VOL. 6 (1972), 255-262.

On the maximal normal prime-nilpotent subgroup of a prime-solvable group

Terence M. Gagen and Mark P. Hale, Jr

```
A characterization of the maximal normal p-nilpotent subgroup of a finite \(p\)-solvable group is obtained for primes
``` \(p \neq 2\) or 3 .

\section*{1. Introduction}

A result of Baer provides a characterization of the largest normal \(p\)-subgroup, \(O_{p}(G)\), of a finite group \(G\) where \(p\) is a prime: an element \(x\) belongs to \(O_{p}(G)\) if and only if the subgroup \(\left\langle x, x^{\prime}\right\rangle\) is a \(p\)-group for all conjugates \(x^{\prime}\) of \(x\) in \(G\) [2, Theorem 3.8.2].

The purpose of this note is to provide a similar description of the largest normal \(p\)-nilpotent subgroup \(O_{p^{\prime}, p}(G)\) of a finite \(p\)-solvable group. A finite group \(G\) is \(p\)-nilpotent if there is a normal subgroup \(G\) complementing a Sylow p-subgroup.

The following example complicates our conclusion. Let Qd(3) denote the natural semi-direct product of a 2 -dimensional vector space \(V\) over \(G F(3)\) with \(S L(2,3)\), the group of all linear transformations on \(V\) of determinant 1 . A counting argument, a generalization of which appears in step (7) below, shows that \(Q d(3)\) is generated by a class \(K\) of 3-elements such that any two elements in \(K\) generate a 3-nilpotent group, but Qa(3) is not 3-nilpotent.

THEOREM 1. Let \(G\) be a finite p-solvable group, where \(p\) is an odd prime. If for some element \(x\) of \(G,\left\langle x, x^{\prime}\right\rangle\) is p-nilpotent for

Received 26 October 1971.
alt conjugates \(x^{\prime}\) of \(x\) in \(G\), then \(x \in O_{p^{\prime}, p}(G)\) or \(p=3,3\) divides \(O(x)\), and \(\left\langle x^{g}: g \in G\right\rangle\) involves \(Q d(3)\).

Theorem 1 will be derived from the following two results. Let \(\pi\) denote a set of primes and \(\pi^{\prime}\) the set of primes not in \(\pi\). A finite group is \(\pi\)-separable if each composition factor is a \(\pi\)-group or a \(\pi^{\prime}\)-group. The first result includes the Theorem of Baer for \(\pi\)-separable groups.

PROPOSITION 1. Let \(G\) be a finite \(\pi\)-separable group. Let \(x\) be a \(\pi\)-element of \(G\) such that \(\left\langle x, x^{\prime}\right\rangle\) is a \(\pi\)-group for all \(x^{\prime}\) conjugate to \(x\). Then \(x \in O_{\pi}(G)\).

THEOREM 2. Let \(G\) be a finite \(p\)-solvable group, \(p\) an odd prime. Let \(x\) be a p-element in \(G\) such that \(\left\langle x, x^{\prime}\right\rangle\) is p-nilpotent for all
 \(\left\langle x^{g}: g \in G\right\rangle\) involves Qd(3).

REMARK. The following example shows that Theorem 1 is false if \(p=2\). For any odd \(q\) and any \(n \geq 1\), let \(G\) be the group generated by \(x, y, x_{1}, \ldots, x_{q}\), subject to the relations:
\[
\begin{aligned}
x^{2^{n+1}} & =y^{q}=x_{i}^{2^{n}}=\left[x_{i}, x_{j}\right]=1 \text { for all } i, j, \\
y^{x} & =y^{-1}, x^{2}=x_{1} x_{2} \ldots x_{q}, \\
x_{i}^{x} & =x_{i \alpha}, x_{i}^{y}=x_{i \beta},
\end{aligned}
\]
where
\[
\alpha=(1)(2, q) \ldots\left(\frac{q-1}{2}, \frac{q+1}{2}\right)
\]
and
\[
B=(1,2, \ldots, q) .
\]

A counting argument similar to that used in (7) below shows that any two conjugates of \(x\) generate a 2 -nilpotent group, but \(x \nmid O_{2^{\prime}, 2}(G)\).

The reader is referred to [2] or [4] for terminology and notations,
which are standard.

