$$
\alpha=n^{-\frac{1}{2}} \sum a_{i}, \quad \beta=n^{-\frac{1}{2}} \sum b_{i} .
$$

Then

$$
\sum a_{i}^{2} \sum b_{i}^{2}-\left(\sum a_{i} b_{i}\right)^{2} \geqslant \alpha^{2} \sum b_{i}^{2}-2 \alpha \beta \sum a_{i} b_{i}+\beta^{2} \sum a_{i}^{2}
$$

with the sign of equality if and only if the three row vectors $a=\left(a_{1}, \ldots, a_{n}\right), b=\left(b_{1}, \ldots, b_{n}\right), e=n^{-\frac{1}{2}}(1, \ldots, 1)$ are linearly dependent.
H. Schwerdtfeger

P 20. Given a plane square lattice of side length one and a positive integer n . Form all the sets S of n lattice points. Let $L(S)$ denote the length of the boundary of the convex closure of S. Estimate mins $L(S)$ in terms of n. (cf. H.D. Block, Proc. Amer. Math. Soc. 8 (1957), $860-862$.)
P. Scherk

P 21. It is possible to metrize an affine plane (with preservation of its natural topology) in such a way that on every affine line the metric is Euclidean, but that the whole plane does not become Euclidean, viz. by a Minkowski metric. Similarly, is it possible to metrize an affine space $\mathrm{A}^{\mathrm{n}}(\mathrm{n}>2)$ in such a way that in every affine plane the metric is Minkowskian, but that the whole space is not Minkowskian?

H. Helfenstein

SOLUTIONS

P 1. Let $f(x)$ be a Lebesgue ir egrable function on some interval $a-\varepsilon \leqslant x \leqslant b+\varepsilon, \quad \varepsilon>0$, and let $F_{h}(x)=h^{-1} \int_{x}^{x+h} f(t) d t$. An important theorem in the theory of Lebesgue integration states that $\lim _{h \rightarrow 0} F_{h}(x)=f(x)$ for almost all x. Show that we also have $\lim _{h \rightarrow 0} \int_{a}{ }^{b}\left|F_{h}(x)-f(x)\right| d x=0$.
W.A.J. Luxemburg

Solution by the proposer. We restrict ourselves to the case $h>0$ as the case $h<0$ is similar.

$$
\begin{aligned}
& \int_{a}^{b}\left|F_{h}(x)-f(x)\right| d x=\int_{a}^{b}\left|h^{-1} \int_{x}^{x+h} f(t) d t-f(x)\right| d x \\
= & \int_{a}^{b}\left|h^{-1} \int_{o}^{h}(f(t+x)-f(x)) d t\right| d x \leqslant h^{-1} \int_{a}^{b} \int_{o}^{h}|f(t+x)-f(t)| d t d x \\
= & h^{-1} \int_{o}^{h}\left(\int_{a}^{b}|f(t+x)-f(t)| d x\right) d t .
\end{aligned}
$$

(This last integral exists if h is sufficiently small, as f is integrable over $(a-\varepsilon, b+\varepsilon)$.) If we put $\omega_{1}(\delta)=$ $\sup \left(\int_{a}^{b}|f(x+t)-f(x)| d x, 0<t \leqslant \delta\right)$ then we know that $\lim _{\delta \rightarrow 0} \omega_{1}(\delta)=0$. (This can be proved as follows; given $\varepsilon>0$ we can find a continuous function $\varphi(x)$, which is continuous for all x and such that $\int_{a-\varepsilon}^{b+\varepsilon}|f(x)-\varphi(x)| d x<\varepsilon / 3$, as $\varphi(x)$ is uniformly continuous on $(a-\varepsilon, b+\varepsilon)$ we can find a $\delta(\varepsilon)>0$ such that $|\varphi(x+t)-\varphi(x)|<\varepsilon / 3(b-a)$ for all $|t|<\delta$. If $0<t<\min (\varepsilon, \delta)$ then we have $\int_{a}^{b}|f(x+t)-f(x)| d x \leqslant \int_{a}^{b}|f(x+t)-\varphi(x+t)| d x+$ $\int_{a}^{b}|\varphi(x+t)-\varphi(x)| d x+\int_{a}^{b}|\varphi(x)-f(x)| d x \leqslant \varepsilon / 3+\varepsilon / 3+$ $\int_{a}^{a}|\varphi(x+t)-\varphi(x)| d x \leqslant \varepsilon$ if $0<t<\delta$.) But as $\int_{a}^{b}\left|F_{h}(x)-f(x)\right| d x \leqslant \omega_{1}(h)$ we have $\lim _{h \rightarrow 0} \int_{a}^{b}\left|F_{h}(x)-f(x)\right| d x=0$.

P9. Let $f(x)$ be a polynomial with integer coefficients. Let $a_{0} b e$ an integer and $a_{n+1}=f\left(a_{n}\right), n=0,1,2, \ldots$. Prove that if $a_{0}=a_{k}(k>0)$ then $a_{n}=a_{n+2}$ for all $n \geqslant 0$.
J. Lambek and L. Moser

Solution by the proposers.
Clearly
$\left(a_{n}-a_{n-1}\right) \mid\left(f\left(a_{n}\right)-f\left(a_{n-1}\right)\right)$, that is $\left(a_{n}-a_{n-1}\right) \mid\left(a_{n+1}-a_{n}\right)$ for all $n>0$. Let $b_{n}=a_{n+1}-a_{n}$. Then $b_{n} \mid b_{n+1}(n \geqslant 0)$ and so $b_{n}^{2} \leqslant b_{n+1}^{2}(n \geqslant 0)$. If $a_{0}=a_{k}$ then $a_{1}=f\left(a_{0}\right)=f\left(a_{k}\right)=a_{k+1}$ and in general $a_{n}=a_{n+k}(n \geqslant 0)$. Hence also $b_{n}=b_{n+k}(n \geqslant 0)$. Now $b_{n+1}^{2} \leqslant b_{n}^{2}+2 \leqslant \ldots \leqslant b_{n+k}^{2}=b_{n}^{2}$. Thus $b_{n}^{2} \leqslant b_{n+1}^{2} \leqslant b_{n}^{2}$ and $b_{n}^{2}=b_{n+1}^{2}(n \geqslant 0)$. Consider two cases:
Case 1. $b_{n}=b_{n+1}$ for all n. In this case the a_{0}, a_{1}, \ldots is an arithmetic progression and since $a_{o}=a_{k}$ all the a's must be equal so that $a_{n}=a_{n+2}$.
Case 2. For some $m, b_{m}=-b_{m+1}$. This implies $a_{m_{1}}=a_{m+2}$. i.e. If $a_{m}=c$ and $f(c)=d$ then $f(d)=c$. Hence beyond a certain stage the a's are alternately c and d. However since $a_{0}=a_{k}=a_{2 k}=\ldots, a_{o}$ must be either c or d and the proof is complete.

