2K+E)) �= H1(OE(2K+
E)). By duality, h1(OE(2K + E)) = h0(OE(�K)). We will show that
H0(OE(�K)) = 0. By assumption, (X;x) is not a rational double point. Hence
we may assume that K �E1 > 0. Let fZigi=0;1;:::;k be a computation sequence for
E : Z0 = 0; Z1 = E1 = Ei1 ; : : : ; Zj = Zj�1 +Eij ; : : : ; Zk = Zk�1 +Eik = E,
where Zj�1 � Eij > 0 for j = 2; : : : ; k. Since (�K � Zj�1) � Eij < 0 for
j = 1; : : : ; k, it follows that H0(OEij

(�K � Zj�1)) = 0 for j = 1; : : : ; k. From
the following exact sequences (cf. (1.1.1))

0 ! OEij
(�K � Zj�1)! OZj (�K)! OZj�1(�K)! 0;

we have inductively that H0(OZj (�K)) = 0 for j = 1; : : : ; k. We have thus
proved the lemma. 2

THEOREM 2.4. Let (X;x) be a Du Bois singularity which is not a rational double
point. Then

H1(OM (2K +E)) = 0:
Proof. Let g : (M1; F1) ! (X;x) be the minimal resolution. Then the excep-

tional divisor F1 is of normal crossings and H1(OM1(2KM1 + F1)) = 0 by
Theorem 1.7 and Lemma 2.3. Let � : (M2; F2) ! (M1; F1) be the blow-up
of a double point w of F1, and C = ��1(w). We have OM2(2KM2 + F2) =
��OM1(2KM1 + F1)

N
OM2(C). By the projection formula,

Ri��OM2(2KM2 + F2) �= Ri��OM2(C)
O

OM1(2KM1 + F1):

From the following spectral sequence

E
p;q
2 = Hp(Rq��OM2(2KM2 + F2))) Hp+q(OM2(2KM2 + F2));

we have an exact sequence

0 ! H1(��OM2(C)
O

OM1(2KM1 + F1))

! H1(OM2(2KM2 + F2))

! H0(R1��OM2(C)
O

OM1(2KM1 + F1)):

From the exact sequence

0 ! OM2 ! OM2(C)! OC(C)! 0;
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we get ��OM2(C)
�= OM1 and R1��OM2(C) = 0. Hence H1(OM2(2KM2 +

F2)) �= H1(OM1(2KM1 + F1)) = 0.
Since M is obtained by resolving the double points of the irreducible compo-

nents of the exceptional set, applying the argument above, if it is needed, we have
H1(OM (2K +E)) = 0. 2

COROLLARY 2.5. Let (X;x) be a Gorenstein or a Du Bois singularity. Then

�2(X;x) = h1
E(OM (2K +E)) = h1(OM (�K �E)):

Proof. By duality, h1
E(OM (2K + E)) = h1(OM (�K � E)). If (X;x) is a

rational double point, then h1(OM (�K�E)) = h1(OM (�E)) = 0 (since (X;x)
is a Du Bois singularity), and �2(X;x) = 0 (cf. Introduction). If (X;x) is not a
rational double point, using the theorems above, we have an exact sequence

0 ! H0(OM (2K +E))! H0(OM�E(2K))

! H1
E(OM (2K +E))! 0:

By definition, �2(X;x) = h1
E(OM (2K +E)). 2

COROLLARY 2.6. If (X;x) is a Gorenstein singularity with pg(X;x) > 1, then

�2(X;x) = pg(X;x) �
1
2(2K +E) � (K +E):

Proof. Using h1(OM (2K + E)) = 0, the theorem of Riemann–Roch (e.g.,
[15]) implies the result. 2

COROLLARY 2.7. [25]. Let (X;x) be a hypersurface singularity with pg(X;x) =
1. Then �2(X;x) 6 4.

Proof. If (X;x) is a Du Bois singularity (see Theorem 1.6), we may assume
K = �E. Then �2(X;x) = 1 by Corollary 2.6.

