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Modification of flow transition for a vortex ring
by a bubble released at the axis
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The interactions between a vortex ring and a gas bubble released at the axis are studied
numerically, which shed light on understanding more complicated bubble–turbulence
coupling. We fix the Reynolds number at Reτ = 7500 and consider various Weber numbers
in the range of We = 130–870. We find that the translating speed of the vortex ring is
substantially lower than the case of the vortex ring without a bubble. It is explained
with two different mechanisms, depending on the Weber number. In the low-We range,
the reduction of translating speed of the ring is due to the capture of bubbles into the
ring core, leading to significant changes in the vorticity distribution within the core. In
the high-We range, the repeatedly generated secondary vortex rings perturb the primary
one, which bring about an earlier flow transition, thereby reducing the translating speed
of the vortex ring. On the other hand, the evolution of a gas bubble is also affected by
the presence of the vortex ring. In the low-We range, we observe binary breakup of the
bubble after it is captured by the primary vortex ring. In contrast, in the high-We range,
it is interesting to find that the bubble experiences sequentially stretching, spreading and
breakup stages. In the high-We range, the numbers of smaller bubbles predicted by the
classical Rayleigh–Plateau instability of a stretched cylindrical bubble agree well with
our numerical simulations. Consistent with the previous experiments, this number keeps
unchanged at 16 as We further increases. An additional comparison is made between two
higher Reynolds numbers, indicating that the finer eddies in a vortical field with a higher
Reynolds number tend to tear the bubble into more fragments.

Key words: bubble dynamics, transition to turbulence, vortex instability

1. Introduction

Bubbly flows occur in a wide range of applications, from chemical reactors to ship
hydrodynamics. The interaction between turbulent eddies and bubbles determines the
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resulting bubble size distribution and, the other way around, the bubbles play an important
role in the turbulent properties of the bubbly flows. It has been well established that the
local flow pattern can determine the deformation and breakup of the bubbles, depending
mainly on the Weber number, We = ρε2/3R5/3

b /σ , representing the ratio between the
turbulent stresses acting on the surface of the bubble and the confining stresses due
to surface tension, where ε is the turbulent dissipation rate, Rb is the bubble radius
and σ is the surface tension (Martínez-Bazán 2015). The early works of Kolmogorov
(1949) and Hinze (1955) proposed two mechanisms for bubble breakup, as reviewed by
Martínez-Bazán (2015). The inertial mechanism leads to bubble breakup when the Weber
number is high, when the pressure fluctuations acting on the bubble surface are sufficiently
large to overcome the confining surface tension forces (Martinez-Bazan, Montanes &
Lasheras 1999a,b). The second mechanism, at low Weber number, is a resonance between
the oscillation of the bubble and the turbulent flow, which leads to an accumulation of
surface energy due to the bubble interaction with a sequence of turbulent eddies until
the bubble breaks (Risso & Fabre 1998; Lauterborn & Kurz 2010). A more general view
of the bubble deformation and breakup problem can be found in the review by Risso
(2000), or a more recent review of the direct numerical simulation of turbulent flows laden
with droplets and bubbles (Elghobashi 2019). Recently, experimental results were obtained
regarding the shape of a bubble placed in a horizontal solid body rotational flow, reporting
that a resonance between the driving frequency and the eigenfrequency of the bubble leads
to a binary breakup of the bubble (Rodgar et al. 2021).

We know that the reduction of frictional drag through gas or bubble injection has
been a hot topic (Ceccio 2010; Murai 2014), which leads to extensive studies of the
interactions between bubbles and turbulent boundary layers. It has been reported that a
few volume percent (≤4 %) of bubbles can reduce the overall drag by up to 40 % and
beyond (Van den Berg et al. 2005; van den Berg et al. 2007; Elbing et al. 2008, 2013; van
Gils et al. 2013). However, the exact physical mechanisms responsible for frictional drag
reduction using bubbles in turbulent boundary layers are still not completely understood
(Murai 2014). Generally speaking, drag reduction by bubbles can either be caused by
direction modification of fluid properties like density and viscosity (L’vov et al. 2005),
or through more complicated interactions between bubbles and turbulent structures within
the boundary layer (Ferrante & Elghobashi 2004; Lu, Fernández & Tryggvason 2005).
The latter has attracted more attention due to the rich physics in this two-way coupled
system. Apparently, the coherent structures present in turbulent flow can be modified by
the presence of bubbles (Ferrante & Elghobashi 2004), and on the other hand, the strong
shear in the boundary layer can deform the bubbles which in turn modifies the turbulent
flow (Spandan, Verzicco & Lohse 2018). Lu et al. (2005) reported that the presence of
bubbles could suppress streamwise vortices and enstrophy, therefore reducing the wall
shear stress. It has been shown experimentally in turbulent Taylor–Couette flows that the
bubble deformability is crucial in the drag reduction mechanism, which modifies the lift
force coefficient of the lift acting on the bubble and thus the bubble distribution in the flow
(van Gils et al. 2013; Verschoof et al. 2016), which has also been confirmed by numerical
simulations (Spandan et al. 2018).

There have been relatively few investigations of the interaction of bubbles with a single
vortex structure. Jha & Govardhan (2015) studied experimentally the interaction of a single
bubble with a single vortex ring in water, covering a range of Weber numbers between
0.155 and 19 according to the definition Weτ = ρl(Γ0/2πR0)

2/(σ/Rb). Here, ρl is the
water density, Γ0 is the initial vortex ring circulation, R0 is the ring radius, Rb is the bubble
radius and σ is the surface tension. Another definition, We = 0.87ρl(Γ0/2πa)2/(σ/Db)
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with Db = 2Rb and a being the vortex core radius, gives a range of 3 to 406. In their
experiments, a gas bubble was initially released outside the vortex ring, and the bubble
was smaller than the vortex ring. They found that the bubble was attracted towards the
vortex due to the radial pressure gradient induced by the ring, and got engulfed into the
vortex core. Once inside the core, the bubble was elongated due to the azimuthal pressure
gradient caused by its presence, until it eventually broke. They also reported that, in the
low-Weber-number case (lower than a critical value), the vortex core was fragmented when
the bubble was trapped, with a simultaneous reduction in enstrophy and ring convection
velocity. Similar processes of a bubble being trapped into a vortex ring as well as its
subsequent azimuthal elongation and breakup have also been observed in more recent
research (Biswas & Govardhan 2020), with both a single bubble and multiple bubbles
considered. With a larger bubble, which is comparable to the vortex ring, experiments
were performed with a major focus on the bubble breakup parameters, such as breakup
frequency, number of daughter bubbles resulting from the breakup and the size distribution
(Zednikova et al. 2019).

