
BULL. AUSTRAL. MATH. SOC. M O S 20DI0, 20D25

VOL. 6 (1972) , 255-262.

On the maximal normal prime-nilpotent

subgroup of a prime-solvable group

Terence M. Gagen and Mark P. Hale, Jr

A characterization of the maximal normal p-nilpotent subgroup

of a finite p-solvable group is obtained for primes

p t 2 or 3 •

1. Introduction

A result of Baer provides a characterization of the largest normal

p-subgroup, 0 (G) , of a finite group G where p is a prime: an

element x belongs to 0 (G) if and only if the subgroup (x, x' > is a

p-group for all conjugates x' of x in G [2, Theorem 3.8.2].

The purpose of this note is to provide a similar description of the

largest normal p-nilpotent subgroup 0 , (G) of a finite p-solvable

group. A finite group G is p-nilpotent if there is a normal subgroup G

complementing a Sylow p-subgroup.

The following example complicates our conclusion. Let Qd(3) denote

the natural semi-direct product of a 2-dimensional vector space V over

GF(3) with SL(2, 3) , the group of all linear transformations on V of

determinant 1 . A counting argument, a generalization of which appears in

step (7) below, shows that Qd(3) is generated by a class K of

3-elements such that any two elements in K generate a 3-nilpotent group,

but Qd(3) is not 3-nilpotent.

THEOREM 1. Let G be a finite p-solvable group, where p is an

odd prime. If for some element x of G , <x, x' > is p-nilpotent for
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all conjugates x' of x in G , then x € 0 , (G) or p = 3 , 3
P >P

divides o{x) 3 and <x& : g t G) involves Qd(3) .

Theorem 1 wi l l be derived from the following two r e s u l t s . Let IT

denote a set of primes and TT1 the set of primes not in n . A f in i te

group is ir-separable i f each composition factor i s a ir-group or a

TT1 -group. The f i r s t r esu l t includes the Theorem of Baer for TT-separable

groups.

PROPOSITION 1. Let G be a finite inseparable group. Let x be

a Ti-element of G such that <x, x ' > is a Tt-group for all x'

conjugate to x . Then x € 0' (G) .

THEOREM 2. Let G be a finite p-solvable group, p an odd prime.

Let x be a p-element in G such that <x, x'> is p-nilpotent for all

x' conjugate to x . Then x € 0 , (G) unless p = 3 and
P >P

<x^ : g i G) involves Qd(3) .

REMARK. The following example shows that Theorem 1 is false if

p = 2 . For any odd q and any n i l , let G be the group generated

by x, i/, x1 , ... , x , subject to the relations:

x 2 = yq = x2. = [x., x.] = 1 for all i, j ,

y - y , x - x^Xg ... x ,

x
x - x art = x

where

and

6 = (1, 2 q) .

A counting argument similar to that used in (7) below shows that any two

conjugates of x generate a 2-nilpotent group, but x { 0^, 2^^ '

The reader is referred to [2] or [4] for terminology and notations,
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which are standard.

2. Proofs

Proof of Proposition 1. Let G be a minimal counter-example. Then

0v(G) = 1 , for otherwise xO (G) € 0 (G/O^G)) = O^G) . By

TT-separability, 0 , (G) # 1 . Let q be a prime in IT' ; there is an

x-invariant Sylow ^-subgroup Q of 0^,(G) , by [2, Theorem 6.2.2]. For

any y € Q , [x, y] = x r ( (i, r*) n J , Since <x, x^> is a Tr-group

and Q is a IT'-group, [x, y] = 1 and thus x centralizes Q . It

follows that x centralizes 0 i(G) . By [2, Theorem 6.3-2],

; 0 ,(G) , a contradiction.

Proof of Theorem 2. Let G be a minimal counter-example. We may

assume that G is generated by the conjugates of x in G , for if the

conjugates of x generate a proper subgroup M , M either involves

Qd(3) or x i 0 , (M) . Since M 2 G , in the latter case

x £ 0 , (G) .

As G is a counter-example, no section of G involves Qd(3) if

p = 3 , a fact used implicitly in each induction step below.

(1). 0p,(G) = 1 .

For otherwise, let G = G/0 ,(G) . Then <x, x' > is p-nilpotent for

all conjugates x1 of x . Thus x f 0 , (G) and we are done.

Let P = 0 (,G) . By p-solvability of G , P * 1 .

(2). P is elementary abelian and C^(P) = P .

Let fi = G/$(P) . By [2, Theorem 6.3.U], ^ ( P ) = P . Then again

<x, x'> is p-nilpotent for all conjugates x' of x . Thus if

HP) * 1 , x € 0• , (G) . Since 0,(5) centralizes P , 0 , (G) = 1 .