We assume that (X;x) is not a Du Bois singularity. Then H1(OE) = 0 by
Proposition 1.5. Hence �E � (K + E)=2 = �(OE) = 1. Then we have that
�2(X;x) = 2�K � (K +E) by Corollary 2.6.

If f : (M;E) ! (X;x) is not minimal, then by [9, Prop. 3.5], we have
the star-shaped graph which consists of four rational curves, such that the self-
intersection number of the central curve E1 is �1. Then we obtain that K =
�2E1 �E2 �E3 �E4 and K � (K +E) = 1. Hence �2(X;x) = 1.

If f : (M;E) ! (X;x) is minimal, then by [9, Th. 3.4, Th. 3.13], we get
K �K > �3. Since K �E > 0, we have �2(X;x) = 2�K �K �K �E 6 4. 2

Remark 2.8. In exactly the same way as above, we can prove the following: If
(X;x) is a complete intersection singularity with pg(X;x) = 1, then �2(X;x) 6 5.
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COROLLARY 2.9. Let (X;x) be a Gorenstein or a Du Bois singularity. Then

�2(X;x) > h1(�E):

Proof. For a locally free sheafF of rank 2 onM;F �=HomOM
(F ;OM )

N
OMV2F . Hence we get isomorphisms

�M (�E) �= 
1
M(�K �E) and S �= 
1

MhEi(�K �E):

Then the exact sequences (1.10.1) and (1.10.3) give

h1(�E) �= h1

 
kM
i=1

OEi
(�K �E)

!
: (2.9.1)

From the following exact sequence (cf. [17, (1.5)])

0 ! OE !
kM
i=1

OEi
!
M
i<j

OEi\Ej
! 0;

we have a surjective map

H1(OE(�K �E))! H1

 
kM
i=1

OEi
(�K �E)

!
:

By Corollary 2.5 and (2.9.1), we get

�2(X;x) > h1(OE(�K �E)) > h1(�E): 2

3. Complete intersections

(3.1) We use the same notation as in the first section. Let (X;x) be a Gorenstein
singularity with contractible X . Let Z be a cycle such that OM (K) �= OM (�Z).
If (X;x) is not a rational double point, then Z > E.

Let C be the sheaf on M defined by an exact sequence

0 ! C ! CM ! CE ! 0:

If Z > E, then the exterior differentiation gives an exact sequence (cf. [22, (1.5),
(1.6)])

0 ! C ! OM (�Z)
d
! 
1

M hEi(�Z)
d
! 
2

M (�Z +E)! 0: (3.1.1)
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AsX is contractible,Hi(C) = 0 for all i. HenceHi(OM (�Z)) �= Hi(dOM (�Z))
for all i. In particular, Hi(dOM (�Z)) �= Hi(OM (K)) = 0 for i > 1.

(3.2) Proof of Theorem 2.2. From (3.1.1), we have an exact sequence

H1(
1
M hEi(�Z)) ! H1(
2

M (�Z +E))

! H2(dOM (�Z)) = 0:

By Wahl’s vanishing theorem [19], H1(
1
M hEi(�Z)) = 0. Hence

H1(OM (2K +E)) �= H1(
2
M (�Z +E)) = 0: 2

(3.3) In the rest of this section, we always assume that (X;x) is a complete
intersection singularity which is not a rational double point. Let �(X;x) and
�(X;x) denote Milnor number and Tjurina number of (X;x), respectively. We
need the following results of Greuel [4, 5] (cf. [14]).

PROPOSITION 3.4. (1) �(X;x) = h1
fxg(d


1
X), and �(X;x) = h1

fxg(

1
X) [5,

p. 168].
(2) H

q
fxg

(
pX) = 0 for p+ q 6 1 [5, Prop. 2.3].
(3) The following sequences are exact [4, Satz 4.4]:

0 ! CX ! OX ! dOX ! 0;

0 ! dOX ! 
1
X ! d
1

X ! 0:

(4) H0
fxg

(d
1
X) = 0 [4, Lemma 4.5].