Although the two-way coupling between bubble and vortex ring has been considered
in the previous studies mentioned above (Jha & Govardhan 2015; Zednikova et al. 2019;
Biswas & Govardhan 2020), their major focus was still on the deformation and breakup
of bubbles. It would be of interest to study the effect of bubbles on the characteristic
properties of the vortex ring to extrapolate the results to more complex turbulent bubbly
flows, as addressed by Martínez-Bazán (2015). It is known that three-dimensional direct
numerical simulations can give more details of the flow structure, particularly the breakup
and reconnection of vortex filaments related to flow transition. In our present work, we
study numerically the idealised case of the interaction of a single bubble with a single
vortex ring, at a fixed Reynolds number ReΓ = 7500, with varying Weber numbers. We
are interested in both the bubble dynamics perspective and the modified transition process
induced in the vortex ring due to the interaction.

2. Formulation of the problem

2.1. Problem set-up
The initial flow field is a quasi-Gaussian or the Lamb–Oseen vortex (Fabre, Sipp & Jacquin
2006; Mao & Hussain 2017). Non-dimensionalising the lengths by the ring radius R0, the
vortex profile is centred at (x, η) = (0, 1), and its non-dimensional velocity components
in the (x, η, φ) coordinates (see figure 1) are written as

ux = Γ0

2π

1 − η

x2 + (η − 1)2 (1 − e−(x2+(η−1)2)/a2
), (2.1)

uη = Γ0

2π

x
x2 + (η − 1)2 (1 − e−(x2+(η−1)2)/a2

), (2.2)

uφ = 0, (2.3)

where Γ0 is the initial circulation and a is the initial radius of the vortex core. Here, a/R0 =
0.2 is applied throughout this work. The initial bubble is spherical, with a size of Rb/R0 =
0.284 and a distance 0.2R0 from the ring centre. We note that the induced velocity has
an axial component of 1/2π ≈ 0.159 at the centre of the vortex ring, i.e. ux ≈ 0.159 at
(x, η) = (0, 0). To initialise the vortex ring from being perfectly circular, we perturb the
local radius η by adding a small parameter ζ � 1 multiplied by the sum of a set of N
Fourier modes, each with unit amplitude and random phase, as adopted in a previous
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x O η

φ

Figure 1. A vortex ring and a gas bubble in the cylindrical coordinate system, where x, η and φ are the axial,
radial and azimuthal coordinates respectively, and the origin O is at the centre of the ring. The gas bubble is
released initially at the x axis with a short distance 0.2R0 from O, as illustrated in this figure.

study (Archer, Thomas & Coleman 2008). After initialisation, the flow is relaxed quickly
to the real solution by solving the Navier–Stokes equations. The velocity in the cylindrical
coordinate system, written in (2.1) to (2.3), can be easily transformed to the Cartesian
coordinate system used in our three-dimensional simulations.

2.2. Numerical method
The flow involving two immiscible phases can be solved using a single-fluid continuum
approach. We solve the time-dependent Navier–Stokes equations in incompressible form
under a finite-volume framework, considering the translation of a liquid vortex ring and
the deformation and translation of a gas bubble induced by the vortex ring. The differential
forms of the governing equations are

∇ · u = 0, (2.4)

∂ρu
∂t

+ ∇ · (ρuu) = −∇p + ρg + ∇ · τ + F σ , (2.5)

where u is the velocity vector, p is pressure, g is the gravitational acceleration pointing
in the negative direction of the x axis, τ represents the deviatoric stress tensor, F σ is
included to represent the surface tension of the liquid–gas interface and ρ and μ are the
mixture density and dynamic viscosity of the fluid, respectively, defined as

ρ = ϕρl + (1 − ϕ)ρg, (2.6)

μ = ϕμl + (1 − ϕ)μg. (2.7)

The subscripts l and g represent respectively the liquid and gas phases. The density
ratio ρl/ρg is set to be 1000, approximating that between water and air. Here ϕ is the
volume fraction of liquid that has a value of one in the liquid and zero in the gas. In the
volume-of-fluid method, ϕ represents volume fractions of one of the two fluids and varies
smoothly between 0 and 1. The interface can be defined as the surface where the value of
ϕ is equal to 0.5. The volume fraction ϕ is evolved using the following advection equation:

∂ϕ

∂t
+ ∇ · (ϕu) = 0. (2.8)

An algorithm called isoAdvector (Roenby, Bredmose & Jasak 2016) based on the
volume-of-fluid method is used to reconstruct geometrically and advect the phase
interfaces. This algorithm is satisfactory in terms of volume conservation, boundedness,
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surface sharpness and efficiency. The surface tension term F σ in (2.5), at any point on the
interface, assuming the interfacial tension σ is constant, can be obtained as

F σ = σκ∇ϕ, (2.9)

where κ is the curvature of the interface calculated by the continuum surface force method
(Brackbill, Kothe & Zemach 1992).

