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Multifidelity models (MFMs) can be used to construct predictive models for flow
quantities of interest (QoIs) over the space of uncertain/design parameters, with the
purpose of uncertainty quantification, data fusion and optimization. For numerical
simulation of turbulence, there is a hierarchy of methodologies ranked by accuracy
and cost, where each methodology may have several numerical/modelling parameters
that control the predictive accuracy and robustness of its resulting outputs. Compatible
with these specifications, the present hierarchical MFM strategy allows for simultaneous
calibration of the fidelity-specific parameters in a Bayesian framework as developed by
Goh et al. (Technometrics, vol. 55, no. 4, 2013, pp. 501–512). The purpose of the MFM
is to provide an improved prediction, mainly interpolation over the range covered by
training data, by combining lower- and higher-fidelity data in an optimal way for any
number of fidelity levels; even providing confidence intervals for the resulting QoI. The
capabilities of the MFM are first demonstrated on an illustrative toy problem, and it is then
applied to three realistic cases relevant to engineering turbulent flows. The latter include
the prediction of friction at different Reynolds numbers in turbulent channel flow, the
prediction of aerodynamic coefficients for a range of angles of attack of a standard airfoil
and the uncertainty propagation and sensitivity analysis of the separation bubble in the
turbulent flow over periodic hills subject to geometrical uncertainties. In all cases, based
on only a few high-fidelity data samples, the MFM leads to accurate predictions of the
QoIs. The result of the uncertainty quantification and sensitivity analyses are also found
to be accurate compared with the ground truth in each case.
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1. Introduction

In science and engineering, different computational models can be derived to make
realizations of the quantities of interest (QoIs) of a process or an event happening in reality.
High-fidelity (HF) models can result in highly accurate and robust realizations, but running
them is typically computationally expensive. In contrast, different low-fidelity (LF) models
with lower computational cost can be developed for the same process which, however,
potentially lead to lower accuracy QoIs due to partial or completely missing physics
captured by the model. On the other hand, in different applications arising in uncertainty
quantification (UQ), data fusion, and optimization, of numerous realizations of the QoIs
are required, associated with the samples taken from the space of the inputs/parameters in
order to make reliable estimations (these non-intrusive problems are referred to as the
outer-loop problems). In this regard, multifidelity models (MFMs) can be constructed
by combining realizations of the HF and LF models such that a balance between the
overall computational cost and predictive accuracy is achieved. The goal is to provide,
by combining HF and LF models, an estimate of the QoI that is better than any of the
models alone.

In the recent years, different types of MFMs have been applied to a wide range of
problems, see e.g. the recent review by Peherstorfer, Willcox & Gunzburger (2018). The
use of the MFMs in studies of turbulent flows can be greatly advantageous, considering
the wide range of engineering applications relying on these flows and also the high
cost generally involved in the HF computations (such as scale-resolving simulations)
and experiments of the turbulent flows. There is a distinguishable hierarchy in the
fidelity of the computational models utilized for simulation of turbulence, (see e.g.
Sagaut, Deck & Terracol 2013). Let us consider the wall-bounded turbulent flows where
a turbulent boundary layer forms at the wall boundaries. Direct numerical simulation
(DNS) can provide the highest-fidelity results for a given turbulent flow, however, it
can become prohibitively expensive at high Reynolds numbers which are relevant to
practical applications. The computational cost can be reduced by employing large eddy
simulation (LES) which aims at directly resolving the scales larger than a defined size and
modelling the unresolved effects. At the lowest cost and fidelity level, Reynolds-averaged
Navier–Stokes (RANS) simulations can be performed which avoid directly resolving any
flow fluctuations by resorting to a statistical description of turbulence. Between RANS
and wall-resolving LES, other approaches such as hybrid RANS–LES and wall-modelled
LES can be considered (see Sagaut et al. 2013; Larsson et al. 2016). Although this
clear hierarchy is extremely beneficial when constructing MFMs, as will be thoroughly
discussed and demonstrated in the present paper, there is a challenge to be dealt with:
the realizations of different turbulence simulation approaches are, in general, sensitive
to various modelling and numerical parameters as well as inputs. At lower fidelities
like RANS, modelling effects are dominant while as moving towards LES and DNS,
numerical factors become more relevant, including grid resolution and discretization
properties. Hereafter, these fidelity-specific controlling parameters are referred to as tuning
or calibration parameters.

Combining training data from different turbulence simulation approaches, MFMs are
constructed over the space of design and uncertain parameters/inputs. An appropriate
approach to construct MFMs for turbulent flow problems should systematically allow for
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Efficient prediction of turbulent flow quantities

simultaneous calibration of the tuning parameters. An appropriate methodology which is
employed in the present study is the hierarchical multifidelity predictive model developed
in Higdon et al. (2004) and Goh et al. (2013) in which the calibration parameters of
the involved fidelities are estimated using the data of the higher-fidelity models. This
MFM, which is hereafter referred to as HC-MFM, can also incorporate the observational
uncertainties. The HC-MFM can be seen as an extension of the model by Higdon
et al. (2004) which was employed to combine experimental (field) and simulation data.
A fundamental component of this class of MFMs is the Bayesian calibration of the
computer models, as described in the landmark paper by Kennedy & O’Hagan (2001). At
each level of the MFM, the Gaussian process regression (GPR) (Rasmussen & Williams
2005) is employed to construct surrogates for the simulators.

The application of the HC-MFM in the field of computational fluid dynamics (CFD)
and turbulent flows is novel, and we make specific adaptations suitable for turbulence
simulations. In this regard, the present paper aims at assessing the useful potential of the
HC-MFM by applying it to three examples relevant to engineering wall-bounded turbulent
flows. To highlight the contributions of the present work, the existing studies in the
literature devoted to the development and application of the MFMs to CFD and turbulent
flows are briefly reviewed here by classifying them according to their underlying MFM
strategy. (i) A model was originally introduced by Kennedy & O’Hagan (2000) where a
QoI at each fidelity is expressed as a first-order autoregressive model of the same QoI at the
immediately lower fidelity. Co-kriging using GPR to construct surrogates is classified in
this category, see e.g. Fatou Gomez (2018); Voet et al. (2021) for applications to turbulence
simulations. To enhance the computational efficiency of the co-kriging for several fidelity
levels, recursive algorithms have been proposed and applied to CFD problems, see Gratiet
& Garnier (2014); Perdikaris et al. (2015). (ii) A class of MFMs has been developed based
on non-intrusive polynomial chaos expansion (PCE) and stochastic collocation methods
(Ng & Eldred 2012; Palar, Tsuchiya & Parks 2016), where an additive or a multiplicative
term is considered to correct the LF model’s predictions against the HF model. (iii) The
multi-level multifidelity Monte Carlo (MLMF-MC) models (Fairbanks et al. 2017; Geraci,
Eldred & Iaccarino 2017) are appropriate for the UQ forward problems. These models
are developed by combining multilevel (Giles 2008) and control-variate (Pasupathy et al.
2012) MC methods to improve the rate of convergence of the stochastic moments of the
QoIs compared with the the standard MC method. Jofre et al. (2018) applied MLMF-MC
models to an irradiated particle-laden turbulent flow. The HF model was considered to
be DNS and the two LF models were based on a surrogate particle approach and lower
resolutions for flow and particles. (iv) Other models including the hierarchical kriging
model based on GPR where the predictions of a LF model are taken as the trend in the HF
kriging, see Han & Görtz (2012).

Recently, Voet et al. (2021) compared inverse weighted distance-, PCE- and
co-kriging-based MFMs using the data of RANS and DNS for the turbulent flow over
a periodic hill, and concluded that the co-kriging model outperforms the others in terms
of accuracy. This is the first (and to our knowledge only) study where MFMs have been
applied to engineering-relevant RANS and DNS data for the purpose of uncertainty
propagation. Voet et al. (2021) also found that the performance of the co-kriging can
deteriorate when there is no significant correlation between the RANS and DNS data
and at the same time there is a significant deviation between them. Motivated by this
deficiency, we adapt and use the HC-MFM where the discrepancy between the data (and
not their correlation) over the space of design parameters is learned using independent
Gaussian processes. The model is absolutely generative and can be extended to an arbitrary
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Figure 1. Schematic representation of the machinery for constructing the HC-MFM over the space of
design/uncertain parameters x. To make realizations of the QoI of the problem in hand, there is a hierarchy
of fidelities where each fidelity may have its own parameters and also some parameters shared with others
(together called θ ). For joint samples of x and θ , training data for the QoI are generated (or are available) in
a way that more samples are taken for LF models which are less costly to evaluate. The priors for θ and GPs’
hyperparameters β are defined after the HC-MFM is formulated as, for instance, (2.6). Given the training data,
an MCMC sampling method is used to infer the posteriors of θ and β.

number of fidelity levels. Besides the systematic calibration of the fidelity-specific
parameters during its training stage, the HC-MFM is also capable of handling uncertain
data, as for instance happens when QoIs are turbulence statistics computed over a finite
time-averaging interval (recently, a framework was proposed by Rezaeiravesh, Vinuesa
& Schlatter (2022) to combine these observational uncertainties with parametric ones).
Relying on these characteristics, the HC-MFM is suitable for application to the data of
various turbulence simulation methodologies to address different types of the outer-loop
problems. In contrast to all the previous studies (at least in CFD), we adopt a Bayesian
inference to construct the HC-MFM, a feature which results in more accurate models as
well as estimating confidence intervals for the predictions.