(3.5) From (3.1.1), we have an exact sequence

0 ! H1
E(dOM (�Z))! H1

E(

1
M hEi(K))

! H1
E(OM (2K +E))! H2

E(dOM (�Z))

! H2
E(


1
M hEi(K)):

By Corollary 2.5, h1
E(OM (2K + E)) = �2(X;x), and by the duality,

h1
E(


1
M hEi(K)) = h1(S). If we set

� = dimC ker
�
H2
E(dOM (�Z))! H2

E(

1
M hEi(K))

�
;

we have

�2(X;x) = h1(S) + �� h1
E(dOM (�Z)):

We note that h1
E(dOM (�Z)) 6 h1(S).
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LEMMA 3.6. h1
E(dOM (�Z)) = h1

fxg(dOX) + pg(X;x)� 1.
Proof. From the following exact sequence

0 ! H0(dOM (�Z))! H0(dOM�E)! H1
E(dOM (�Z))! 0;

and isomorphisms

H0(dOM (�Z)) �= H0(OM (K)) �= H0(f�OM (K));

we see that

H1
E(dOM (�Z)) �=

H0(dOX�fxg)

H0(f�OM (K))
:

Using (2) and (3) of Proposition 3.4, we obtain

H1
fxg(dOX) �=

H0(dOX�fxg)

H0(dOX)
:

Let M be an ideal sheaf of OX which defines the singular point x. Since X is
contractible

H0(M) �= H0(dM) �= H0(dOX ):

As (X;x) is a Gorenstein singularity with pg(X;x) > 1, we have f�OM (K) �M.
It is well-known that

pg(X;x) = dimC

H0(OX)

H0(f�OM (K))

for a Gorenstein singularity (X;x). Now the result follows from

h1
E(dOM (�Z))� h1

fxg(dOX ) = dimC

H0(M)

H0(f�OM (K))
= pg(X;x) � 1: 2

LEMMA 3.7. � = �(X;x)� �(X;x) + h1
fxg

(dOX).

Proof. Since H1(dOM (�Z)) = H2(dOM (�Z)) = 0, we have

H2
E(dOM (�Z)) �= H1(dOM�E) �= H1(dOX�fxg)

�= H2
fxg(dOX):

Similarly, we get

H2
E(


1
M hEi(K)) �= H2

fxg(

1
X):
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Then

� = dimC ker
�
H2
fxg(dOX )! H2

fxg(

1
X)
�
:

From Proposition 3.4, we have an exact sequence

0 ! H1
fxg(dOX)! H1

fxg(

1
X)! H1

fxg(d

1
X)

! H2
fxg(dOX )! H2

fxg(

1
X);

and hence � = �(X;x) � �(X;x) + h1
fxg(dOX ). 2

THEOREM 3.8. �2(X;x) = h1(S) + �(X;x)� �(X;x) � pg(X;x) + 1.
Proof. The theorem is immediately obtained from (3.5), Lemma 3.6 and

Lemma 3.7. 2

COROLLARY 3.9. Let � : X ! T be a deformation of (X;x) which is obtained
from an equisingular deformation of (M;E). We set Xt = ��1(t) for t 2 T . Then

�(Xt) > �(X;x)� �2(X;x) for any t 2 T: (3.9.1)

In particular, if pg(X;x) = 1, then �(Xt) > �(X;x)� 5.
Proof. We note that Xt is a complete intersection isolated singularity for any

t 2 T . From (3.5) and Lemma 3.6, h1(S) > pg � 1. By Theorem 3.8, we have
that �2(Xt) > �(Xt) � �(Xt). By Corollary 2.6, �2 is determined by pg and the
weighted dual graph of the singularity, and so is � by [17, (2.26)]. The property of
the equisingular deformations implies that