To provide satisfactory accuracy in space for the evolution of the vortex ring, as
well as that of the gas bubble, several levels of refinements are applied to an initially
uniform Cartesian grid. The mesh cells in a box, which encloses the vortex ring and
its later developed flow structure, have a length of 0.01R0 in all three dimensions. In a
smaller box, which encloses the gas bubble, the cell length is 0.005R0. Therefore, 80
cells are distributed along the bubble diameter. The whole computational domain has
approximately 35 million cells. To ensure spacial accuracy as the flow evolves, we move
the computational domain axially with the speed at which the vortex ring translates. The
integral form of the governing (conservation) equations defined in a moving volume V
bounded by a closed surface S can be found in our previous study (Deng & Caulfield
2018). As the volume V is no longer fixed in space, its motion is captured by the motion of
its bounding surface S at the boundary velocity us.

The space discretisations for (2.5) are second-order upwind for the convection terms
and central differences for the Laplacian terms. The temporal term is discretised by
the implicit Crank–Nicolson method. The pressure–velocity coupling in incompressible
flow simulation is obtained using the pressure-implicit with splitting of operator scheme
(Ferziger, Perić & Street 2002). At the outer boundary of the computational domain (a
cube with a side length of 100R) we set the normal components of the velocity gradients
to be zero, and the pressure (excluding the hydrostatic pressure) to be zero. To ensure
time-discretisation independence, we choose the size of time step, meeting the requirement
Co = δt|U |/δx < 1 for all cells, in which |U | is the magnitude of the velocity through a
cell and δx is the cell width in the direction of the velocity.

2.3. Non-dimensional parameters
Since the vortex ring at ReΓ = 7500 has been extensively studied by both experimental
measurements (Weigand & Gharib 1994) and numerical simulations (Bergdorf,
Koumoutsakos & Leonard 2007), we fix this Reynolds number for most simulations. Here,
ReΓ is defined as

ReΓ = ρl
Γ0

μl
, (2.10)

where μl is the dynamic viscosity of the liquid. The Weber number, which is a measure of
the relative importance of the fluid’s inertia compared to its surface tension, is defined as

We = 0.87ρl(Γ0/2πa)2

(σ/Db)
, (2.11)

following a previous study (Oweis et al. 2005), which may be thought of as the ratio of
the pressure difference (ΔP = 0.87ρ(Γ0/2πa)2) between the vortex core and the far field
to the Laplace pressure (σ/Db) for a spherical bubble. In this study, We varies in the range
of 130.5–870. We also note that for a freely rising gas bubble in quiescent liquid, it can
be characterised by two parameters, the Eötvös number and the Galileo number, defined
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respectively as

Eo = ρlgD2
b

σ
and Ga = ρ2

l gD3
b

μ2
l

, (2.12a,b)

where g is the magnitude of gravitational acceleration and Db is the diameter for
an equivalent spherical bubble (here Db = 2Rb). According to the currently chosen
parameters, Ga is fixed at 43.2, and Eo varies from 0.00048 to 0.016, corresponding to
a perfectly spherical bubble when it is driven only by buoyancy force (Tripathi, Sahu &
Govindarajan 2015). A direct comparison between the We and Eo ranges indicates that the
flow induced by the vortex ring plays a profoundly more significant role than the buoyancy
force.

3. Transition of the vortex ring at ReΓ = 7500

For a translating vortex ring, its main instability is referred to as the Tsai–Widnall
instability, or azimuthal instability, which leads to an extensive bending of the initially
circular vortex lines. Following a previous study (Archer et al. 2008), in three-dimensional
isosurface plots, we distinguish between the region of intense vorticity at the core centre,
which is called the ‘inner core’, and the surrounding outer-core region of lower vorticity,
which we call ‘halo’ vorticity, as shown in figure 2. It is seen that after the formation
of a number of standing waves around the core azimuth, due to a narrow band of
independently growing linear instability modes, the flow enters into a nonlinear transition
phase. At the early stage, the constructive interference between different modes causes a
noticeable ‘lop-sidedness’ to the wave growth and associated core displacement. As shown
in figure 2(b), the inner-core displacement becomes appreciable and the halo vorticity rolls
up into an interwoven mesh of secondary structure, which consists of a series of loops
encompassing the inner core. We note that neighbouring loops are of alternating signed
vorticity, and two loops wrap around each azimuthal wave (see figure 2a), consistent with
previous experimental observations (Dazin, Dupont & Stanislas 2006b) and simulations
(Bergdorf et al. 2007; Archer et al. 2008).

At later times, the stationary coherent vortical structure found during the laminar
and transitional phases is superseded by the swirling of vorticity filaments, as seen in
figure 2(c,d). The core region is no longer stationary, but bends and twists with time, with
vorticity filaments similar to the secondary structure generated continually. The vorticity
filaments circulate around the core and gradually pass out of the vortex bubble and into
the wake as a stream of vorticity filaments and hairpin vortices.

Transforming the simulated results back to the cylindrical coordinate system, we can
investigate the global behaviour of flow evolution more conveniently. The circulation can
be obtained by

Γ =
∫ +L

−L

∫ ∞

0
〈ωφ〉 dη dx, (3.1)

where 〈ωφ〉 represents the mean azimuthal vorticity. The centre of the vortex ring in the
(x, η) space is evaluated by

xo =
∫ +L

−L

∫ ∞

0
x〈ωφ〉 dη dx, ηo =

∫ +L

−L

∫ ∞

0
η〈ωφ〉 dη dx. (3.2a,b)

To quantitatively study the characteristics of azimuthal instabilities, we perform the
Fourier analysis of the axial vorticity ωx(x, η, φ). For each η–φ plane, the azimuthal
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Inner core rim

Halo vorticity

Inner core

(a) (b)

(c) (d )

Figure 2. Three-dimensional isosurface visualisations of the secondary structures at t∗ = 130 (a,b) and t∗ =
160 (c,d), where t∗ = tΓ0/R2

0. In (a,c), the dark-grey surfaces correspond to the inner-core regions |ω|R2
0/Γ0 =

2.8; the red and blue surfaces correspond to ωxR2
0/Γ0 = 0.85 and ωxR2

0/Γ0 = −0.85 respectively, visualising
the secondary structure. In (b,c), the light-grey surfaces correspond to QR4