The rest of the paper is organized as follows. In § 2, various elements of the HC-MFM
approach are introduced and explained. Section 3 is devoted to the application of the
HC-MFM to an illustrative example, turbulent channel flow, polars for an airfoil and
analysis of the geometrical uncertainties in the turbulent flow over a periodic hill. The
summary of the paper along with the conclusions is presented in § 4.

2. Method

In this section, the hierarchical MFM with calibration (HC-MFM) developed by Goh
et al. (2013), which forms the basis for the present study is reviewed. We will proceed
by sequentially going through the aspects of GPR, model calibration and eventually the
HC-MFM formulation. The workflow of the HC-MFM represented in figure 1 may help
connect the following technical details.

2.1. Gaussian process regression
In general, the Gaussian processes (GPs) provide a way to systematically build a
representation of the QoI as a function of the various inputs to the model. Eventually,
regression can be performed by evaluating the GP at new inputs not seen by the model
before. Let x ∈ X ⊂ Rpx represent the controllable inputs and parameters, adopting the
notation from Kennedy & O’Hagan (2001). As a convention, all boldface letters are
hereafter considered to be a vector or a matrix. The design and uncertain parameters
appearing in optimization and UQ analyses, respectively, can also be classified as x.
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Efficient prediction of turbulent flow quantities

A GP f̂ (x) can be employed to map the inputs x to a QoI or an output y ⊂ R of
the computer codes (simulators) or field data. For a finite set of training samples
{x1, x2, . . . , xn} with corresponding observations {y1, y2, . . . , yn}, the collection of
{f̂ (x1), f̂ (x2), . . . , f̂ (xn)} will have a joint Gaussian (multivariate normal) distribution
(Rasmussen & Williams 2005). The GP f̂ (x) is written as

f̂ (x) ∼ GP(m(x), k(x, x′)), (2.1)

which is fully described by its mean m(x) and covariance function k(x, x′) defined as

m(x) = E[f̂ (x)], (2.2)

k(x, x′) = E[(f̂ (x) − m(x))(f̂ (x′) − m(x′))]. (2.3)

In general, the GPs can be used in the case of having observation noise ε in the y data.
Using an additive error model, we have

y(x) = f̂ (x) + ε, (2.4)

where the noises are assumed to be independent and have Gaussian distribution ε ∼
N (0, σ 2).

In the GPR, given a set of training data D = {xi, yi}n
i=1 the posterior and posterior

predictive distributions of f̂ (·) and y, respectively, at test inputs x∗ ∈ X, can be inferred in
a Bayesian framework (Rasmussen & Williams 2005). To this end, first a prior distribution
for f̂ (x), see (2.1), is assumed through specifying functions for the mean and covariance
in (2.2) and (2.3), where there are unknown hyperparameters β in the functions. Using the
training data, the posterior distribution of β is learned. As a main advantage of the GPR,
the predictions at test samples will be accompanied by an estimate of uncertainty, see (A1)
and (A2) in Appendix A.

2.2. Model calibration
As pointed out in § 1, the outputs of computational models (simulators) at a given x
may depend on different tuning or calibration parameters, t ∈ T ⊂ Rpt . Given a set of
observations, these parameters can be calibrated through conducting a UQ inverse problem
which can be expressed in a Bayesian framework (Kennedy & O’Hagan 2001). The
calibrated model can then not only be employed for prediction, but also for fusion of the
field and simulation data, see Higdon et al. (2004). Consider n1 data samples {(xi, yi)}n1

i=1
are observed for a physical process ζ(x). To statistically model the observations, a
simulator f̂ (x, θ) can be employed in which the θ are the true or optimal values of t
and are to be estimated from the training data. However, in general, it is possible that
even the calibrated simulator f̂ (x, θ) produces observations which systematically deviate
from reality. To remove such a bias, a model discrepancy term δ̂(x) can be added to
the simulator (see Kennedy & O’Hagan 2001; Higdon et al. 2004). In many practical
applications, particularly in CFD and turbulent flow simulations where the computational
cost can be excessively high, the restrictions of the computational budget only allows for
a limited number of simulations. In any realization, the adopted values for the tuning
parameters t are not necessarily optimal and hence potentially lead to the outputs which
are systematically different from the QoIs in reality. For the described calibration problem,
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the Kennedy & O’Hagan (2001) model reads as

yi = f̂ (xi, θ) + δ̂(xi) + εi i = 1, 2, . . . , n1
yi = f̂ (xi, ti) i = 1 + n1, 2 + n1, . . . , n2 + n1

}
, (2.5)

where ·̂ specifies a GP and n2 is the number of simulated data. Note that the samples
{xi}n2+n1

i=1+n1
are not necessarily the same as {xi}n1

i=1 at which the observations are made. The
index i should be seen as a global index which implies that a different model is used for
each of the two subranges of i. Given the n1 + n2 data, the posterior distribution for the
calibration parameters θ along with that of the hyperparameters in the GPs, β, is estimated.
Further details are provided in the section below.

2.3. The hierarchical MFM with automatic calibration (HC-MFM)
Goh et al. (2013) extended the model (2.5) to an arbitrary number of fidelity levels
which together form a modelling hierarchy for a physical process. As a main feature
of the resulting MFM, each fidelity can, in general, have its own calibration parameters
and also share some calibration parameters with other fidelities. The basics of the MFM
comprising three fidelity levels are explained below, noting that adapting the formulation
to any number of fidelities with different combinations of parameters is straightforward.
We assume that the fidelity of the models decreases from M1 to M3, and in practice due
to the budget limitations, the number of training data decreases with increasing the model
fidelity. The HC-MFM for three fidelities reads as

yM1(xi) = f̂ (xi, θ3, θ s) + ĝ(xi, θ2, θ s) + δ̂(xi) + ε1i i = 1, 2, . . . , n1

yM2(xi) = f̂ (xi, θ3, tsi) + ĝ(xi, t2i , tsi) + ε2i i = 1 + n1, 2 + n1, . . . , n2 + n1

yM3(xi) = f̂ (xi, t3i , tsi) + ε3i i = 1 + n1 + n2, . . . , n3 + n1 + n2

⎫⎬
⎭ ,

(2.6)

where subscript s denotes the parameters which are shared between the models, whereas t2
and t3 are the calibration parameters specific to fidelities M2 and M3, respectively. The
noises are assumed to have Gaussian distributions with zero mean. At each fidelity level,
the associated simulator is created by adding a model discrepancy term to the simulator
describing the immediately lower fidelity. Concatenating all training data, an augmented
vector Y of size n1 + n2 + n3 is obtained, for which the covariance matrix can be written
in terms of the covariances of f̂ (·), ĝ(·), δ̂(·) and the observational noise:

Σ = Σ f +
[

Σg 0(n1+n2)×n3
0n3×(n1+n2) 0n3×n3

]
+

[
Σδ 0n1×(n2+n3)

0(n2+n3)×n1 0(n2+n3)×(n2+n3)

]

+
⎡
⎣ Σε1 0n1×n2 0n1×n3

0n2×n1 Σε2 0n2×n3
0n3×n1 0n3×n2 Σε3

⎤
⎦ . (2.7)

Appropriate kernel functions should be chosen to express the structure of the covariances.
Using samples i and j of the inputs and parameters, the associated element in the
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covariance matrix Σ f will be obtained from

Σ fij = cov(xi, t3i, tsi, xj, t3j, tsj) = λ2
f k(d̄fij), (2.8)

where λf is a hyperparameter and d̄fij is the scaled Euclidean distance between two
samples i and j over the space of (x, t3, ts)

d̄2
fij = d̄2(xi, xj) + d̄2(t3i, t3j) + d̄2(tsi, tsj) (2.9)

=
px∑

l=1

(xli − xlj)
2

�2
fxl

+
pt3∑
l=1

(t3li
− t3lj

)2

�2
ft3l

+
pts∑
l=1

(tsli
− tslj

)2

�2
ftsl

. (2.10)

Here, px, pt3 and pts specify the dimensions of x, t3 and ts, respectively. Correspondingly,
the length scale over the lth dimension of each of these spaces is represented by �fxl

, �ft3l
and �ftsl

, respectively. These length scales are among the hyperparameters β to be learned
when constructing the HC-MFM. There are various options for modelling the covariance
kernel function k(·), see e.g. Rasmussen & Williams (2005) and Gramacy (2020), among
which the exponentiated quadratic and Matern-5/2 (Matern 1986) functions are used in the
examples in § 3. These two functions respectively read as

k(d̄fij) = exp(−0.5d̄2
fij) (2.11)

and

k(d̄fij) = [1 +
√

5d̄fij + 5
3 d̄2

fij] exp(−
√

5d̄fij). (2.12)

Similar expressions can be derived for Σgij = kg(xi, t2i, tsi, xj, t2j, tsj) and Σδij = kδ(xi, xj)

appearing in (2.7). This leads to introducing new hyperparameters associated with the
GPs. Note that, given how the training vector Y and associated inputs are assembled,
correct combinations of training data for the inputs and parameters will be used in the
kernels. The unknown parameters to estimate include calibration parameters in different
models, θ , and hyperparameters β appearing in the GPs. Following the Bayes rule, the
posterior distribution of these parameters given the training data Y can be inferred from
(Kennedy & O’Hagan 2001; Higdon et al. 2004; Goh et al. 2013)