Thus x 6 0 (G) , and hence x € 0 (G) , a contradiction. We therefore

have HP) = 1 .
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(3). P contains a unique minimal normal subgroup of G .

Otherwise, if P and P are disjoint normal subgroups of G

contained in P , G/P. is p-nilpotent. Therefore G = G/P nP is

p-nilpotent.

For some conjugate x' of x , (x, x' > is not a p-group, since

otherwise x £. 0 {G) by Proposition 1. Thus x normalizes some

non-trivial p'-subgroup. If x centralizes every p'-subgroup it

normalizes, then x centralizes 0 , ( <x, x' >) and therefore lies in

0 ( {x, x' >) . It follows that <x, x' > is a p-group, for all x'

conjugate to x .

Among all p'-subgroups of G , normalized but not centralized by x ,

choose Q of minimal order. By a standard Hall-Higman reduction, given in

[3, p. 5], Q is a q-growp for some prime q ? p and x acts

irreducibly on Q/Q' . Furthermore, Q is either elementary abelian, or

Q' = Z(Q) = *(§) = CJx) and Q' is elementary abelian. In particular,

if g C Q\Q' , <x, x9) = <x, Q) .

(4). G = PQ<x) 3 P is a faithful irreducible Q<x)-module,

<x> n P = 1 , and a? = 1 .

If H = PQ(x> t G , then x i 0 , (#) . Since CAP) = P ,
p ,p G

0 , (H) = 1 . Thus x € 0AH) , and [x, Q] < 0{H) n Q = 1 , a

contradiction. Therefore G =

Let P* be the unique minimal normal subgroup of G contained in

'P . If P* # P , then ff/P* is p-nilpotent, by induction. Thus Q

centralizes P/P* . The subgroup (x) n P is central in £ , and since

<x> n P has order at most p , <x> n P < P * . Therefore L = P*Q(x) is

a proper subgroup of G and x Z 0 , (I) . Since Q is generated by

^-conjugates of x , J 5 0 , (L) and therefore [Q, P*] = 1 . Thus ^

centralizes P/P* and P* ; by [2, Theorem 5-3.2], Q centralizes P , a

contradiction. Thus P* = P , and since CAP) = P , P is faithful and

irreducible when viewed as a Q(x)-module.
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Since (.x) n P is central in G , <x> n P = l . If x? + 1 ,

is a proper normal subgroup of G , and <ar , x > is a

p-nilpotent group for all x1 conjugate to x . By induction,

X? € 0 , (P§<xP>) 3 G . Thus a^ 6 0 , (G) = P and therefore x*3 = 1 .
P >P P >P

(5). Lei C = Cp(x) . Then \c\2 < |P| .

If not, then for any conjugate x' of x , D = Cp{x) n Cp(x') # 1 .

Thus for x and x1 generating Q(x) , D is a Q<x>-invariant subgroup

of P . It follows that D = P . Since S<x> centralizes C , we have

a contradiction.

(6). CG(x) = CCQ(x)(x> .

By modularity, ^ ( x ) = <x> x CQp{x) . Since x acts irreducibly on

Q/Q' , CQP(X) 5 Q'P . By modularity again,

CpQ(x) = Q'Cp(x) = CQ(x)Cp(x) .

(7). \C\2 = \P\ .

We count the G-conjugates of x in two ways. First, by (6), x has

\G : CG(x)| = \P : C\\Q : C (x)| conjugates.

For any x' conjugate to x , let L = <x, x' > . Suppose L is not

a p-group. Then LP/P = Q(x) . Since L is p-nilpotent, L + G , and

therefore L n P = 1 , by the irreducibility of §<x> on P . Thus

L = L/LnP = g<x> . Since Q(x) = NgiQ) , L is either a p-group or

conjugate to NQ{Q) .

Since <x, P> is the unique Sylow P-subgroup of G containing x ,

<x, x' > is p-group only if x' d <x, P> . There are \P : c\ \Q : C&(x)\

conjugates of x in G and |S : C«(x)| Sylow p-subgroups in G .

Hence each Sylow p-subgroup contains

(\P : C\\Q : CQ(x)\)/(\Q : ̂ (x)|) = |P : G\

conjugates of x .
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If x and x1 normalize Q , <x> and <x' > are ^-conjugate, and

since Ng(<x>) = C^(x) , x and x' are 6-conjugate. Therefore Q(x)

contains \Q : C~(x)| - 1 conjugates of x apart from x . Now if x

-1 -1
normalizes Q and $ , then ar' normalizes § , and x = x^ for

some t i Q . Thus a; ^ = £ and Q ^ = $ ; that i s , the conjugates of

Q normalized by x are conjugate under C~(x) . Thus there are

[\Q : CQ(x)\-l)\CG(x) : Cff(a;) n ifff(«)| = {\Q : CG(x) | - l ) | c |

conjugates x' of x which with x generate a group isomorphic to

Q(x) . This completes the second count of the conjugates of x .