0/Γ
2

0 = 0.2.

component decomposition of ωx is written as

ωk(x, η, φ, t) = Ck(x, η, t) cos(kφ) + Sk(x, η, t) sin(kφ), (3.3)

where Ck and Sk represent the Fourier coefficients defined by

{Ck(x, η, t), Sk(x, η, t)} = 1
π

∫ 2π

0
ωx(x, η, φ, t){cos(kφ), sin(kφ)} dφ. (3.4)

Based on this decomposition, a measure of the amplitude of the azimuthal component of
ωx for each wave number on the axial plane is given by

Ak(x, t) =
(∫ 2π

0

∫ ∞

0
ω2

k(x, η, φ, t)η dη dφ

)1/2

. (3.5)

To investigate the development of instability, we measure the first 30 modes at three
different x slices, as shown in figure 3(a–d). It is clearly shown that the streamwise
vorticity, ωx, appears with the onset of the Widnall instability, which is apparent in
the excitation of the linear unstable mode k = 8 (Bergdorf et al. 2007). At the early
stage, ωx is relatively weak from the pattern of ωx, as shown at t∗ = 120. With the
rapid evolution of the secondary instability, energy is transferred to the second and third
harmonics k = 16 and k = 24, as shown in figure 3(c) for t∗ = 140. With the vortices
breaking into small-scale ones, the dominant mode and its harmonics decay rapidly and
all the modes exhibit the same order of magnitude in figure 3(d), indicating the flow
transition to a turbulent state. These observations agree well with the previous findings in
both experiments (Dazin, Dupont & Stanislas 2006a; Dazin et al. 2006b) and numerical
simulations (Bergdorf et al. 2007). To further confirm the turbulent state as the nonlinear
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2.0

1.5

1.0Ak

k

t ∗ = 120 t ∗ = 130 t ∗ = 140 t ∗ = 160

k k k

0.5

0 4 8 12 16 20 24 28

2.0

1.5

1.0

0.5

0 4 8 12 16 20 24 28

2.0

1.5

1.0

0.5

0 4 8 12 16 20 24 28

2.0

1.5

1.0

0.5

0 4 8 12 16 20 24 28

(e)

(b)(a) (c) (d )

( f ) (g) (h)

Figure 3. (a–d) Development of the first 30 harmonics. The three lines with different colours in the spectra
represent different measuring planes x = x0 − 0.5a, x0 and x0 + 0.5a (referring to (3.2a,b)). (e–h) The
corresponding ωx structures, where the initial vortex ring is marked by a circle.

instability fully develops, we present the energy Ek for different azimuthal modes in
figure 4(a), which can be calculated by

Ek(x, t) =
∫ 2π

0

∫ ∞

0

1
2
|u′

k(x, η, φ, t)|2η dη dφ, (3.6)

where u′
k is the azimuthal component decomposition of the fluctuation velocity, i.e.

the flow velocity subtracting the average translating speed of the vortex ring. It is
identified that the law of energy decay follows a characteristic k−5/3 law, indicating that
the vortex ring has broken into a turbulent state. Alternatively, we create a structured
256 × 256 × 256 isotropic mesh, enclosing the vortex ring, and map the flow velocities
onto this mesh. Integrating over all wavenumbers k2 of magnitude |k2| = k for the trace
of a velocity-spectrum tensor, we obtain the energy-spectrum function Ek2, as shown in
figure 4(b) (Pope 2000). Here, we use k2 to distinguish from the azimuthal mode number
k. The inertial subrange characterised by the well-known Kolmogorov k−5/3 law is seen
more clearly for the higher Reynolds number Reτ = 15 000, which spans down to a length
scale around 0.11R0. We should point out that at Reτ = 15 000 the vortex ring is still
in the laminar-transitional regime, without being fully turbulent yet, as noted previously
(Foronda-Trillo et al. 2021).

4. Interaction of a vortex ring with a bubble

We now investigate how a bubble affects the evolution of a translating vortex ring and,
vice versa, the bubble deformation caused by the strain of the vortical flow. The bubble
is released from the position shown in figure 1 at time t∗ = 10, when the vortex ring
has relaxed to a divergence-free flow. We present in figure 5 the normalised horizontal
position of the vortex ring as it interacts with the bubble for different We cases. The motion
of the same ring in the absence of the bubble has also been included as the baseline
case. The translation speed at any given instant can be easily obtained as the slope of
the position–time data shown. For the vortex ring alone, we know that the formula of
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10–3

10–4

10–5

1 10

t ∗ = 140
Reτ = 7500

Reτ = 15000
t ∗ = 160
t ∗ = 200

k

Ek Ek2

20 40 60 80
1 × 10–10

1 × 10–9

1 × 10–8

1 × 10–7

1 × 10–6

1 × 10–5

10

k2 = 2R0/l

k2
–5/3

k–5/3

20 40 60 80

(b)(a)

Figure 4. (a) Development of azimuthal modal energies at three sequential times: t∗ = 140, t∗ = 160 and
t∗ = 200, for Reτ = 7500. The energy decay for t∗ = 200 follows a characteristic k−5/3 law, which is denoted
by a dash-dotted line. (b) The traditional Kolmogorov energy spectra for Reτ = 7500 and Reτ = 15 000.

translation or convective speed was found as

Uc = Γ0

4πR0

[
ln

8R0

a
+ C

]
, (4.1)

where C is a function of the shape of the vorticity distribution and a is a measure of the core
radius. For a uniform distribution C = −1/4, and for a Gaussian core vorticity distribution
C 
 −0.558 (Saffman 1970). For a translating vortex ring, the core spreads over time to
be of order a ∼ a0 + (νt)1/2 ∼ a0 + (νΓ )1/2R0, where a0 is the initial value of the core
radius, indicating that the decay of the translation speed is dominated by viscous diffusion.
Fukumoto & Moffatt (2008) estimated the translation speed of a vortex ring in a viscous
fluid medium as