π(θ , β|Y ) ∝ π(Y |θ , β)π0(θ)π0(β), (2.13)

where π(Y |θ , β) specifies the likelihood function and π0(·) represents a prior
distribution. Note that all priors are assumed to be independent. For all GPs in § 3, the
prior distribution for λ appearing in the covariance matrices such as (2.8) is taken to be
half-Cauchy whereas the length scales � in (2.11) and (2.12) are assumed to have gamma
distributions. The exact definition of the priors will be provided later for each case in § 3,
and table 2 in Appendix B summarizes the formulation of the standard distributions used
as priors. The standard deviations of the noises are assumed to be the same for which a
half-Cauchy prior is adopted. For the calibration parameters θ , Gaussian or uniform priors
are considered. In some cases, we may consider a constant mean function for the GPs,
where a Gaussian distribution is used as the prior. Due to this, the predictions of a trained
MFM when it is used to extrapolate in x (outside of the range of training samples) should
be used with caution. To avoid potential inaccuracies, in general, more elaborate mean
functions can be used when constructing the HC-MFMs (this, however, is not the subject
of the present study). Further details about the choice of the kernels and priors for the
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parameters/hyperparameters as well as the use of the HC-MFM for extrapolation can be
found in Appendix A.

Given the training data Y , a Markov chain Monte Carlo (MCMC) technique can be
used to draw samples from the posterior distributions of θ and β, and hence construct
a HC-MFM. In the present study, the described HC-MFM (2.6) has been implemented
in Python using the PyMC3 (Salvatier, Wiecki & Fonnesbeck 2016) package with the
no-U-turn sampler (NUTS) MCMC sampling approach (Hoffman & Gelman 2014). As
it will be shown in § 3.6, the MCMC sampling method may lead to more accurate results
compared with the point estimators.

After being constructed, an HC-MFM can be used for predicting the QoI y for any
new sample taken from the space of inputs x. The accuracy of the predicted QoIs will be
assessed by measuring their deviation from the validation data of the highest fidelity M1.
As detailed in Goh et al. (2013), the joint distribution of the training Y and new y∗
(associated with a test sample x∗) conditioned on θ , β will have a multivariate normal
distribution with a covariance matrix of the same structure as Σ in (2.7). For any joint
sample drawn from the posterior distribution of π(θ , β|Y ), a sample prediction for y∗
is made. Repeating this procedure for a large number of times, valid estimations for the
posterior of the predictions y∗ can be achieved. Therefore, estimating the confidence in
the predictions is straightforward. Note that at this stage, various UQ analyses can be
performed using the HC-MFM as a surrogate of the physical process over x.

3. Results and discussion

Four examples are considered to which the HC-MFM described in the previous section is
applied. The first example in § 3.1 is used to validate the implementation of the MFM,
and the next three examples are relevant to fundamental and engineering analysis of
wall-bounded turbulent flows.

3.1. An illustrative example
Consider the following analytical model taken from Forrester, Sóbester & Keane (2007)
to generate HF and LF samples of the QoI y for input x ∈ [0, 1]:

yH(x) = (θx − 2)2 sin(2θx − 4)

yL(x) = yH(x) + B(x − 0.5) − C

}
. (3.1)

In Forrester et al. (2007), θ is taken to be fixed and equal to 6, but here it is treated as
an uncertain calibration parameter that is to be estimated during the construction of the
MFM. Note that the notations of the general model (2.5) can be adopted for (3.1). For
simulator f̂ (x, t) and model discrepancy δ̂(x) the covariance matrix in (2.8) is used with
the exponentiated quadratic kernel (2.11). The following prior distributions are considered:
λf , λδ ∼ HC(α = 5), �fx, �ft , �δx ∼ Γ (α = 1, β = 5), ε ∼ N (0, σ ) with σ ∼ HC(α = 5)

and θ ∼ U [5.8, 6.2]. Here, HC, Γ,N and U denote the half-Cauchy, gamma, Gaussian,
and uniform distributions, respectively, see table 2. The HF training samples are taken
at x = {0, 0.4, 0.6, 1}, therefore, nH = 4 is fixed. To investigate the effect of nL, three
sets of LF samples of size 10, 15 and 20 are considered which are generated by Latin
hypercube sampling from the admissible space [0, 1] × [5.8, 6.2] corresponding to x and t
(uncalibrated instance of θ ), respectively.

Using the data, the HC-MFM (2.6) for problem (3.1) is constructed. The first row in
figure 2 shows the predicted y with the associated 95 % confidence interval (CI) along with
the training data and reference true data generated with θ = 6. For all nL, the predicted y is
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Figure 2. (a–c) Predicted QoI y by HC-MFM (2.6) along with the training and true data, (d– f ) predicted y
vs true observations at 50 test samples of x ∈ [0, 1] with error bars representing 95 % CI, (g–i) posterior
probability density function (PDF) of θ based on 104 MCMC samples. The yH and yL training data are
generated from (3.1) using B = C = 10. The training data include 4 HF samples combined with (left column)
10, (middle column) 15 and (right column) 20 LF samples. The true data are generated by (3.1) using θ = 6.

closer to HF data than the LF data, however, for nL = 15 and 20, the agreement between the
mean of the predicted y and the true data is significantly improved. A better validation can
be made via the plots in the second row of figure 2, where the predicted y and true values
of yH at 50 uniformly spaced test samples for x ∈ [0, 1] are plotted. Clearly, increasing
the number of the LF samples while keeping nH = 4 fixed improves the predictions and
reduces the uncertainty. In the third row of figure 2, the posterior densities of θ are
presented. In all cases, a uniform (non-informative) prior distribution over [5.8, 6.2] was
considered for θ . Only for nL = 20, the resulting posterior density of θ is high near the
true value 6. Therefore, it is confirmed that, as explained by Goh et al. (2013), the main
capability of the HC-MFM (2.6) is in making accurate predictions for y and only if a
sufficient number of training data are available, accurate distributions for the calibration
parameters are also obtained. This is shown here by fixing nH and increasing nL, which
is favourable in practice. It is also noteworthy that if θ was known and hence treated as a
fixed parameter, then even with nL = 10 very accurate predictions for y could be already
achieved (not shown here).

It also should be noted that the mean of the posterior distribution of σ , the noise standard
deviation, is found to be negligible, as expected. This is in fact the case for all other
examples in this section.
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3.2. Turbulent channel flow
Turbulent channel flow is one of the most canonical wall-bounded turbulent flows. The
flow develops between two parallel flat walls which are apart by the distance 2δ, and
the flow is periodic in the streamwise and spanwise directions. Channel flow is fully
defined by a Reynolds number, for instance the bulk Reynolds number Reb = Ubδ/ν,
where Ub and ν specify the streamwise bulk velocity and kinematic viscosity, respectively.
Among different possible QoIs, here we only focus on the friction velocity 〈uτ 〉, as a
function of Reynolds number. This quantity is defined as

√〈τw〉/ρ, where τw and ρ are
the magnitude of the wall-shear stress and fluid density, respectively, and 〈·〉 represents
averaging over time and the periodic directions. Three fidelity levels are considered:
DNS (M1), wall-resolved LES (WRLES) (M2) and a reduced-order algebraic model (M3),
where the fidelity reduces from the former to the latter. We use the DNS data of Iwamoto,
Suzuki & Kasagi (2002), Lee & Moser (2015) and Yamamoto & Tsuji (2018).

The WRLES of channel flow have been performed at different Reynolds numbers
without any explicit subgrid-scale model using OpenFOAM (Weller et al. 1998), which
is an open-source finite-volume flow solver. Linear interpolation is used for the evaluation
of face fluxes, and a second-order backward-differencing scheme is used for time
integration. The pressure-implicit with splitting of operators (PISO) algorithm is used for
pressure–velocity coupling. For further details on the simulation set-up, see Rezaeiravesh
& Liefvendahl (2018). The results in that paper show that for a fixed resolution in the
wall-normal direction, variation of the grid resolutions in the wall-parallel directions
could significantly impact the accuracy of the flow QoIs. Therefore, in the context of the
HC-MFM, the calibration parameters for WRLES are taken to be Δx+ and Δz+, which
are the cell dimensions in the streamwise and spanwise directions, respectively, expressed
in wall units (Δx+ = Δxu◦

τ /ν where u◦
τ is the reference uτ from DNS).