\section*{2. Proofs}

Proof of Proposition 1. Let \(G\) be a minimal counter-example. Then \(O_{\pi}(G)=1\), for otherwise \(x O_{\pi}(G) \in O_{\pi}\left(G / O_{\pi}(G)\right)=O_{\pi}(G)\). By \(\pi\)-separability, \(O_{\pi^{\prime}}(G) \neq 1\). Let \(q\) be a prime in \(\pi^{\prime}\); there is an \(x\)-invariant Sylow \(q\)-subgroup \(Q\) of \(O_{\pi^{\prime}}(G)\), by [2, Theorem 6.2.2]. For any \(y \in Q,[x, y]=x^{-1} x^{y} \in\left\langle x, x^{y}\right\rangle \cap Q\). Since \(\left\langle x, x^{y}\right\rangle\) is a \(\pi\)-group and \(Q\) is a \(\pi^{\prime}\)-group, \([x, y]=1\) and thus \(x\) centralizes \(Q\). It follows that \(x\) centralizes \(O_{\pi^{\prime}}(G)\). By [2, Theorem 6.3.2], \(C_{G}\left(O_{\pi^{\prime}}(G)\right) \leq O_{\pi^{\prime}}(G)\), a contradiction.

Proof of Theorem 2. Let \(G\) be a minimal counter-example. We may assume that \(G\) is generated by the conjugates of \(x\) in \(G\), for if the conjugates of \(x\) generate a proper subgroup \(M, M\) either involves \(Q(3)\) or \(x \in O_{p^{\prime}, p}(M)\). Since \(M \unlhd G\), in the latter case \(x \in O_{p^{\prime}, p}(G)\).

As \(G\) is a counter-example, no section of \(G\) involves \(Q d(3)\) if \(p=3\), a fact used implicitly in each induction step below.
(1). \(O_{p},(G)=1\).

For otherwise, let \(\bar{G}=G / O_{p^{\prime}}(G)\). Then \(\left\langle\bar{x}, \bar{x}^{\prime}\right\rangle\) is \(p\)-nilpotent for all conjugates \(x^{\prime}\) of \(x\). Thus \(\bar{x} \in O_{p^{\prime}, p}(\bar{G})\) and we are done.

Let \(P=O_{p}(G)\). By \(p\)-solvability of \(G, P \neq 1\).
(2). \(P\) is elementary abelian and \(C_{G}(P)=P\).

Let \(\bar{G}=G / \Phi(P)\). By [2, Theorem 6.3.4], \(C_{G}(\bar{P})=\bar{P}\). Then again \(\left\langle\bar{x}, \bar{x}\right.\)) is \(p\)-nilpotent for all conjugates \(x^{\prime}\) of \(x\). Thus if \(\Phi(P) \neq 1, \bar{x} \in O_{p^{\prime}, p}(\bar{G})\). Since \(O_{p^{\prime}}(\bar{G})\) centralizes \(\bar{P}, O_{p^{\prime}}(\bar{G})=1\). Thus \(\bar{x} \in O_{p}(\bar{G})\), and hence \(x \in O_{p}(G)\), a contradiction. We therefore have \(\Phi(P)=1\).
(3). \(P\) contains a unique minimal normal subgroup of \(G\).

Otherwise, if \(P_{1}\) and \(P_{2}\) are disjoint normal subgroups of \(G\) contained in \(P, G / P_{i}\) is \(p\)-nilpotent. Therefore \(G \cong G / P_{1} \cap P_{2}\) is p-nilpotent.

For some conjugate \(x^{\prime}\) of \(x,\left\langle x, x^{\prime}\right\rangle\) is not a p-group, since otherwise \(x \in O_{p}(G)\) by Proposition 1 . Thus \(x\) normalizes some non-trivial \(p^{\prime}\)-subgroup. If \(x\) centralizes every \(p^{\prime}\)-subgroup it normalizes, then \(x\) centralizes \(O_{p^{\prime}}\left(\left\langle x, x^{\prime}\right\rangle\right)\) and therefore lies in \(O_{p}\left(\left\langle x, x^{\prime}\right\rangle\right)\). It follows that \(\left\langle x, x^{\prime}\right\rangle\) is a \(p\)-group, for all \(x^{\prime}\) conjugate to \(x\).

Among all \(p^{\prime}\)-subgroups of \(G\), normalized but not centralized by \(x\), choose \(Q\) of minimal order. By a standard Hall-Higman reduction, given in [3, p. 5], \(Q\) is a \(q\)-group for some prime \(q \neq p\) and \(x\) acts irreducibly on \(Q / Q^{\prime}\). Furthermore, \(Q\) is either elementary abelian, or \(Q^{\prime}=Z(Q)=\Phi(Q)=C_{Q}(x)\) and \(Q^{\prime}\) is elementary abelian. In particular, if \(g \in Q \backslash Q^{\prime},\left\langle x, x^{g}\right\rangle=\langle x, Q\rangle\).
(4). \(G=P Q\langle x\rangle, \quad P\) is a faithfuz irreducible \(Q\langle x\rangle\)-module, \(\langle x\rangle \cap p=1\), and \(x^{p}=1\).