Uc = Γ0

4πR0

[
ln
(

4R0√
νt

)
− 0.558 − 3.6716

νt

R2
0

]
. (4.2)

In figure 5, we see that the distance travelled by the vortex ring interacting with a bubble
is less than that by the non-interacting vortex ring for all Weber numbers. It is interesting
to find that the difference between the ring–bubble interacting case and the baseline ring
increases as We is decreased in the low-We cases, i.e. We = 130, 174 and 217, implying an
increased contribution from the surface tension forces. For example, at We = 130, there
is a significant decline in the translation speed of the ring at early times when it starts to
interact with the bubble (see the inset of figure 5), which is more pronounced at later times
(see the main plot of figure 5). In contrast, we cannot find a notable monotonic behaviour
in the high-We range. This difference between low- and high-We ranges implies a different
ring–bubble interacting mechanism, which we discuss in more detail by examining their
flow structures.

We also plot the histories of the vortex translational velocity in figure 6, in which the
decaying speed provided by the empirical formula (4.2) is also presented for reference. In
figure 6(a), in the low-We range, we observe that the translational speed of the vortex ring
for We = 130 decays more rapidly, and eventually to a much lower level than the other
cases. A comparison between figures 6(a) and 6(b) shows that the low-We range exhibits
stronger fluctuations of the translational speed at the early stage, due to the oscillating
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Figure 5. The horizontal position (x/R0) of the vortex ring as a function of time. The results with different
Weber numbers are divided into two groups: data for the low We values are shown with solid lines of different
colours and those for the high We values are shown with symbols. The black solid line represents the motion
of the same ring without bubbles. In the inset, the data in a smaller time range are shown.
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Figure 6. Histories of vortex translational speed for (a) the low-We range and (b) the high-We range. In (a),
the black line is the Saffman formula (4.2), which has been shifted to match the numerical results. In the inset
of (a), the stepwise decay of the translational velocity is observed for the case without bubbles.

motion (accelerating and decelerating process) of the bubble along the vortex ring axis
before being trapped into the vortex core.

To quantify the strength of secondary flow structure due to the azimuthal symmetry
breaking as well as the flow transition to turbulence, we measure the total enstrophy
according to the streamwise vorticity, expressed as

Ωx = 1
2

∫
ω2

x dV. (4.3)

We show the evolution of Ωx in figure 7. It is seen that the rapid growth of enstrophy is
earlier for the ring–bubble interacting cases than that in the absence of a bubble, indicating
the earlier appearance of secondary flow structure. In the low-We range, the lowest Weber
number, i.e. We = 130, presents the largest growth rate of enstrophy and reaches the peak
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Figure 7. Evolution of enstrophy for the secondary vorticity filaments wrapping around the primary vortex
ring in the flow field for (a) the low-We range and (b) the high-We range. The case without a bubble is also
included in both panels.

earlier than the rest, as shown in figure 7(a). In contrast, we cannot find a strong correlation
between Weber number and the evolution of enstrophy in the high-We range, shown in
figure 7(b). However, it is interesting to notice that there is a bump around t∗ 
 20 as
marked by the dashed circle in figure 7(b), which is due to the separation of the boundary
layer around the bubble when it is accelerated or decelerated by the vortex, as addressed in
a previous study (Foronda-Trillo et al. 2021). The previous study has also addressed that
this detached vorticity is responsible for triggering the vortex instability. Clearly, the larger
the Weber number, the more intense is this secondary vortex, as the bubble deforms more
intensely.

As implied in figure 7, the interaction between the vortex ring and bubble is complicated
and correlated to the surface tension forces of the bubble or equivalently the Weber number
(We). To distinguish between the low- and high-We ranges, we select two representative
cases from each, and present their evolution of flow structure and bubble deformation, as
shown in figures 8 and 10 for We = 130 and We = 348 respectively. In figure 8, at the early
stage, we see that the bubble translates with the vortex ring, while staying at the centre of
the ring, when the whole flow structure is still symmetric. As seen at t∗ = 15, a small
secondary vortex ring is induced by the bubble, which propagates backwards through the
primary vortex ring (see t∗ = 25), accompanied by the generation of another secondary
ring. The first secondary ring translates further downstream, and eventually disappears
in the wake (see t∗ = 45). The repeatedly generated secondary rings perturb the primary
one, leading to its azimuthal symmetry breaking, as shown at t∗ = 45 and t∗ = 55. The
primary vortex ring then exhibits the same unstable wavenumber, resembling that shown
in figure 2, i.e. k = 8, for the vortex ring in the absence of bubbles. Then, the bubble
moves towards the ring core and is captured by it, due to the low pressure within the core
(see t∗ = 65). During this process of bubble entertainment, we also notice an overshoot
of the bubble, as seen at t∗ = 75. After that, as the bubble re-approaches the ring core,
the bubble breaks into two, as seen at t∗ = 85. Here, we note that We = 130 corresponds
to Weτ = 3, defined as Weτ = ρ(Γ0/2πR0)

2/(σ/Rb). In a previous study (Foronda-Trillo
et al. 2021), with a three-dimensional simulation, similar binary breakup of the bubble
was also reported at Weτ = 0.75 with Rb/R0 = 1/3, while at a different Reynolds number
Reτ = 15 000 and the bubble moves in the opposite direction of a translating vortex ring.
It is easy to identify that the number of small bubbles is n = 12 after breakup.
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(a)

(b)

Figure 8. Time sequence of (a) top view and (b) side view images, presenting the interaction of a bubble with
a vortex ring at We = 130. The light-grey surfaces correspond to QR4

0/Γ
2

0 = 0.2. The blue surfaces correspond
to the volume fraction of liquid ϕ = 0.5, representing the translation and breakup of the bubble. Note that the
vortex ring translates towards the outside direction of the paper in (a), while from the left to right in (b).