At the lowest fidelity, the following reduced-order algebraic model is considered which
is derived by averaging the streamwise momentum equation for the channel flow in the
periodic directions and time:

〈uτ 〉2/U2
b = 1

Reb

d
dη

(
(1 + ζ(η))

d〈u〉/Ub

dη

)
, (3.2)

where η is the distance from the wall normalized by the channel half-height δ, and ζ(η)

is the normalized eddy viscosity νt, i.e. ζ(η) = νt(η)/ν. Reynolds & Tiederman (1967)
proposed the following closed form for ζ(η):

ζ(η) = 1
2

[
1 + κ2Re2

τ

9
(1 − (η − 1)2)2(1 + 2(η − 1)2)2

(
1 − exp

(−ηReτ

A+

))2
]1/2

− 1
2
,

(3.3)

where Reτ = 〈uτ 〉δ/ν is the friction-based Reynolds number, and κ and A+ are two
modelling parameters. At any Reb (and given value of κ and A+), (3.2) is integrated over
η ∈ [0, 1] and is iteratively solved using (3.3) to estimate 〈uτ 〉. Expressing the channel flow
example in the terminology of MFM (2.6), 〈uτ 〉/Ub is the QoI y, x = Reb, t3 = (κ, A+) and
t2 = (Δx+, Δz+). The training data set consists of the following databases. For DNS, 〈uτ 〉
is taken from Iwamoto et al. (2002), Lee & Moser (2015) and Yamamoto & Tsuji (2018)
at Reb = 5020, 6962, 10 000, 20 000, 125 000 and 200 400. In total, 16 WRLES 〈uτ 〉
samples are obtained from a design of experiment based on the prior distributions
Δx+ ∼ U [15, 85] and Δz+ ∼ U [9.5, 22] at Reb = 5020, 6962, 10 000, and 20 000. Here,
we do not consider the observational uncertainty in 〈uτ 〉 which could, for instance, be
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Figure 3. (a) Mean prediction of 〈uτ 〉/Ub and associated 95 % CI along with the training data and validation
data from DNS of Iwamoto et al. (2002), Lee & Moser (2015) and Yamamoto & Tsuji (2018), (b) diagonal,
posterior density of parameters κ, A+, Δx+ and Δz+; off diagonal, contour lines of the joint posterior densities
of these parameters. The value of the contour lines increases from the lightest to darkest colour.

due to finite time averaging in DNS and WRLES, but in general the HC-MFM could take
such information into account. The reduced-order model (3.2) which is computationally
cheap is run for 10 values of Reb in range [2000, 200 200]. For each Reb, 9 joint samples
of (κ, A+) are generated assuming κ ∼ U [0.36, 0.43] and A+ ∼ U [26.5, 29] (note that κ is
the von Kármán coefficient). For all the GPs in the MFM (2.6), the exponentiated quadratic
covariance function (2.11) is used. The prior distribution of the hyperparameters are set
as the following: λf , λg ∼ HC(α = 5), λδ ∼ HC(α = 3), �fx, �ft3 , �gx, �gt2

, �δx ∼ Γ (α =
1, β = 5) and the noise standard deviation σ ∼ HC(α = 5) (assumed to be the same for
all fidelities).

Using the described training data in the HC-MFM (2.6) and running the MCMC
chain for 7000 samples, after an initial 2000 samples discarded due to burn in, the
model is constructed. This means extra MCMC samples are generated from which a
sufficiently large number of initial samples is discarded to avoid any bias introduced
by the initialization. According to figure 3(a), the predicted mean of 〈uτ 〉/Ub follows
the trend of the DNS data. This approximately holds even at high Reynolds numbers,
where there is a large systematic error in the algebraic model and no WRLES data are
available. As expected, in this range due to scarcity of the DNS data, the uncertainty in
the predictions is high. The plot in figure 3(b) shows the joint posterior distributions of the
calibration parameters κ, A+, Δx+ and Δz+ along with the histogram of each parameter.
As mentioned above, the prior distributions of all of these parameters were assumed to be
uniform and mutually independent. However, the resulting posterior densities for κ and A+
are not uniform and the samples of these parameters are correlated. More interestingly,
the peak of the posterior density of κ is close to the value of 0.4 that is assumed to be
universal across various flows and Reynolds numbers within the turbulence community.
On the other hand, the distribution of A+ does not show a clear maximum, which may
indicate that the range of admissible values in the prior could be extended. Note that
indeed the value of A+ = 25 is associated with the van-Driest wall damping commonly
used for eddy-viscosity models. In contrast, the posteriors of Δx+ and Δz+ are found to
be still close to the prior uniform distributions and no correlation between their samples is
observed. This may be at least partially be due to the fact that the number of the WRLES
data is limited as they are obtained only at 4 Reynolds numbers. Nevertheless, over this
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range of the Reynolds number the posterior prediction of the QoI 〈uτ 〉 is very accurate and
has the lowest uncertainty, which seems to indicate that the significant dependence of the
wall-shear stress on the WRLES resolution did not lead to a bias in the prediction by the
HC-MFM. This may in fact be an important aspect for building future wall models.

3.3. Polars for the NACA0015 airfoil
In this section, the HC-MFM (2.6) is applied to a set of data for the lift and drag
coefficients, CL and CD, respectively, of a wing with a NACA0015 airfoil profile at
Reynolds number 1.6 × 106. The angle of attack (AoA) between the wing and the ambient
flow is taken to be the design parameter x.

The data consist of the following sources with respective fidelities in brackets:
wind-tunnel experiments by Bertagnolio (2008) (M1), detached-eddy simulations
(DES) (M2) and two-dimensional RANS (M3) both by Gilling, Sørensen & Davidson
(2009). The simulations of Gilling et al. (2009) were performed with a finite-volume
code using a fourth-order central-difference scheme and a second-order accurate dual
time-stepping algorithm to integrate the momentum equations. The PISO algorithm was
used to enforce pressure–velocity coupling. In the study, the authors investigated the
sensitivity of the DES results to the resolved turbulence intensity (TI) of the fluctuations
imposed at the inlet boundary. The sensitivity was found to be particularly significant near
the stall angle. Therefore, when constructing an MFM, the calibration parameter t2 in
fidelity M2 is taken to be the TI.

For the covariance of the Gaussian processes f̂ (x) and ĝ(x, t2) in HC-MFM (2.6),
the exponentiated quadratic and Matern-5/2 kernel functions (2.11) and (2.12) are used,
respectively. The following prior distributions are assumed for the hyperparameters:
λf , λg ∼ HC(α = 5), �fx ∼ Γ (α = 1, β = 5), �gx, �gt2

∼ Γ (α = 1, β = 3) and the noise
standard deviation σ ∼ HC(α = 5) (assumed to be the same for all fidelities). To make
the model capable of capturing large-scale separation, the stall AoA, xstall, is included as
a new calibration parameter in the MFM. Our suggestion is to consider a piecewise kernel
function for the covariance of δ̂(x) where xstall is the merging point. If the kernel functions
for the AoAs smaller and larger than xstall are denoted by kδ1(·) and kδ2(·), respectively,
then the covariance function for δ̂(x) may be constructed as

Σδij = λ2
δ1

ϕ(xi)kδ1(d̄δij)ϕ(xj) + λ2
δ2

ϕ(xi)kδ2(d̄δij)ϕ(xj), (3.4)

where d̄δij is defined similar to those in (2.9) and (2.10) but only in x, and ϕ(x) is a function
to smoothly merge the two covariance functions. In particular, we use the logistic function:

ϕ(x) = [1 + exp(−αstall(x − xstall))]−1, (3.5)

where αstall is a new hyperparameter. The kernel functions kδ1(·) and kδ2(·) are
both modelled by the Matern-5/2 function (2.12). As the prior distributions, we
assume λδ1 ∼ HC(α = 3), λδ2 ∼ HC(α = 5), �δ1 ∼ Γ (α = 1, β = 5), �δ2 ∼ Γ (α =
1, β = 0.5), αstall ∼ HC(α = 2) and xstall ∼ N (14, 0.2). The prior for the TI is also
considered to be Gaussian: TI ∼ N (0.5, 0.15). These Gaussian priors are selected based
on our prior knowledge about the approximate stall AoA and the discussion about the
influence of TI in Gilling et al. (2009).

The admissible range of x = AoA is assumed to be [0◦, 20◦] over which the experimental
and RANS data (Bertagnolio 2008; Gilling et al. 2009) are available. The training HF
data are taken to be a subset of size 7 of the experimental data of Bertagnolio (2008).
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Figure 4. (a) Lift coefficient CL and (c) drag coefficient CD plotted against the AoA: the HC-MFM (2.6)
is trained by the experimental data of Bertagnolio (2008) (yellow circles), as well as the DES (squares) and
RANS (crosses) data by Gilling et al. (2009). The DES were performed with the resolved turbulence intensities
TI = 0 %, 0.1 %, 0.5 %, 1 % and 2 % at the inlet. The validation data (red triangles) are also taken from the
experiments of Bertagnolio (2008). The mean prediction by the HC-MFM (2.6) is represented by the solid
line along with associated 95 % CI (shaded area). Scatter plots of (b) CL, (d) CD predictions by the HC-MFM
(vertical axis) against the validation data (horizontal axis). The red straight line is diagonal and provided to
evaluate the accuracy of the HC-MFM predictions: if the hollow markers which represent the mean posterior
prediction by the HC-MFM at the AoAs where validation data are available for, are close to the diagonal line,
then they are more accurate. Each mean prediction has an error bar which represents the associated 95% CI.