�2(Xt) = �2(X;x) and �(Xt) = �(X;x):

Then we get (3.9.1). If pg(X;x) = 1, then �2(X;x) 6 5 by Remark 2.8. We have
thus proved the corollary. 2

(3.10) Let h 2 C fz0 ; z1; z2g = OC3 ;o define an isolated singularity (X; o)
at the origine. Let Jh be an ideal of OC3 ;o generated by @h=@z0; @h=@z1 and
@h=@z2: Qh = OC3 ;o=Jh is called Jacobian algebra. It is well known that

�(X; o) = dimC

OC3 ;o

Jh
and �(X; o) = dimC

OC3 ;o

(Jh; h)
;

and that�(X; o) = �(X; o) if and only if h is quasi-homogeneous (after a change of
coordinates). Ifh is a quasi-homogeneous polynomial of degreed, thenQh is graded
withQh =

L
i>0 Qh(i), and there are the natural isomorphismsT 1

X(i�d)
�= Qh(i).
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We set � = �(X; o). Let '1; : : : ; '� be C -basis of O
C3 ;o=Jh. Then we define a

function H(z; t) 2 C fz0 ; z1; z2; t1; : : : ; t�g = O
C3�C� ;o as following

H(z; t) = h+
�X
i=1

ti'i;

and we set

Y (X; o) = f(t0) 2 (C � ; o)j�(H(z; t0)) = �g;

where �(H(z; t0)) denotes Milnor number of the singularity defined by H(z; t0).
Then Y (X; o) is an analytic subset of (C � ; o).

DEFINITION 3.11. The modality m(X; o) of the singularity (X; o) is the dimen-
sion of Y (X; o) (cf. [2]). If (X; o) is defined by a quasi-homogeneous polyno-
mial h of degree d, then the inner modality m0(X; o) of the singularity (X; o)
is defined as the dimension of the vector space

L
i>dQh(i) (cf. [26]). Note that

m0(X; o) 6 m(X; o).

COROLLARY 3.12. Let (X; o) be a hypersurface singularity with pg(X; o) = 1
defined by h 2 O

C 3;o. Then �2(X; o) 6 m(X; o).
If (X; o) is quasi-homogeneous, then �2(X; o) = m0(X; o) 6 4.
Proof. Let (C �(X;o) ; o) be the versal deformation space of the singularity (X; o)

and p : (C �(X;o) ; o) ! (C � (X;o) ; o) be a projection corresponding to the natural
map of the tangent spaces OC3 ;o=Jh ! OC3 ;o=(Jh; h). There is a submanifold P
of (C � (X;o) ; o) which represents ESM (cf. B of Preliminaries). By the property of
the equisingular deformations, p�1(P ) � Y (X; o). By Theorem 1.11, we see that
the dimension of p�1(P ) is h1(S) + �(X; o) � �(X; o). Hence

h1(S) + �(X; o) � �(X; o) 6m(X; o):

From Theorem 3.8, we get �2(X; o) 6 m(X; o).
We assume that h is a quasi-homogeneous polynomial of degree d. Then The-

orems 3.8, 1.11 and 1.13 and (3.10) imply that

�2(X; o) = h1(S) = dimC

M
i>d

Qh(i) = m0(X; o):

By Corollary 2.7, �2(X; o) 6 4. We have thus proved the corollary. 2

Remark 3.13. If the invariance of Milnor number implies the invariance of the
topological type for two-dimensional hypersurface singularities (cf. [13]), then, in
the proof above, we have p�1(P ) = Y (X; o) (cf. (1.9)). In this case, Y (X; o) is
nonsingular, and �2(X; o) = m(X; o) holds.