Shown in figure 9 are the magnitudes of the first 30 modes at different time instants
for We = 130, corresponding to figure 8. They resemble the development of the first 30
harmonics without bubbles (see figure 3), while with an earlier transition to turbulent
states. The overshoot of the bubble induced by its inertial migration is clearly seen in
figure 9(g), resulting in symmetric distributions of the streamwise vorticity regarding the
shooting direction.

In figure 10, we present the evolution of interacting vortex ring and bubble for We = 348.
The corresponding development of the first 30 harmonics for this case is shown in
figure 11. Instead of deviating from the ring centre, as shown in figure 8 for the low-We
range, the high-We cases exhibit a significantly different behaviour. Attracted by the
low pressure in the ring core, the bubble is stretched radially to a very thin ring, as
shown at t∗ = 15. This bubble ring continues to expand in the radial direction, until
the surface tension forces cannot keep the integrity of the bubble ring. It breaks into
multiple fragments, or small bubbles, as shown at t∗ = 20, where a further expansion of
the fragmented bubble ring is seen, as the small bubble reaches the outermost region of the
vortex ring. This is followed by a contraction of the bubbles towards the ring centre. After
that, the bubbles sit in the centre of the vortex ring core (see from t∗ = 25 to t∗ = 65). As
seen at these time instants, the vortex ring encloses a set of smaller bubbles of unequal
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Figure 9. (a–d) Development of the first 30 harmonics for We = 130. The spectra are measured on the plane
x = x0 (referring to (3.2a,b)). (e–h) The corresponding ωx structures, where the initial vortex ring is marked
by a circle.

sizes, which does not further break up, resembling that from a previous experimental
visualisation (see figure 1f in Jha & Govardhan (2015)) though with a different set-up.
A direct comparison between figures 8 and 10 shows that the secondary vortex filaments
become apparent at t∗ = 65 for We = 130, while at t∗ = 85 for We = 348, corresponding
respectively to their rising stages of the enstrophy histories in figure 7. In figure 10, though
much weaker, a secondary vortex ring induced by the spreading bubble can be observed,
which stays behind as the small bubbles are entrained into the primary vortex ring, as
shown at t∗ = 20.

To understand more clearly the stretching, spreading and subsequent breakup process
of the bubble, we present in figure 12 the time sequence of the early bubble spreading
stage with smaller time intervals. It is interesting to find that the bubble spreads to a flat
disk before the thin bubble ring is formed, which gets flatter and flatter until it is torn
from the centre, as seen at t∗ = 13.5. The ring bubble breaks into multiple fragments as
its radius increases beyond a critical value (between t∗ = 16.5 and t∗ = 18). Here, the
critical radius for the bubble ring is identified as rc = 0.76R0. We also note that the small
bubbles move along a spiralling path around the vortex core during the capture process,
before they reside in the core centre. Another phenomenon worthy of attention is that at
around t∗ = 22.5 when pairs of fine streamwise vortical filaments induced by the small
bubbles are observed. It could potentially trigger the azimuthal instability mode of the
wavenumber k = 12, depending on the number of small bubbles. However, this mode of
perturbation decays quickly after the bubble capture process completes, with only weak
vortex legs remaining in the wake, as seen from t∗ = 25 to t∗ = 65 in figure 10. Instead,
the mode k = 8 instability retakes the dominance, and the primary vortex ring undergoes
the secondary transition resembling that without bubbles.

After examining the vortex–bubble interacting process, it is easy to identify the number
of smaller bubbles for each Weber number case. As exhibited in figure 12, there is a
fixed, distinguishable number of smaller bubbles before the vortex ring transits further to
turbulence. Shown in figure 13 is the number of smaller bubbles as a function of We. For
the three low-We cases, the number is fixed at 2, while it increases with We in the high-We
range, reaching 16 at We = 391. This maximum number of 16 agrees coincidentally with
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Figure 10. Time sequence of (a) top view and (b) side view images, presenting the interaction of a bubble with
a vortex ring at We = 348. The light-grey surfaces correspond to QR4

0/Γ
2

0 = 0.2. The blue surfaces correspond
to the volume fraction of liquid ϕ = 0.5, representing the translation and breakup of the bubble. Note that the
vortex ring translates towards the outside direction of the paper in (a), while from the left to right in (b).
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Figure 11. (a–d) Development of the first 30 harmonics for We = 348. The spectra are measured on the plane
x = x0 (referring to (3.2a,b)). (e–h) The corresponding ωx structures, where the initial vortex ring is marked
by a circle.
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t∗ = 10.5 t∗ = 12 t∗ = 13.5 t∗ = 15 t∗ = 16.5

t∗ = 18 t∗ = 19.5 t∗ = 21 t∗ = 22.5 t∗ = 24

(e)(b)(a) (c) (d )
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Figure 12. (a–j) Time sequence of vortex–bubble interaction in the early stage, with smaller time intervals, at
We = 348. Note that the light-grey surfaces correspond to QR4

0/Γ
2

0 = 0.1, and the blue surfaces correspond to
the volume fraction of liquid ϕ = 0.5. The vortex ring translates towards the outside direction of the paper.

a previous experimental observation (Jha & Govardhan 2015). The number of smaller
bubbles keeps at 16 as We further increases, up to the highest Weber number We = 870
investigated in the current study. From the stretching and spreading process of the bubble
observed in figure 12, we conjecture that the classical Rayleigh–Plateau instability is a
possible mechanism determining the number of smaller bubbles after breakup, which is a
simplified model examining a stretched cylindrical bubble. In this model, the wavelength
corresponding to the maximum growth rate for the instability is about 4.5 times the
diameter of the cylindrical bubble. In the current study, first, we can identify the maximum
radius of the bubble ring, and thereby its azimuthal length Lb, before its breakup, as
demonstrated in figure 12. Then we can calculate the tube diameter Dt based on the gas
volume Vg, which does not change due to the conservation of the gas volume, and Lb.
Lastly, we can estimate the number of smaller bubbles by n = Lb/(4.5 ∗ Dt). To compare
with our numerical simulations, we include the estimated bubble numbers in figure 13.
Clearly, the visualised numbers of broken-off bubbles obtained in our simulations agree
well with that estimated by the Rayleigh–Plateau instability theory. It is therefore easy to
understand that the maximum number of smaller bubbles is limited to 16, due to the fact
that the maximum radius of the bubble ring is always smaller than that of the primary
vortex ring.