The rest of the experimental data are used to validate the predictions of the MFM. For
the purpose of examining the capability of the MFM in a more challenging situation,
the training HF samples are explicitly selected to exclude the range of AoAs where the
stall happens. The DES data of Gilling et al. (2009) are available at 7 AoA ∈ [8◦, 19◦]
and 5 different values of TI. Employing these training data in the HC-MFM (2.6) and
drawing 104 MCMC samples after excluding an extra 5000 initial samples for burn in, the
predictions for CL and CD shown in figure 4(a,c) are obtained. The expected value of the
predictions has a trend similar to that of the experimental validation data of Bertagnolio
(2008) and is not diverging towards either the physically invalid RANS data or scattered
DES data at AoA � 10◦. A more elaborate comparison is made through scatter plot of
the MFM predictions against the validation data in figure 4(b,d). For both CL and CD,
the agreement between the predicted mean values with the validation data at lower AoAs
(before stall) is excellent and for most of the higher AoAs, even near and after the stall,
is very good. Due to the scarcity of the HF training data and also systematic error in the
RANS and DES data, the error bars at the predicted values can be relatively large, as more
evident in the case of CD in figure 4(d).
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Figure 6. The geometry of the periodic hill simulations, illustrating the effect of parameters α and γ using
three sets of values for them.

Figure 5 shows the posterior densities of different parameters appearing in the MFM
constructed for CL and CD. As expected, the distribution of the kernels’ hyperparameters
varies between the two QoIs. But more importantly, the posterior distributions of xstall
and calibrated TI are also dependent on the QoI. This clearly shows the suitability of
the present class of MFMs in which calibration of the parameters of different fidelities is
performed as a part of constructing the MFM for a given QoI. The alternative strategy,
which is common in practice (e.g. for co-kriging models without calibration), is to
calibrate the LF models against the HF data of one of the QoIs and then run the calibrated
LF model to make realizations of all QoIs. However, given the present results, this strategy
seems clearly less efficient and leads to inferior quality of prediction.
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As a general goal, an MFM constructs a surrogate for the QoIs in the space of
the design/controlled parameters aiming for the surrogate outputs to be as close as
possible to the HF data. In this regard, the MFMs facilitate applying different types
of sample-based UQ techniques and optimization (see Smith 2013). In connection
with the present example, consider a UQ forward problem to estimate the stochastic
moments of CL and CD due to the variation of the AoA. For instance, assume AoA ∼
N (15, 0.1) degrees. This results in the following estimations for the expectation and
variance of CL and CD with the associated 95 % CIs: Ex[CL] = 1.1775 ± 0.1037,
Vx[CL] = 2.6675 × 10−5 ± 4.5096 × 10−5, Ex[CD] = 5.6891 × 10−2 ± 2.5722 × 10−2

and Vx[CD] = 1.0618 × 10−5 ± 9.5994 × 10−6. Note that, without the HC-MFM, and
only based on the data of RANS or/and DES, such estimations would be at best inaccurate,
but in general impossible to make.

3.4. Effect of geometrical uncertainties in the periodic hill flow
In this last flow case, we consider the turbulent flow over periodic hills with geometrical
uncertainties at Reynolds number 5600, see the sketch in figure 6. The outline in
blue corresponds to the configuration studied in several prior works (hereafter, baseline
geometry), for example by Fröhlich et al. (2005) and more recently by Gao, Cheng
& Samtaney (2020). The latter reference can be consulted for a good overview of
other previous efforts. The shape of the hill is defined by six segments of third-order
polynomials, see e.g. Xiao et al. (2020) for the exact definition. In that work, a
parameterization of the geometry was introduced by scaling the length of the hill.
Particularly, the authors performed a series of DNS for Lx/h = 3.858α + 5.142, where Lx
is the length of the geometry, h is the height of the hill and α is a parameter. The value
α = 1 corresponds to the baseline geometry. The corresponding DNS data set for several
values of α has been made public on Github, which was extended in 2021 with additional
data introducing a new parameter γ :

Lx/h = 3.858α + 5.142γ. (3.6)

The effect of α and γ on the geometry is illustrated in figure 6 with red and black curves,
respectively. The purpose of the present example is to demonstrate how the HC-MFM can
be used to economically assess the effect of uncertain parameters α and γ on the flow
QoIs. To that end we combine the DNS data discussed above from Xiao et al. (2020) with
data from RANS simulations performed by us using ANSYS Fluent (2019). The data from
the latter are made publicly available (archive available via the following doi:10.6084/m9.
figshare.21440418).

For the DNS we use the data for α ∈ {0.5, 1.0, 1.5} and γ ∈ {0.4166, 1.0, 1.5834}.
The same values are also used for the RANS, complemented by two additional samples
for both α and γ for which DNS results are not available. These are selected based
on the Gauss–Legendre quadrature rule and are equal to α = {0.702, 1.297} and γ =
{0.653, 1.347}. Therefore, there is a total of 5 × 5 samples over the space of α–γ

corresponding to which RANS simulations are performed. For the uncertainty propagation
and sensitivity analysis, see below, we assume α and γ to be independent, and α ∼
U [0.448, 1.552] and γ ∼ U [0.356, 1.644].

The standard k–ω turbulence model is used in the RANS simulations, as defined
in ANSYS Fluent (2019) based on the work of Wilcox (2006). The available
low-Reynolds-number correction to the model was not used. The model depends on a
number of parameters which are listed in ANSYS Fluent (2019, p. 61). It can be shown (see
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Wilcox 2006, p. 134) that the parameters α∞, β∗∞, σ and βi are coupled to the von Karmán
coefficient κ through the following equation:

α∞ = βi/β
∗
∞ − σκ2/

√
β∗∞. (3.7)

To illustrate the automatic calibration capability of the HC-MFM, we assume κ to be
uncertain and perform simulations for five sample values of κ ∈ {0.348, 0.367, 0.4, 0.433,

0.452}, which follow the Gauss–Legendre quadrature rule. To prescribe the desired value
of κ , we set α∞ = 0.52, σ = 0.5, βi = 0.0708 (as suggested by Wilcox 2006, p. 135), and
manipulate β∗∞ according to (3.7). Note that the considered training samples include the
standard choice β∗∞ = 0.09, corresponding to κ = 0.4. Using five samples for each of α, γ

and κ and using a tensor-product rule, a total of 125 RANS simulations were performed
for this study.

For RANS simulations, quadrilateral cells were used to discretize the computational
domains, with the total grid size ranging from ≈ 150 × 103 to ≈ 500 × 103 cells,
depending on the domain size as defined by α and γ . Since the selected turbulence model
requires accurate resolution of the boundary layer, the selection of the mesh size was
guided by the discretization in the corresponding DNS case (Xiao et al. 2020). Specifically,
we adopted the same number of cells in the streamwise and wall-normal directions as in
the DNS, and applied size grading in the wall-normal direction to ensure low values of y+.
This means that in the streamwise direction the mesh may be unnecessarily fine for RANS,
but since these simulations are two-dimensional and steady state, they are still negligibly
cheap compared with the DNS.

Second-order numerical schemes were used to discretize the RANS equations in
ANSYS Fluent (2019). Specifically, for the convective fluxes, a second-order upwind
scheme was used, combined with linear interpolation for the diffusive fluxes. The coupled
solver was used for pressure–velocity coupling, which did an excellent job at converging
the simulations.

3.4.1. Creating ground truth and verifying the model
Using all nine DNS data sets available from Xiao et al. (2020), the response surface of
the QoIs at the space of α–γ and associated PDF of the QoIs can be estimated. These
will be used as the ground truth or reference to evaluate the performance of the HC-MFM
in the following analyses. The interpolation from the DNS samples to an arbitrary mesh
covering the whole admissible range of α and γ can be done using polynomial-based
methods such as PCE (used here) or Lagrange interpolation, as well as GPR. Based on
the data available from Xiao et al. (2020) and the performed RANS simulations, different
QoIs can be considered. Hereafter, to demonstrate the power of the method, we take the
normalized height of the separation bubble, Hbubble/h at the streamwise location x/h = 2.5
as the QoI. Alternatively other locations x/h as well as different flow quantities could be
considered. The response surface of the QoI and associated PDF are illustrated in figure 7.
Based on the pattern of the isolines, we can observe that the parameter α exhibits a stronger
influence on the QoI than γ . This can be quantitatively confirmed via the values of the total
Sobol indices (Sobol 2001) as reported in table 1. The resulting PDF has one peak showing
the most probable observed value of Hbubble/h at x/h = 2.5 and a plateau approximately
over Hbubble/h = [0.46, 0.53].

The reference posterior distribution of κ as the RANS calibration parameter can now be
inferred. To this end, the HC-MFM described in § 3.4.2 is constructed using nine DNS data
sets of Xiao et al. (2020) and 125 RANS simulations. The prior distribution of κ is taken
to be uniform over the range of [0.3, 0.5]. This non-informative prior distribution removes
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Figure 7. (a) Isolines of the response surface and (b) PDF of Hbubble/h at x/h = 2.5 due to the variation of α

and γ using all of the nine DNS data of Xiao et al. (2020) (represented by the symbols in the left plot). These
plots are considered as ground truth or reference for evaluating the performance of the MFM.