If \(H=P Q\langle x\rangle \neq G\), then \(x \in O_{p^{\prime}, p}(H)\). Since \(C_{G}(P)=P\), \(O_{p^{\prime}}(H)=1\). Thus \(x \in O_{p}(H)\), and \([x, Q] \leq O_{p}(H) \cap Q=1\), a contradiction. Therefore \(G=P Q(x)\).

Let \(P^{*}\) be the unique minimal normal subgroup of \(G\) contained in \(P\). If \(P^{*} \neq P\), then \(G / P^{*}\) is \(p\)-nilpotent, by induction. Thus \(Q\) centralizes \(P / P^{*}\). The subgroup \(\langle x\rangle \cap P\) is central in \(G\), and since \(\langle x\rangle \cap P\) has order at most \(p,\langle x\rangle \cap P \leq P^{*}\). Therefore \(L=P^{*} Q\langle x\rangle\) is a proper subgroup of \(G\) and \(x \in O_{p^{\prime}, p}(L)\). Since \(Q\) is generated by \(Q\)-conjugates of \(x, Q \leq O_{p^{\prime}, p}(L)\) and therefore \(\left[Q, P^{*}\right]=1\). Thus \(Q\) centralizes \(P / P^{*}\) and \(P^{*}\); by [2, Theorem 5.3.2], \(Q\) centralizes \(P\), a contradiction. Thus \(P^{*}=P\), and since \(C_{G}(P)=P, P\) is faithful and irreducible when viewed as a \(Q(x)\)-module.

Since \(\langle x\rangle \cap P\) is central in \(G,\langle x\rangle \cap P=1\). If \(x^{p} \neq 1\), \(P Q\left\langle x^{p}\right\rangle\) is a proper normal subgroup of \(G\), and \(\left\langle x^{p}, x^{P}\right\rangle\) is a p-nilpotent group for all \(x^{\prime}\) conjugate to \(x\). By induction, \(x^{p} \in O_{p^{\prime}, p}\left(P Q\left\langle x^{p}\right\rangle\right) \leq G\). Thus \(x^{p} \in O_{p^{\prime}, p}(G)=P\) and therefore \(x^{p}=1\).
(5). Let \(C=C_{P}(x)\). Then \(|C|^{2} \leq|P|\).

If not, then for any conjugate \(x^{\prime}\) of \(x, D=C_{P}(x) \cap C_{P}\left(x^{\prime}\right) \neq 1\). Thus for \(x\) and \(x^{\prime}\) generating \(Q\langle x\rangle, D\) is a \(Q\langle x\rangle\)-invariant subgroup of \(P\). It follows that \(D=P\). Since \(Q\langle x\rangle\) centralizes \(C\), we have a contradiction.
(6). \(\quad C_{G}(x)=C C_{Q}(x)\langle x\rangle\).

By modularity, \(C_{G}(x)=\langle x\rangle \times C_{Q P}(x)\). Since \(x\) acts irreducibly on \(Q / Q^{\prime}, \quad C_{Q P}(x) \leq Q^{\prime} P\). By modularity again,
\(C_{P Q}(x)=Q^{\prime} C_{P}(x)=C_{Q}(x) C_{P}(x)\).
(7). \(|c|^{2}=|p|\).

We count the \(G\)-conjugates of \(x\) in two ways. First, by (6), \(x\) has \(\left|G: C_{G}(x)\right|=|P: C|\left|Q: C_{Q}(x)\right|\) conjugates.

For any \(x^{\prime}\) conjugate to \(x\), let \(L=\left\langle x, x^{\prime}\right\rangle\). Suppose \(L\) is not a p-group. Then \(L P / P \cong Q(x)\). Since \(L\) is \(p\)-nilpotent, \(L \neq G\), and therefore \(L \cap P=1\), by the irreducibility of \(Q(x)\) on \(P\). Thus \(L \cong L / L \cap P \cong Q(x)\). Since \(Q(x)=N_{G}(Q), L\) is either a \(p\)-group or conjugate to \(N_{G}(Q)\).