It is known that for any quasi-homogeneous hypersurface singularity (X; o), an
inequality �2(X; o) > m0(X; o) holds (see [26]).
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DEFINITION 3.14. A function h 2 O
C3 ;o is said to be semi-quasi-homogeneous

of degree d with weights (�0; �1; �2) if it is of the form h = h0 + h1, where h0

is a quasi-homogeneous polynomial of degree d with weights (�0; �1; �2) which
defines an isolated singularity and all of the monomials of h1 have degree strictly
greater than d (cf. [1, 12.1]).

COROLLARY 3.15. Let (X; o) be a singularity defined by a semi-quasi-
homogeneous function h 2 O

C3 ;o with weights (1; 1; 1). Then �2(X; o) > m(X; o).
Proof. We write h = h0 + h1 as the definition above. Let (X0; o) be a sin-

gularity defined by h0. Then by [3], m0(X0; o) = m(X0; o). Hence we have that
�2(X0; o) >m(X0; o) by [26]. On the other hand, (X; o) is a fibre in an equisingu-
lar deformation of (X0; o) by [1, Th. 12.1] and Theorem 1.13. Since the modality
is upper semi-continuous by [2], we have

�2(X; o) = �2(X0; o) > m(X0; o) > m(X; o): 2

(3.16) We assume that the weighted dual graph of (X;x) is a star-shaped graph.
We set E = E0

S
E(1)S � � �SE(�), where E0 is the central curve, and E(i) the

branches. The curves of E(i) are denoted by Ei;j , 1 6 j 6 ri, where E0 � Ei;1 =
Ei;j � Ei;j+1 = 1. We set bi;j = �Ei;j �Ei;j .

Let us introduce some result of [18]. LetF be a divisor onE0 withOE0(�E0) �=
OE0(F ), and Pi the intersection point E0

T
Ei;1 for i = 1; : : : ; �. We define a Q-

divisor D on E0 as follows: D = F �
P�

i=1 qiPi, where qi 2 Q is defined by

1
qi

= bi;1 �
1

bi;2 �
1

����
1

bi;ri

for i = 1; : : : ; �:

Let R =
L

n>0 H
0(OE0(nD))T

n � C (E0)[T ], where C (E0) is the field of ratio-
nal functions of E0, and T an indeterminate. Then Spec(R) is a normal surface
singularity, we denote by (Y; y), and the weighted dual graph of (Y; y) is the same
as that of (X;x).

By contracting the branches E(1) [ � � � [ E(�), we get a normal surface M 0

with cyclic quotient singularities. Let � : (M 0; E0) ! (X;x) be the morphism
induced canonically, where E0 is the image of E0. We define a filtration on OX

by F n = ��OM 0(�nE0) for n 2 Z. Note that F n = OX for n 6 0. Let R =L
n2ZF

nT n, and let G =
L

n>0(F
n=F n+1)T n. Then the natural map C [T�1 ]!

R defines a deformation of Spec(G) with general fibre isomorphic to (X;x), since
G �= R=T�1R and OX

�= R=(T�1 � a)R for a 2 C � f0g (cf. [18, (5.15)]).
By [18,(6.3)], we have that pg(Y; y) = pg(X;x) if and only if R = G.

COROLLARY 3.17. Let (X; o) be a hypersurface singularity with pg(X; o) = 1
such that the weighted dual graph of it is a star-shaped graph. Then (X; o) is
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defined by a semi-quasi-homogeneous function of which the quasi-homogeneous
part defines a singularity (X0; o) with m0(X0; o) = �2(X; o).

In particular, for such a singularity with �2(X; o) 6 2, we have �2(X; o) =
m(X; o).