Moments due to α, γ Total Sobol Indices of R with respect to

Data set E[R] S[R] α γ κ

Reference 0.48104 0.05027 0.94551 0.08094 —
LF 0.51999 0.01666 0.44275 0.02689 0.60623

Case-A HF 0.50047 0.05045 0.81448 0.19144 —
Multifidelity (MF) 0.49209 0.05238 0.88133 0.12680 —

Case-B HF 0.46981 0.05198 0.82327 0.18237 —
Multifidelity (MF) 0.48437 0.05215 0.91355 0.10097 —

Table 1. Estimated mean, standard deviation and total Sobol indices of the QoI R = Hbubble/h at x/h = 2.5
due to the uncertainty in α and γ . For the LF (RANS) data the uncertainty and sensitivity with respect to
parameter κ is also included. For the case-A and case-B data sets used for multifidelity modelling, see figure 9.

any bias towards any particular value in the distribution of κ . Through a Bayesian inference
via an MCMC method, the sample posterior distribution of κ shown in figure 8(a) is
obtained. Note that this calibration is in fact a pure UQ inverse problem, see e.g. Smith
(2013), where all the RANS data are utilized to construct a surrogate for κ , and the DNS
data are used as training data to infer the distribution of κ . The estimated mean and
standard deviation of the posterior distribution of κ are 0.47087 and 0.05387, respectively.
As compared with the standard value 0.4 being used in the literature, the estimated mean is
somewhat larger. However, from a physical point of view, one would not expect an accurate
value of κ for this type of flow due to the separated nature and the relatively low Reynolds
number.

Another advantage of using all the available RANS and DNS data in the HC-MFM
is that the implementation (algorithm and coding) of the HC-MFM can be verified. As
shown in figure 8(b), the prediction of the HC-MFM constructed by combining all DNS
and RANS data sets completely agree with the predictions of the single-fidelity model
based on only the DNS data. Note that the predicted marginal PDF of the QoI in the
HC-MFM is the same as the reference PDF in figure 7.
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Figure 8. (a) The sample posterior PDF of κ and (b) sample joint PDF of Hbubble/h at x/h = 2.5 obtained
from the HC-MFM using all nine DNS data sets of Xiao et al. (2020) along with the 125 RANS simulations
performed in the present study. The RANS simulations are performed using five samples of κ equal to 0.348,
0.367, 0.4, 0.433 and 0.452. The marginal PDFs on the top and right axes are found using the kernel density
estimation method.
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Figure 9. Schematic representation of the samples from α and γ corresponding to the LF, ×, HF, � and all
available DNS data from Xiao et al. (2020), ◦. In the text, (a) and (b) are referred to as case-A and case-B,
respectively. Note that, for both cases, there are five samples for κ associated with each of the LF samples
represented here.

3.4.2. Application of the HC-MFM
Adopting the general notation of § 2, the HC-MFM for the present example can be written
as

yM1(xi) = f̂ (xi, θ2i) + δ̂(xi) + ε1i i = 1, 2, . . . , n1
yM2(xi) = f̂ (xi, t2i) + ε2i i = 1 + n1, 2 + n1, . . . , n2 + n1

}
, (3.8)

where M1 and M2 denote DNS and RANS, respectively, the design parameters are xi =
(αi, γi) and, t2 and θ2 refer to the simulated and calibrated instances of κ , respectively. The
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Figure 10. (a–e) The PDF of Hbubble/h at x/h = 2.5 due to the variation of α and γ using the RANS data
simulated with κ equal to 0.348, 0.367, 0.400, 0.433, 0.452, respectively. Note that 5 × 5 samples are taken
from the α–γ space at each of these constant-κ simulations. The PDF in ( f ) is obtained using all the 5 × 5 × 5
samples from α, γ and κ .

kernel of f̂ (x, t2) is taken to be the exponentiated quadratic function (2.11), while for δ̂(x),
the Matern-5/2 function (2.12) is employed. For the hyperparameters, the following prior
distributions are considered: κ ∼ U [0.3, 0.5], λf ∼ HC(α = 5), �fx, �ft2 ∼ Γ (α = 1, β =
5), λδ ∼ HC(α = 1) and �δx ∼ Γ (α = 1, β = 1). In this example, the uncertainty in the
DNS and RANS data is neglected. Despite this, when implementing the model in PyMC3
(Salvatier et al. 2016), the prior of the Gaussian noise standard deviation is set to be σ ∼
HC(α = 5) (same for both fidelities). But, as expected, the mean and standard deviation
of the posterior distribution of σ are obtained to be approximately zero.

The hyperparameters will be inferred from the combined set of n1 DNS and n2 RANS
data. In the analyses to follow, we use all the RANS simulations as LF data, therefore n2 =
125. Two subsets of the DNS data of Xiao et al. (2020) with sizes n1 = 4 and 5 are taken
to be the HF data. Combining these two HF data sets with the LF data, case-A and case-B
data sets are obtained for multifidelity modelling. Figure 9 represents the samples of these
two cases in the space of α–γ parameters.

Before constructing the HC-MFM, it is important to look at the LF data. In figure 10,
the PDF of the QoI due to the variation of α and γ for different training samples of κ is
represented. The two expected yet important observations are that the PDF of the QoI is
significantly influenced by the value of κ used in the RANS simulations, and the fact
that the PDFs are much different from the ground truth PDF shown in figure 7. The
larger influence of κ compared with α and γ is also reflected in the associated Sobol
indices (Sobol 2001), as reported in table 1. Note that the PDF of the QoI considering the
simultaneous variation of α, γ , and κ is shown in figure 10( f ).

The response surface and PDF of the QoI obtained from only the HF data of case-A
and case-B are illustrated in figure 11. For case-A with n1 = 4 HF data, the PDF of the
QoI has a plateau which makes it clearly different from the reference PDF in figure 7.
By adding only one more DNS data point and obtaining case-B, the response surface
becomes more similar to the reference, however, the associated PDF is still single mode.
The improved predictions through the application of the HC-MFM are shown in figure 12.
Compared with the HF-data in figure 11, the PDFs of the QoI clearly exhibit a second
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Figure 11. (a,b) Isolines of the response surface and (c,d) PDF of Hbubble/h at x/h = 2.5 due to the variation
of α and γ using the HF data of (a,c) case-A and (b,d) case-B. The data are taken from the DNS of Xiao et al.
(2020) and are specified by dots in (a,b).

peak for the values between 0.5 and 0.6. This peak has been introduced by adding the
LF data, see figure 10( f ), and this is, in fact, the task for the MFM to adjust the involved
hyperparameters such that the fusion of the data at the two fidelities leads to a PDF similar
to the reference. Clearly, for case-B with only five DNS data samples included, the PDF
and response surface of the QoI are very close to the ground truth in figure 7 (nine DNS).
This can also be confirmed by plotting the associated HC-MFM predictions against the
reference data at all test points in the α–γ plane, see figure 13. The joint PDF of these
two sets of data for both considered cases is narrow, specifically for case-B, and hence
implies a low point-to-point deviation of the predictions from the reference values. It is
also interesting to look at the posterior distribution of the RANS calibration parameter κ .
It is not surprising that the resulting PDFs from the multifidelity data sets case-A and
case-B are different in spite of having the same uniform prior distribution. Two important
observations here are the following: first, in contrast to the previous examples in the present
study, even with a small number of HF-data, i.e. case-A, a significantly informative PDF
for the LF calibration parameter is obtained. Second, for case-B, the posterior distribution
of κ is very similar to the reference case where nine DNS data sets are used, see figure 8.
Thus, depending on the case, the HC-MFM is capable of calibrating the model parameters
in a fairly accurate way at the same time of constructing an accurate predictive model. This
somewhat challenges the conclusion which could be drawn from the previous examples in
the present study and also by Goh et al. (2013), where the priority of the HC-MFM is
found to make accurate predictions for the QoI rather than providing accurate calibration
of the fidelity-specific parameters.

964 A13-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

32
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.327


Efficient prediction of turbulent flow quantities

0.6 0.8 1.0 1.2 1.4

0.6

0.8

1.0

1.2

1.4

0
.3

9
5

0
.4

0
0

0
.4

0
5

0
.4

1
0

0
.4

1
5

0
.4

2
0

0
.4

2
5

0
.4

3
0

0
.4

3
5

0
.4

4
5

0
.4

5
0

0.
45

0
.4

6

0
.4

6
0
.4

7
0
.4

7

0
.4

8
0

0
.4

8
0
.4

9
0

0
.4

9
5

0
.5

0
0

0
.5

0
5

0
.5

1
0

0
.5

1
5

0.
52

0

0
.5

2
5

0
.5

3
0

0.
53

50.
54

0

54
5

0.
44

0.
55

00.
55

50.
56

0
0.

56
5

0.
57

0
0.

57
5

0.
58

0
0.

58
5

0.
59

0
0.

59
5

0.
60

0
0.

60
5

0
.6

10

0.6 0.8 1.0 1.2 1.4

0.6

0.8

1.0

1.2

1.4

0
.3

9
5

0
.4

0
0

0
.4

0
5

0
.4

1
0

0
.4

1
5

0
.4

2
0

0
.4

2
5

0
.4

3
0

0
.4

3
5

0.440

0
.4

4
5

0.
45

0

0
.4

0
.4

6
0
.4

6

0
.4

7
0

0
.4

7
5

0
.4

8
08
5

4.
0

9
4.

0

.4
9
5

0
.5

0
0

5
0
5

1
0

0
.5

0
.5

2
0

0
.5

2
5

0
.5

3
0

0
.5

3
5

.5
40

0
.5

4
50
.5

5
0

0
.5

5
5

0
.5

6
0

0
.5

6
5

0
.5

7
0

0
.5

7
5

0
.5

8
0

0
.5

8
5

0
.5

9
0

0
.5

9
5

0.
60

0
0.