Since \(\langle x, P\rangle\) is the unique Sylow \(P\)-subgroup of \(G\) containing \(x\), \(\left\langle x, x^{\prime}\right\rangle\) is p-group only if \(x^{\prime} \in\langle x, P\rangle\). There are \(|P: C|\left|Q: C_{Q}(x)\right|\) conjugates of \(x\) in \(G\) and \(\left|Q: C_{Q}(x)\right|\) Sylow p-subgroups in \(G\). Hence each Sylow p-subgroup contains
\[
\left(|P: C|\left|Q: C_{Q}(x)\right|\right) /\left(\left|Q: C_{Q}(x)\right|\right)=|P: G|
\]
conjugates of \(x\).

If \(x\) and \(x^{\prime}\) normalize \(Q,\langle x\rangle\) and \(\left\langle x^{\prime}\right\rangle\) are \(Q\)-conjugate, and since \(N_{G}(\langle x\rangle)=C_{G}(x), x\) and \(x^{\prime}\) are \(Q\)-conjugate. Therefore \(Q(x)\) contains \(\left|Q: C_{Q}(x)\right|-1\) conjugates of \(x\) apart from \(x\). Now if \(x\) normalizes \(Q\) and \(Q^{y}\), then \(x^{y^{-1}}\) normalizes \(Q\), and \(x^{t}=x^{y^{-1}}\) for some \(t \in Q\). Thus \(x^{t y}=x\) and \(Q^{t y}=Q^{y}\); that is, the conjugates of \(Q\) normalized by \(x\) are conjugate under \(C_{G}(x)\). Thus there are
\[
\left(\left|Q: C_{Q}(x)\right|-1\right)\left|C_{G}(x): C_{G}(x) \cap N_{G}(Q)\right|=\left(\left|Q: C_{G}(x)\right|-1\right)|C|
\]
conjugates \(x^{\prime}\) of \(x\) which with \(x\) generate a group isomorphic to \(Q\langle x\rangle\). This completes the second count of the conjugates of \(x\).

Comparing, we have
\[
|P: C|+|C|\left(\left|Q: C_{Q}(x)\right|-1\right)=|P: C|\left|Q: C_{Q}(x)\right|,
\]
from which we have
\[
0=\left(\left|Q: C_{Q}(x)\right|-1\right)(|P: C|-|C|) .
\]

Since \(C_{Q}(x) \neq Q\), the conclusion follows.
Let \(K\) be a finite splitting field for \(Q\langle x\rangle\). Viewing \(P\) as a \(G F(p)=F\) module for \(Q\langle x\rangle\), we consider the \(K Q(x)\)-module \(V=K \otimes_{F} P\). By [4, Satz \(V\), 13.3], \(V\) is a direct sum of absolutely irreducible \(K Q\langle x\rangle\)-modules, \(V_{1}, \ldots, V_{u}\). It is routine to check that \(\operatorname{dim}_{K} C_{V}(x)=\operatorname{dim}_{F} C_{P}(x)=\frac{1}{2} \operatorname{dim}_{F} P\) and \(C_{V}(x)=\sum C_{V}(x)\). For the argument below, let \(W\) denote any one of the submodules \(\left\{V_{i}\right\}\). Since the representations of \(Q(x)\) on the modules \(\left\{V_{i}\right\}\) are algebraically conjugate, the representation on \(W\) is faithful.
(8). Q is not abelian.

Suppose \(Q\) is abelian. By the remarks preceeding step (4) above, \(Q\) is elementary abelian and \(x\) acts irreducibly on \(Q\). Thus \(Q(x)\) is a Frobenius group with cyclic complement. By Clifford's Theorem [2, Theorem 3.4.1], \(W\) is a direct sum of \(Q\)-submodules \(\left\{W_{i}\right\}\), each of which is a
direct sum of isomorphic irreducible \(Q\)-submodules. Further, 〈 \(\boldsymbol{x}\rangle\) permutes the homogeneous components \(\left\{W_{i}\right\}\) transitively. By Theorem 3.4.3 of [2], the number of homogeneous components \(\left\{W_{i}\right\}\) is the order of \(\langle x\rangle\), in our present case. Thus (\(x\)) permutes the components regularly and therefore \(\left|C_{W}(x)\right|=\left|W_{1}\right|\). Hence \(\operatorname{dim}_{K} C_{W}(x)=(1 / p) \operatorname{dim}_{K} W\) and so \(\operatorname{dim}_{K} C_{V}(x)=(1 / p) \operatorname{dim}_{K} V\). Since \(p>2\), this contradicts (7).
(9). \(G\) does not exist.