Proof. We use the notation of (3.16). The weighted dual graph of (X; o) deter-
mines the embedding dimension of (Y; y) and pg(Y; y) (cf. [9]): then (Y; y)
is a quasi-homogeneous hypersurface singularity with pg(Y; y) = 1. Let h0

be a quasi-homogeneous function of degree d which defines (Y; y), i.e., R �=
C [z0 ; z1; z2]=(h0). By (3.16) and [23, (1.12), (3.4)], (X; o) is a fibre in a deforma-
tion of (Y; y) which is obtained from an equisingular deformation. Then there is
a function h1 2 O

C3 ;o of which the image of the natural map O
C3 ;o ! Qh0 is inL

i>dQh0(i) such that h0 + h1 defines (X; o) (cf. Th. 1.13, (3.10)). Since R = G,
we may assume that all of monomials of h1 have degree strictly greater than d.
Hence h0 + h1 is a semi-quasi-homogeneous function. Let (X0; o) = (Y; y). We
have �2(X; o) = �2(X0; o) = m0(X0; o) by Corollary 3.12.

Quasi-homogeneous hypersurface singularities with pg = 1 and m0 6 4 are
listed in [26]. The lists of all the singularities for which m 6 2 are given in [1,
15.1]. Then we see the last assertion. 2

(3.18) In [25], we proved the equality of Corollary 2.6 for Gorenstein singularities
with pg = 1, and classified the weighted dual graphs of those with �2 6 2. Then
we have the following.

Let (X;x) be a Gorenstein singularity with pg(X;x) = 1. Then �2(X;x) = 1
if and only if (X;x) is a simple elliptic, a cusp or a singularity obtained (in the
sense of [21, (5.2)]) from a unimodular singularity, and �2(X;x) = 2 if and only if
(X;x) is a singularity obtained (in the sense above) from a bimodular singularity.
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Durchschnitten, Math. Ann. 214 (1975), 235–266.

5. Greuel, G.-M.: Dualität in der lokalen Kohomologie isolierter Singularitäten, Math. Ann. 250
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13. Tráng, Lê Dũng and Ramanujan, C.: The invariance of Milnor’s number implies the invariance
of the topological type, Amer. J. Math. 98 (1976), 67–78.

14. Looijenga, E. and Steenbrink, J.: Milnor number and Tjurina number of complete intersections,
Math. Ann. 271 (1985), 121–124.

15. Morales, M.: Calcul de quelques invariants des singularités de surface normale, Enseign. Math.
31 (1983), 191–203.

16. Pinkham, H.: Deformations of normal surface singularities with C � -action, Math. Ann. 232
(1978), 65–84.

17. Steenbrink, J.: Mixed Hodge structures associated with isolated singularities, Proc. Symp. Pure
Math. 40, Part 2 (1983) 513–536.

18. Tomari, M. and Watanabe, Kei-ichi: Filtered rings, filtered blowing-ups and normal two-
dimensional singularities with ‘star-shaped’ resolution, Publ. RIMS, Kyoto Univ. 25 (1989),
681–740.

19. Wahl, J.: Vanishing theorems for resolutions of surface singularities, Invent. Math. 31 (1975),
17–41.

20. Wahl, J.: Equisingular deformations of normal surface singularities, I, Ann. Math. 104 (1976),
325–365.

21. Wahl, J.: Simultaneous resolution and discriminantal loci, Duke Math. J. 46 (1979), 341–375.
22. Wahl, J.: A characterization of quasi-homogeneous Gorenstein surface singularities, Compositio

Math. 55 (1985), 269–288.
23. Wahl, J.: Deformations of quasi-homogeneous surface singularities, Math. Ann. 280 (1988),

105–128.
24. Watanabe, K.: On plurigenera of normal isolated singularities. I, Math. Ann. 250 (1980), 65–94.
25. Watanabe, K. and Okuma, T.: Characterization of unimodular singularities and bimodular

singularities by the second plurigenus, preprint.
26. Yoshinaga, E. and Watanabe, K.: On the geometric genus and the inner modality of quasihomo-

geneous isolated singularities, Sci. Rep. Yokohama Nat. Univ. Sect. I 25 (1978), 45–53.
27. Yoshinaga, E. and Suzuki, M.: Normal forms of non-degenerate quasihomogeneous functions

with inner modality6 4, Invent. Math. 55 (1979), 185–206.

https://doi.org/10.1023/A:1000265619270 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000265619270