In addition, we present the development of modal energies for We = 130 and We = 348
respectively in figures 14 and 15. It is not surprising that the energy decay follows a
characteristic k−5/3 law as the flow develops to fully turbulent states. However, comparing
with the case without bubbles (see figure 4) and that with only two broken small bubbles
(see figure 14), the We = 348 case with 12 small bubbles distributed azimuthally along
the perturbed vortex ring presents distinctly different spectra, as shown in figure 15,
where a clear k−1 law is identified. We understand that the −1 power region of the
turbulence spectrum is a constant energy region responsible for energy production. Here,
the −1 power region implies the continuous energy injection caused by the two-phase
interactions at the early stage of turbulence. However, since it overlaps the inertial range
as the turbulence fully develops (see the −5/3 power at t∗ = 160), this energy-containing
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Figure 13. Variation of the number of bubbles with We after complete breakup of the bubble. The number of
Rayleigh–Plateau instability waves that fit on the cylindrical bubble is also shown.
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Figure 14. Development of modal energies for We = 130 at sequential times: t∗ = 68, t∗ = 85, t∗ = 140 and
t∗ = 160. The energy decay for t∗ = 160 follows a characteristic k−5/3 law, which is denoted by a dash-dotted
line.

region cannot be distinguished at that time. It will be of interest to simulate at higher
Reynolds numbers; then it will be possible to observe these two regions simultaneously.
We leave it as an open question.

5. Discussions on the effects of Reynolds number

In the previous experimental study, the only variable was the piston velocity, resulting
in different ring radii, core radii and circulation strengths of the vortex rings (Jha &
Govardhan 2015). Therefore, the Weber number always varies with the Reynolds number.
In this study, we investigate these two key parameters, Weber number and Reynolds
number, separately. Specifically, we investigate the effects of increasing the Reynolds
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Figure 15. Development of modal energies for We = 348 at sequential times: t∗ = 100, t∗ = 105, t∗ =
120, t∗ = 140 and t∗ = 160. The energy decay for the late time follows a characteristic k−5/3 law, while for
the time instants t∗ = 100 and t∗ = 105 it follows a characteristic k−1, denoted by two dash-dotted lines.

number while keeping the Weber number fixed at We = 217, to determine how the capture
and deformation processes of a bubble are affected.

To expedite the capture process, we release the bubble slightly off-axis. Unlike the
oscillatory and translational motion of the bubble along the ring axis observed in figure 8,
the bubble immediately enters the ring core, as seen in figure 16. Subsequently, the bubble
expands in the azimuthal direction along the core, which is consistent with previous
visualisation experiments that released the bubble from outside the ring (Jha & Govardhan
2015). Below a certain critical Reynolds number, the elongated bubble undergoes binary
breakup, resulting in two fragments. It is interesting to note that this binary breakup has
also been observed for lower Reynolds numbers at the same Weber number of We = 217, as
we have discussed above. At higher Reynolds numbers, such as Reτ = 30 000, the bubble
initially breaks into three fragments (see t∗ = 30 in figure 16b). The middle fragment
then undergoes a binary breakup, coalescence and re-breakup process, resulting in the
formation of four daughter bubbles. In both cases, the bubble is captured in the right core
of the vortex ring, causing the right core to fragment while the left core remains intact, as
the bubble does not reach it.

As a turbulent flow is multiscale in nature and bubbles present in this flow are subject
to breaking due to collision with multiple eddies, the dynamics of the breakup process
becomes more complicated. As illustrated in figure 16, a direct comparison between two
Reynolds numbers reveals that the finer eddies in a vortical field with a higher Reynolds
number tend to tear the bubble into more fragments.

6. Concluding remarks

Differentiating from previous experiments (Jha & Govardhan 2015), in which a bubble
was released from outside the ring, while following closely their way of analysis, we study
numerically the interactions between a vortex ring and a gas bubble released at the axis.
As addressed in a previous ‘Focus on Fluids’ paper (Martínez-Bazán 2015), which made
a brief review and discussion of that experimental work, such an elementary system can
represent an idealised scenario providing a framework to shed light on understanding more
complicated bubble–turbulence coupling. In the current study, we fix the Reynolds number
at Reτ = 7500 and consider various Weber numbers in the range of We = 130–870.

967 A28-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

51
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.517


L. Zhang, J. Deng and X. Shao

t∗ = 25 t∗ = 30 t∗ = 35 t∗ = 40 t∗ = 45

t∗ = 25 t∗ = 30 t∗ = 32 t∗ = 35 t∗ = 50

(a)

(b)

Figure 16. Time sequence of vortex–bubble interaction in the early stage, with smaller time intervals for two
higher Reynolds numbers (a) Reτ = 25 000 and (b) Reτ = 30 000, at a fixed Weber number We = 217. Note
that the light-grey surfaces correspond to QR4

0/Γ
2

0 = 0.1, and the blue surfaces correspond to the volume
fraction of liquid ϕ = 0.5. The vortex ring translates towards the outside direction of the paper. See also
supplementary movie 1 available at https://doi.org/10.1017/jfm.2023.517 for the case in (b).