Comparing, we have

\P : C\ + |C|(|« : CQ(*)|-l) = |P : C||G : ̂ ( x ) | ,

from which we have

0 = [\Q : C c (x ) | - l ) ( |P : C | - | c | ) .

Since Cn(x) ? Q , the conclusion follows.

Let A: be a f in i t e sp l i t t i ng f ield for Q(x) . Viewing P as a

GF(p) = F module for Q<x) , we consider the #3<x>-module V = K ®p P .

By [4, Satz V, 13-3H, V i s a direct sum of absolutely irreducible

KQ<x>-modules , V, , . . . , V . I t is routine to check that

dim^ Cy(x) = dimf Cp(x) = -| dim^ P and Cy{x) = I Cy (x) . For the
i

argument below, let W denote any one of the submodules {V.} . Since the
if

representations of <?<x> on the modules {V.} are algebraically

conjugate, the representation on W is faithful.

(8). Q is not abelian.

Suppose Q is abelian. By the remarks preceeding step (k) above, Q

is elementary abelian and x acts irreducibly on Q . Thus Q(x) is a

Frobenius group with cyclic complement. By Clifford's Theorem [2, Theorem

3.U.I], W is a direct sum of Q-submodules {W.} , each of which is a
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direct sum of isomorphic irreducible Q-submodules. Further, <x>

permutes the homogeneous components {W.} transitively. By Theorem 3.h.3

of [2], the number of homogeneous components {W.} is the order of <x> ,

in our present case. Thus <a;> permutes the components regularly and

therefore l ^ x ) ! = {w^ . Hence dim^ Cy(x) = (l/p) dim^ W and so

dim,, Cy(x) = (l/p) dim,. V . Since p > 2 , this contradicts (T).

(9). G does not exist.

By (8) and the remarks above (U), we are left with the case that Q

is special. We argue that W is an irreducible Q-module. Again, by

Clifford's Theorem, W is a sum of e homogeneous ^-components. If

e + 1 , choose E to be an irreducible §-submodule of the first

component. Then £ Ex1 is a Q<a;)-submodule of W . Thus W = £ Ear'*' and

each component is irreducible. Since <x) acts transitively on the set of

components and x has order p , <x> acts regularly. As in (8), the

centralizer of x in W is too small. Thus e = 1 and W is a sum of

isomorphic irreducible ^-modules. By a theorem of Green [2, Theorem

3.5.6], the number of distinct irreducible Q-submodules of W is

congruent to 1 modulo p and so <a;> fixes a Q-submodule of W . Thus

W is irreducible as a 5-module.

Since the representation on W is faithful and absolutely

irreducible, Z{Q) is cyclic, that is, Q is extra-special. The

computations of Section 8 of [3] show that W , viewed as an <a;>-module,

is a sum of t copies of the regular representation and one copy of the

indecomposable representation of degree p - 1 . Thus W has ^-dimension

tp + p - 1 and C^(^) has X-dimension t + 1 . By (7),

2(£+l)« = (tp+p-l)u , forcing p = 2 + l/(t+l) . Thus t = 0 and p = 3 .

Hence W is a 2-dimensional X-space and Q(x) is isomorphic to a

subgroup of SL(2, K) . A 3-nilpotent subgroup of SL(2, K) which is not

a 3-group is isomorphic to SL(2, 3) , as follows from [4, Hauptsatz II,

8.27]. We now see that G is a semi-direct product of P with

SL(2, 3) , the latter being represented faithfully and irreducibly on P .

By [I], SL(2, 3) has only one faithful irreducible representation over

GF(3) , the natural representation of dimension 2 . Hence G = Qd(3) , a
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final contradiction.

Proof of Theorem 1. The element x can be written uniquely in the

form x = yz = zy , where y and z are powers of x , and y is a

p'-element and z is a p-element. For any g € G , <x, ar̂ > is

p-nilpotent, and so y £ 0 , (<x, a?)} . Thus (y, y&> is a p'-group for

all g £ G . By Proposition 1, y € 0 ,(G) . Similarly, (z, z$) is

p-nilpotent for all g € G . Applying Theorem 2, z € 0 , (G) unless

P >P

p = 3 and (z3 : g d G) involves Qd(3) . Thus x = yz £ 0 , (G)

unless p = 3 and { / : g ( C l > (^ : j ( C) involves Qd(3) .
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