60
5

0.
61

0
0

.6
15

0.4 0.5 0.6
0

5

10

15

P
D

F

0

5

10

15

Hbubble/h
0.4 0.5 0.6

Hbubble/h

γ

α α

MFM

Ref.

LFM

HFM

MFM

Ref.

LFM

HFM

(b)(a)

(c) (d )

Figure 12. (a,b) Isolines of the response surface and (c,d) PDF of Hbubble/h at x/h = 2.5 due to the variation
of α and γ obtained from the HC-MFM with the data of (a,c) case-A and (b,d) case-B. In (c,d), the PDF
resulting from the HC-MFM is compared with the PDFs of the ground truth (see figure 7), LF data (LFM,
figure 10) and HF data (HFM, figure 11).

To conclude the periodic hill example, we can quantify stochastic moments of the QoI
as well as the Sobol sensitivity indices (Sobol 2001) due to the uncertainty in α and γ .
These UQ measures are integral quantities over the admissible range of the parameters
and can be computed using the reference data (all available DNS), LF, HF and MF data
sets. Note that for the LF data, the uncertainty in κ is also taken into account. Noting
the parameters α, γ and κ are uniformly distributed and independent from each other,
the results summarized in table 1 are obtained using the generalized polynomial chaos
expansion (Xiu & Karniadakis 2002) for the reference and LF data sets, and the Monte
Carlo method for the multifidelity cases. All the UQ analyses have been performed using
UQit (Rezaeiravesh, Vinuesa & Schlatter 2021). In general, for all cases but the pure
LF data, the prediction of the mean and standard deviation of the QoI are close to the
reference. For the total Sobol indices, the closest estimates to the reference values is
obtained from the HC-MFM applied to case-B, and on the second rank, case-A. Noting
the improvement of the Sobol indices accuracy in each of the multifidelity cases compared
with the estimates from the associated HF data, the effectiveness of the HC-MFM is once
again confirmed. This is an important outcome considering the forward UQ problems and
global sensitivity analyses are of most relevance in CFD applications.
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Figure 13. (a,b) Joint and marginal PDFs of Hbubble/h at x/h = 2.5, and (c,d) associated sample posterior
distribution of κ for (a,c) case-A and (b,d) case-B data sets. In (a,b), the contours belong to the joint PDF with
associated values specified in the colour bar.

3.5. Keeping the RANS parameter fixed
In all the examples in the present study, the fidelity-specific calibration parameters are
involved in the multifidelity modelling and posterior distributions for them are learned
during the construction of the MFM. But, the methodology behind the HC-MFM
described in § 2 is general and flexible to be directly applicable to the cases where the
fidelity-specific parameters are kept fixed. To demonstrate this, let us apply the HC-MFM
to the example of the periodic hill and use the RANS data at constant values of κ , the
RANS modelling parameter in (3.7). We use the case-B data sets shown in figure 9 which
means having 5 and 25 samples for the DNS and RANS simulations, respectively, in the
α–γ space. The validation of the PDF of the QoI, Hbubble/h at x/h = 2.5, of the HC-MFM
for two values of κ is represented in figure 14. Adopting κ = 0.433 (β∗∞ = 0.084) shows
a clear improvement in the predictions compared with the standard value κ = 0.4 (β∗∞ =
0.09). This observation is consistent with the posterior PDF of κ in figure 13, where the
mode of the distribution is higher than 0.4. From this test, not only the validity of the
HC-MFM for fixed values of the fidelity-specific parameters is confirmed, but also the fact
that such accuracy-controlling parameters should be actively part of the data generation
and hence the construction of HC-MFM is emphasized.

Another important point is that the good predictive accuracy in figure 14 is obtained
despite the poor correlation between the DNS and RANS data. This is because of accurate
construction of the model discrepancy term in (3.8) and also accurate estimation of
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Figure 14. Joint and marginal PDFs of Hbubble/h at x/h = 2.5 for case-B data sets using fixed values of κ

equal to (a) 0.4 and (b) 0.433. Note that the PDF of the QoI due to the variation of α and γ corresponding to
these κ values is plotted in figure 10(c,d), respectively.

various hyperparameters. It is also noteworthy that the present example is comparable
to what is performed by Voet et al. (2021) using 7 DNS and 30 RANS data sets using
different multifidelity modelling approaches while fixing the value of the coefficients in
the RANS closure model. However, a direct comparison between the two studies is not
possible since, in the study by Voet et al. (2021), the plots of the MFM predictions vs
reference values of the QoI as in figure 14 were not provided.

3.6. Impact of replacing the MCMC by a point-estimator
In all the examples presented in this study, the HC-MFM is constructed using the MCMC
method to draw samples from the posterior distribution of the hyperparameters and
calibration parameters, i.e. β and θ , respectively, in the Bayes formula (2.13). Similarly, to
predict the sample distribution of the QoI, direct samples from these posterior distributions
are used in the HC-MFM. As an alternative to these sample-based methods within the
Bayesian framework, point estimators such as maximum a posteriori probability (MAP)
and maximum likelihood estimators (MLE) can be adopted. The point-estimated values
are considered to be the representatives of the corresponding distribution. Note that the
use of the uniform priors in (2.13) makes the MAP estimations identical to the MLE.
Our investigations showed that using point estimators instead of the MCMC method, could
deteriorate the accuracy of the HC-MFM predictions, independent from how the LF and
HF data are combined.

For instance, according to figure 15, the PDF of the QoIs predicted by the HC-MFM
using the MAP estimator is significantly worse than what is given by the MCMC method
as shown in figure 13. This is an important message of the present study noting that all
previous multifidelity studies in the literature relevant to the fluid flows have been based
on using the point estimators, see e.g. Voet et al. (2021) where the MLE is adopted.

The reason for this observation is that, to obtain the best fit for the GP-based models,
here the HC-MFM, for a given set of data, the global optimum of the parameters appearing
in the model should be found. This, in general, is not an easy task considering the
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Figure 15. Joint and marginal PDFs of Hbubble/h at x/h = 2.5 for (a) case-A and (b) case-B data sets. Here, a
MAP estimator is used to construct the HC-MFM, in contrast to figure 13 and the rest of the examples in the
present study which are obtained using an MCMC method.

optimization problem can be non-convex with many local optima (Rasmussen & Williams
2005; Gramacy 2020). Depending on the problem, the point estimators such as MAP and
MLE may or may not be successful in finding the global optimum. In contrast, a thorough
exploration of the admissible space of the parameters via MCMC samples can rectify the
issue. More concrete examples and discussion in this regard can be pursued in an extension
of the present study.

4. Summary and conclusions

The Bayesian hierarchical MFM with automatic calibration (HC-MFM) developed by
Goh et al. (2013) is adapted to several examples relevant to wall-bounded turbulent
flows. The HC-MFM is general, accurate, applicable to an arbitrary number of fidelity
levels and well suited to simulations of turbulent flows since as a part of the MFM
construction the fidelity-specific parameters can be automatically calibrated using training
data of higher fidelities. This is an important feature noting that in all approaches for
simulation of turbulence, different numerical and modelling uncertain parameters can
influence the accuracy of the QoIs. Because we used Gaussian processes, the predictions
made by the HC-MFM are accompanied by CIs. Moreover, it is possible to incorporate
the observational uncertainties in the data at all fidelity levels, and hence perform various
UQ analyses for combinations of different types of uncertainties, see Rezaeiravesh et al.
(2022).

Based on the examples, the following main conclusions can be made. (i) For a fixed
number of HF training data, the HC-MFM prioritizes the prediction of QoIs so that they
become as close as possible to the HF validation data, while the posterior distributions of
the calibration parameters are found to be accurate only if sufficiently many LF training
data are provided. A similar conclusion was drawn by Goh et al. (2013) by systematically
increasing the amount of both HF and LF data. For the periodic hill subject to geometrical
uncertainties, § 3.4.2, fixing the number of the LF data and considering two sets of HF
data, the posterior distribution of the RANS (LF) parameter was found to be close to
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what would be obtained by using all the available HF data. This, again, confirms the
importance of providing sufficient LF training data through well exploring the space of the
design and calibration parameters. (ii) When there are more than one QoI, the posterior
distribution of the calibration parameters may depend on the QoI, see § 3.3. Therefore,
the calibration parameters are more numerical than physical and hence, predictions by the
HC-MFM for a QoI can be more accurate than the case of a priori calibrating the LF
models against HF data of another QoI (an example is calibrating a RANS closure model
by the HF data of the lift coefficient, and then using the calibrated model in a simulation
aiming for the drag coefficient with optimal accuracy). (iii) As show in § 3.6, the method
for estimating the hyperparameters and parameters in the HC-MFM can significantly
affect the resulting predictive accuracy. In fact, the MCMC sampling method is shown
to result in more accurate predictions compared with a point estimator like MAP. This
important point is usually overlooked in most of, if not all, the previous studies regarding
the multifidelity modelling in CFD. (iv) If the fidelity-specific calibration parameters are
kept fixed, the HC-MFM is still applicable without any need to modifying its general
formulation. Obviously, the predictive accuracy of the model will depend on the validity
of the value chosen for such parameters when generating the training data. The success of
the HC-MFM relies on the accurate modelling of the discrepancy terms between different
fidelities, and also the use of the MCMC methods to find optimal values for underlying
hyperparameters through exploration of the parameter space.