First, we investigate the role that bubbles play in the vortex ring dynamics. Clearly
shown is that the translating speed of the vortex ring is substantially lower than that of the
base of the vortex ring without a bubble. By looking at the enstrophy or volume integral
of the square of the streamwise vorticity, we find that the rapid growth of enstrophy
is earlier for the ring–bubble interaction cases than that without bubbles, indicating
the earlier breaking of azimuthal symmetry, or flow transition. This reduction of ring
translating speed, or the earlier flow transition, can be explained with two different
mechanisms, depending on the Weber number. For the low-We cases, consistent with
that revealed in a previous study (Jha & Govardhan 2015), the reduction of convection
speed of the ring is due to the capture of bubbles into the ring core, leading to significant
changes in the vorticity distribution within the core. However, in the high-We cases, the
enstrophy rises before the bubbles are captured into the ring core. Instead, the repeatedly
generated secondary vortex rings perturb the primary one, which bring about an earlier
flow transition.

On the other hand, we examine the evolution of gas bubbles affected by the strain of
the vortical flow. For relatively low Weber numbers, we observe binary breakup of the
bubble after it is captured by the primary vortex ring. In contrast, for high Weber numbers,
it is interesting to find that the bubble experiences sequentially stretching, spreading and
breakup stages. Shortly after release, the bubble spreads to a flat disk, which gets flatter and
flatter, until it is torn from the centre, forming a bubble ring. This bubble ring continues
to expand in the radial direction, until reaching a critical radius, when the surface tension
cannot keep the integrity of the bubble ring. After that, it breaks into multiple fragments,
or smaller bubbles. The number of these smaller bubbles is distinguishable. For the three
low-We cases, the number is fixed at 2, while it increases from 4 to 16 with We in the
high-We range. Furthermore, we find that the numbers of smaller bubbles predicated by
the classical Rayleigh–Plateau instability of a stretched cylindrical bubble agree well with
our numerical simulations in the high-We range. Consistent with previous experiments
(Jha & Govardhan 2015), this number reaches 16 as We is sufficiently large.
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Additionally, we also investigate the effects of Reynolds number. A direct comparison
between two Reynolds numbers reveals that the finer eddies in a vortical field with a higher
Reynolds number tend to tear the bubble into more fragments.

A future extension of the present work can be devoted to the cases with even lower
Weber numbers, when the breakup of the bubble will not be observed. The critical Weber
number for bubble breakup can be identified. Moreover, it would be interesting to examine
the effects of gravity, as well as that of the initial bubble position, as a direct comparison
with previous experiments. In that scenario, the initial accelerating process of the bubble
driven by the buoyancy force will play an important role in the bubble–ring interactions.

Supplementary movie. Supplementary movie is available at https://doi.org/10.1017/jfm.2023.517.

Funding. This research has been supported by the National Natural Science Foundation of China (Grants No.
92252102 and No. 92152109).

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
Jian Deng https://orcid.org/0000-0001-6335-498X.

REFERENCES

ARCHER, P.J., THOMAS, T.G. & COLEMAN, G.N. 2008 Direct numerical simulation of vortex ring evolution
from the laminar to the early turbulent regime. J. Fluid Mech. 598, 201–226.

VAN DEN BERG, T.H., VAN GILS, D.P.M., LATHROP, D.P. & LOHSE, D. 2007 Bubbly turbulent drag
reduction is a boundary layer effect. Phys. Rev. Lett. 98 (8), 084501.

VAN DEN BERG, T.H., LUTHER, S., LATHROP, D.P. & LOHSE, D. 2005 Drag reduction in bubbly
Taylor-Couette turbulence. Phys. Rev. Lett. 94 (4), 044501.

BERGDORF, M., KOUMOUTSAKOS, P. & LEONARD, A. 2007 Direct numerical simulations of vortex rings at
reγ = 7500. J. Fluid Mech. 581, 495–505.

BISWAS, S. & GOVARDHAN, R.N. 2020 Effect of single and multiple bubbles on a thin vortex ring. J. Flow
Visual. Image Process. 27 (1), 1–27.

BRACKBILL, J.U., KOTHE, D.B. & ZEMACH, C. 1992 A continuum method for modeling surface tension.
J. Comput. Phys. 100 (2), 335–354.

CECCIO, S.L. 2010 Friction drag reduction of external flows with bubble and gas injection. Annu. Rev. Fluid
Mech. 42, 183–203.

DAZIN, A., DUPONT, P. & STANISLAS, M. 2006a Experimental characterization of the instability of the
vortex ring. Part I: linear phase. Exp. Fluids 40 (3), 383–399.

DAZIN, A., DUPONT, P. & STANISLAS, M. 2006b Experimental characterization of the instability of the
vortex rings. Part II: non-linear phase. Exp. Fluids 41 (3), 401–413.

DENG, J. & CAULFIELD, C.-C.P. 2018 Horizontal locomotion of a vertically flapping oblate spheroid. J. Fluid
Mech. 840, 688–708.

ELBING, B.R., MÄKIHARJU, S., WIGGINS, A., PERLIN, M., DOWLING, D.R. & CECCIO, S.L. 2013 On
the scaling of air layer drag reduction. J. Fluid Mech. 717, 484–513.

ELBING, B.R., WINKEL, E.S., LAY, K.A., CECCIO, S.L., DOWLING, D.R. & PERLIN, M. 2008
Bubble-induced skin-friction drag reduction and the abrupt transition to air-layer drag reduction. J. Fluid
Mech. 612, 201–236.

ELGHOBASHI, S. 2019 Direct numerical simulation of turbulent flows laden with droplets or bubbles. Annu.
Rev. Fluid Mech. 51, 217–244.

FABRE, D., SIPP, D. & JACQUIN, L. 2006 Kelvin waves and the singular modes of the Lamb–Oseen vortex.
J. Fluid Mech. 551, 235–274.

FERRANTE, A. & ELGHOBASHI, S. 2004 On the physical mechanisms of drag reduction in a spatially
developing turbulent boundary layer laden with microbubbles. J. Fluid Mech. 503, 345–355.
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