By (8) and the remarks above (4), we are left with the case that \(Q\) is special. We argue that \(W\) is an irreducible \(Q\)-module. Again, by Clifford's Theorem, \(W\) is a sum of \(e\) homogeneous \(Q\)-components. If \(e \neq l\), choose \(E\) to be an irreducible \(Q\)-submodule of the first component. Then \(\sum E x^{i}\) is a \(Q\langle x\rangle\)-submodule of \(W\). Thus \(W=\sum E x^{i}\) and each component is irreducible. Since \(\langle x\rangle\) acts transitively on the set of components and \(x\) has order \(p,\langle x\rangle\) acts regularly. As in (8), the centralizer of \(x\) in \(W\) is too small. Thus \(e=1\) and \(W\) is a sum of isomorphic irreducible \(Q\)-modules. By a theorem of Green [2, Theorem 3.5.6], the number of distinct irreducible \(Q\)-submodules of \(W\) is congruent to 1 modulo \(p\) and so \(\langle x\rangle\) fixes a \(Q\)-submodule of \(W\). Thus \(W\) is irreducible as a \(Q\)-module.

Since the representation on \(W\) is faithful and absolutely irreducible, \(Z(Q)\) is cyclic, that is, \(Q\) is extra-special. The computations of Section 8 of [3] show that \(W\), viewed as an \(\langle x\rangle\)-module, is a sum of \(t\) copies of the regular representation and one copy of the indecomposable representation of degree \(p-1\). Thus \(W\) has \(K\)-dimension tp \(+p-1\) and \(C_{W}(x)\) has \(K\)-dimension \(t+1\). By (7), \(2(t+1) u=(t p+p-1) u\), forcing \(p=2+1 /(t+1)\). Thus \(t=0\) and \(p=3\). Hence \(W\) is a 2-dimensional \(K\)-space and \(Q(x)\) is isomorphic to a subgroup of \(\operatorname{SL}(2, K)\). A 3-nilpotent subgroup of \(\operatorname{SL}(2, K)\) which is not a 3-group is isomorphic to \(\operatorname{SL}(2,3)\), as follows from [4, Hauptsatz II, 8.27]. We now see that \(G\) is a semi-direct product of \(P\) with SL \((2,3)\), the latter being represented faithfully and irreducibly on \(P\). By [1], \(S L(2,3)\) has only one faithful irreducible representation over \(G F(3)\), the natural representation of dimension 2 . Hence \(G=Q d(3)\), \(a\)
final contradiction.
Proof of Theorem 1. The element \(x\) can be written uniquely in the form \(x=y z=z y\), where \(y\) and \(z\) are powers of \(x\), and \(y\) is a \(p^{\prime}\)-element and \(z\) is a \(p\)-element. For any \(g \in G,\left\langle x, x^{g}\right\rangle\) is \(p\)-nilpotent, and so \(y \in O_{p^{\prime}}\left(\left\langle x, x^{g}\right\rangle\right)\). Thus \(\left\langle y, y^{g}\right\rangle\) is a \(p^{\prime}\)-group for all \(g \in G\). By Proposition \(1, y \in O_{p},(G)\). Similarly, \(\left\langle z, z^{g}\right\rangle\) is \(p\)-nilpotent for all \(g \in G\). Applying Theorem 2, \(z \in O_{p^{\prime}, p}{ }^{(G)}\) unless \(p=3\) and \(\left\langle z^{G}: g \in G\right\rangle\) involves \(Q d(3)\). Thus \(x=y z \in O_{p^{\prime}, p}(G)\) unless \(p=3\) and \(\left\langle x^{g}: g \in G\right\rangle \geq\left\langle z^{g}: g \in G\right\rangle\) involves \(Q d(3)\).

\section*{References}
[1] R. Brauer and C. Nesbitt, "On the modular characters of groups", Ann. of Math. (2) 42 (1941), 556-590.
[2] Daniel Gorenstein, Finite groups (Harper and Row, New York, Evanston, London, 1968).
[3] G. Higman, "p-length theorems", 1960 Institute on finite groups: Proc. Symposia in Pure Mathematics, Vol. 6 California Institute of Technology, Pasenda, California, 1960, 1-16. (Amer. Math. Soc., Providence, Rhode Island, 1962.)
[4] B. Huppert, Endliche Gruppen I (Die Grundlehren der mathematischen Wissenschaften, Band 134. Springer-Verlag, Berlin, Heidelberg, New York, 1967).

University of Sydney, Sydney, New South Wales,
and
University of Florida,
Gainesville,
Florida, USA;

University of Florida, Gainesville,
Florida, USA.```