A user of the HC-MFM should be aware of the fact that the model has no intrinsic
knowledge of the physics and what parameter/hyperparameter values are reasonable.
Therefore, an assessment of the resulting predictions by the model based on relevant
physical constraints is necessary. Furthermore, the choice of kernel functions and priors
for the kernel hyperparameters may affect the predictions of the MFM, as discussed in
Appendix A. However, the benefit of the Bayesian approach is that any prior knowledge
can already be put to use during the set-up of the model, i.e. via the selection of
appropriate prior distributions for the parameters. These factors, together with the selection
of the training samples, may impact the robustness of the HC-MFM. Therefore, the
method should be assessed in further applications in the field of turbulence, with varying
complexity and prior physical knowledge.

The present study may be extended in several directions. For instance, in addition to
the scalar QoIs, spatio–temporal fields can be considered in the HC-MFM, making it
possible to predict full flow fields by combining different fidelities. Such an approach
may be particularly interesting as an alternative to the more black-box machine-learning
tools when it comes to super-resolution and related methods. Another potential extension
is in the combination of the HC-MFM with a Bayesian optimization for CFD applications
and turbulent flow problems (see Morita et al. 2022). In this case, the surrogate for the
optimizer is based on the MFM, and is thus potentially cheaper to evaluate during the
optimization process. In particular, applications in flow control for turbulence, where the
main computational time lies in the evaluation of the objective function (i.e. the CFD
solver), may greatly benefit from a well-calibrated MFM. Another development can be
towards integrating adaptive sampling methods with the HC-MFM, where the decision
about a new sample is made through maximizing the predictive accuracy (or minimizing
uncertainty) of the model and minimizing the overall computational cost (by choosing a
suitable fidelity to sample from).
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Appendix A. Remarks on the techniques used

The purpose of this appendix is to provide a brief overview on some aspects of the
Gaussian processes, HC-MFM and Bayesian inference to the extent relevant to the context
of the present paper. For further details, a reader is referred to the relevant resources
including those cited here.

Further notes on the GPR: according to Rasmussen & Williams (2005), a GP is defined
as ‘a collection of random variables, any finite number of which have a joint Gaussian
distribution’. Therefore, f̂ (x) in (2.1) is a multivariate Gaussian distribution for any joint
sample taken from x. The multivariate Gaussian distribution identity remains unchanged,
either we define a prior for f̂ (x) (before seeing the data), or after the posterior of f̂ (x)

is inferred from data. When the prior of f̂ (x) is defined, it means we define a structure
for m(x) and k(x, x′). Within such structures, there are various hyperparameters for which
we assume prior distributions. For the training data comprising observations Y = {yi}n

i=1
at samples X = {xi}n

i=1, the posterior predictive distribution of f̂ (x) at the test samples
X ∗ = {x∗

i }n∗
i=1 is multivariate Gaussian with the mean and variance given by the following

expressions, respectively (Rasmussen & Williams 2005):

m(Y∗|X ∗, X , Y ) = K(X ∗, X )(K(X , X ) + KN)−1Y T , (A1)

v(Y∗|X ∗, X , Y ) = K(X ∗, X ∗) − K(X ∗, X )(K(X , X ) + KN)−1K(X , X ∗). (A2)

Here, without loss of generality, m(x) is taken to be zero, K(X , X ′) is a n × n′ matrix
where [K(X , X ′)]ij = k(x(i), x′( j)) and KN represents the covariance matrix of the noise.
Clearly, in the absence of m(x), it is the kernel function and the posterior of its
hyperparameters which determine the mean and variance of the posterior predictive
distribution of f̂ (X ∗).

Choice of the kernels: in the absence of m(x), the most influential factor to determine the
accuracy of the GP predictions with respect to a given data set is the choice of the kernel
function. This is evident from the (A1) and (A2), and the fact that k(x, x′) specifies the
degree of similarity or covariance between f̂ (x) and f̂ (x′). In each problem, the distribution
of the available data in the space of the inputs, or our insights into how the predictions
should eventually be in the space of the parameters, can act as directives to select or
design kernel functions. For instance, seeing/expecting periodicity in the training data
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over the space of the inputs, necessitates using periodic kernels. Another example is the
case studied in § 3.3, where we knew there should have been a sudden change in the CL
and CD curves due to the stall, and because of that we broke the kernel function into two
parts introducing the new parameter xstall and let the HC-MFM learn it along with other
parameters/hyperparameters.

If we assume that the function f̂ (x) should be smooth (infinitely differentiable), then the
quadratic exponentiated kernel can be chosen. To relax the smoothness assumption, the
family of the Matern kernels can be considered which have a parameter ν controlling
the degree of smoothness of the learned function, see e.g. Rasmussen & Williams
(2005) and Matern (1986) (if ν → ∞, then the exponentiated quadratic is recovered).
In the examples considered in the manuscript, as the baseline, we have considered the
exponentiated quadratic kernel. For the airfoil and periodic hill examples, we observed
(through experimentation) that considering the Matern-5/2 for the model discrepancy GPs
δ̂(x) and the additive kernels in the airfoil example (see (3.4)) results in slightly more
accurate predictions by the HC-MFM compared with the case of using the exponentiated
quadratic kernel. Although, we should emphasize that the degree of improvement was not
really significant. In the end, it is recalled that there are studies like Duvenaud et al. (2013);
Lloyd et al. (2014) where algorithms for automatic selection of the most suitable kernel
functions for a given problem have been proposed.

Choice of the prior for the (hyper)parameters: any function selected for the m(x) and
k(x, x′) in the GPs in (2.1) and (2.6) relies on a set of hyperparameters, denoted by β in
the text. In addition to these, we have θ , the fidelity-specific parameters in the HC-MFM.
As a general rule, the prior for any parameter should be chosen such that it only allows
for its associated admissible values. Moreover, for any choice for the priors, we should
examine the validity of the resulting posteriors (Gelman et al. 2013). Given these, the
particular choice made for the priors of β and θ can be justified as follows.

The uniform priors are non-informative, therefore, they are chosen in the examples
in § 3, when the purpose was making the construction of an accurate HC-MFM more
challenging, i.e. with providing no prior information about the distribution of the
fidelity-specific parameters such as θ in the toy-problem example (§ 3.1), Δx+, Δz+, κ

and A+ in the channel flow example (§ 3.2) and κ in the periodic hill example (§ 3.4).
However, we still define the admissible range of a parameter via specifying the bounds of
the associated uniform distribution. In general, when there are few training data available,
the choice of the uniform priors may have a significant impact on the posteriors, see
Gelman et al. (2013). Indeed, we clearly observed this, for instance, in the toy-problem
example (§ 3.1), where by increasing the number of LF samples, the posterior of θ changed
significantly and became farther from a uniform distribution. Only on one occasion, in the
airfoil example (§ 3.3), did we use the Gaussian prior for xstall and TI as we had a good prior
knowledge (from aerodynamics) about the range of the AoAs over which the stall would
happen, and the order of the turbulence intensity in the experiments by Bertagnolio (2008)
and the discussion in Gilling et al. (2009). For the noise standard deviation as well as the
scaling factor of the kernels (such as λ in (2.8)), we adopt the half-Cauchy distribution as
it only admits non-negative values and has a good performance for the hierarchical models
(Gelman 2006; Gelman et al. 2013). Another type of prior considered in the manuscript is
the gamma distribution for the length scale of the GPs’ covariance kernels. This was based
on the literature, see e.g. Rasmussen & Williams (2005) and the fact that the length scales
needed to be non-negative.

Extrapolation by HC-MFM: in the examples considered in § 3, the prediction made by
the HC-MFM for a QoI in the space of the design parameters x was within the range
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Distribution PDF Support in x

Uniform (U ) ρ(x;α, β) = (β − α)−1 [α, β]
Gaussian (N ) ρ(x;α, β) = (2πβ2)−1/2 exp(− 1

2 ( x−α
β

)2) (−∞, ∞)

Half-Cauchy (HC) ρ(x;α) = 2[πα(1 + ( x
α
)2)]−1 [0, ∞)

Gamma (Γ ) ρ(x;α, β) = βαxα−1 exp(−βx)/Γ (α) (0, ∞)

Table 2. The PDF and associated support of the standard distributions used in § 3.

covered by the training data at various fidelities. This was an intentional choice, given the
range of availability of HF data for the validation of the HC-MFM’s predictions and the
fact that in §§ 3.3 and 3.4, propagation of uncertainty from x and sensitivity analysis were
targeted. A valid question is about the performance of the HC-MFM in an extrapolation
mode, i.e. making prediction for the QoI in x beyond the range covered by the training data.
Note that, for the data at different fidelities, the covered range in x may be different, which
makes the interpretation of extrapolation slightly non-trivial. In any case, the HC-MFM
relies on the GPs and therefore its performance when used for extrapolation can be case
dependent. This means that if accurate predictions by the model are intended, the choice of
the mean and covariance kernels in the GPs should be made in the way that allows for such
purpose (Rasmussen & Williams 2005; Gramacy 2020). The particular optimal choice is,
however, problem-dependent and can be the subject of an extension of the present study.

Appendix B. The PDF of a set of standard distributions

For the prior distribution of the parameters and hyperparameters of the MFMs in § 3, a set
of standard distributions was used. table 2 summarizes the PDF and associated support of
such distributions.
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