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THE ANALYTIC RANK OF A FAMILY 
OF ELLIPTIC CURVES 

OEM MAI 

ABSTRACT. We study the family of elliptic curves Em:X3 + Y3 = m where m is a 
cubefree integer. 

The elliptic curves Em with even analytic rank and those with odd analytic rank 
are proved to be equally distributed. It is proved that the number of cubefree integers 
m < X such that the analytic rank of Em is even and > 2 is at least CX2I3~£, where 
e is arbitrarily small and C is a positive constant, for X large enough. Therefore, if we 
assume the Birch and Swinnerton-Dyer conjecture, the number of all cubefree integers 
m < X such that the equation X3 + Y3 — m have at least two independent rational 
solutions is at least CX2I3~£. 

1. Introduction. For an elliptic curve E over Q, the set of all rational points E(Q) 
is known to be a finitely generated abelian group by a theorem of Mordell-Weil. We will 
call its rank the (algebraic) rank of the elliptic curve. It is positive if and only if E has 
infinitely many rational points. One important problem in the study of elliptic curves is 
to determine their ranks. 

Attached to an elliptic curve E of conductor N9 we have an L-series LE(S) — 
Y^L\ ann~s (see Silverman [12]). If we define 

CE(S) = Ns/2(2n)-sr(s)LE(s\ 

then for modular elliptic curves it is known that (^(s) has analytic continuation and sat
isfies 

CE(S)=W(E(2-S) 

with W = ±1 . Here, W is called the root number. The so-called Taniyama-Weil conjec
ture says that all elliptic curves over Q are modular (see Taniyama [13]). Weil's converse 
theorem allows us to reduce the conjecture to a problem in analytic continuation and 
functional equation of a family of Dirichlet series (see Weil [14]). 

In connection with the rank of an elliptic curve E, the weak form of Birch and 
Swinnerton-Dyer conjecture states that the rank of E is equal to the order of vanish
ing at the central point s — 1 of LE(S) and its parity is determined by the root number 
(see Silverman [12]). 

DEFINITION. The analytic rank of an elliptic curve E is the order of vanishing at the 
central points = 1 of LE(S). 
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Now, if x is a Dirichlet character, we can form the twisted L series L(s) — 
E^li an\(n)n~s. If \ is quadratic, this is an L-series of another elliptic curve Ex over Q. 
Fixing an elliptic curve E over Q, we can consider the family Ex of such twisted curves 
of E. What can we say about the number of such twisted curves which have algebraic 
rank > r, for a fixed positive integer r? What can we say about analytic rank? 

In the case of such quadratic twists, Gouvea and Mazur in [4] gave a partial answer 
variation of the algebraic rank. More specifically let E have the Weierstrass equation 
Y2 = X3 + AX + B. For any squarefree integer D, denote ED the quadratic twist of E by 
D (i.e. by the Legendre symbol (-)). Then ED is an elliptic curve and has the equation 
DY2 — X3 + AX + B. Assuming the Birch and Swinnerton-Dyer conjecture, Gouvea and 
Mazur have proved that for X large enough, the number of squarefree integers D < X 
such that ED has even algebraic rank > 2 (i.e. WED = 1 and ED has infinitely many 
rational points) is at least CXll2~£ for C a positive constant and e arbitrarily small. In 
general, no information is obtained for higher-order twisted curves. (See Silverman [12] 
for the definition of the twist of E.) In this paper, we consider certain cubic twists, namely 

X3 + Y3 = m. 

The problem of determining whether an integer can be expressed as the sum of two 
rational cubes has a long history. As mentioned in [15], Dickson listed 50 papers on the 
subject before 1918 in his History of the Theory of Numbers. Equivalently, we want 
to study the family of elliptic curves Em: X3 + Y3 = m. It is known that they are twisted 
curves of the fixed elliptic curves E\ : X3 + Y3 — 1 by cubic characters. In [ 15], Zagier and 
Kramarz gave numerical data suggesting that about 23.3% of the curves Em which have 
even algebraic rank (i.e. with root number 1, assuming the Birch and Swinnerton-Dyer 
conjecture) have algebraic rank > 2. 

In this paper, we obtain a similar result to Gouvea and Mazur 's for this family of cubic 
twisted curves. 

MAIN THEOREM. For X large enough, the set of all cubefree integers m < X such 
that the analytic rank of Em is even and greater or equal to 2 is at least CX2I3~S for a 
positive constant C and arbitrarily small e. 

Therefore, assuming the Birch and Swinnerton-Dyer conjecture, the set of all cubefree 
integers m < X such that Em has even rank > 2 is at least CX2/3~£. 

We recall some facts about the family Em. 
For m cubefree, the curve Em : X3-\-Y3 = m has the Weierstrass form Y2 = X3 — 2433m2. 
This can be seen through the map: 

Em: X3 + Y3 = m -> Ém: Y2 = X3 - 2433m2 

(X, Y) i-> (223(X2 - XY + y2), 2232(X - Y)(X2 -XY+ Y2)). 

About the torsion subgroup of Em(Q), Nagell (see [11]) showed that for m ^ 1,2, 
Em(Q) is torsionfree and |£i(Q)| = 3, |E2(Q)| = 2. 
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The root number Wm is also known explicitly. Indeed Birch and Stephens in [1] prove 
that 

(1) Wm = Y[Wm(p) 
p 

where for/? ^ 3, 

and for/? = 3, 

Wm(p) 

Wm(3) = 

— 1 if/?|ra, p = 2 (mod 3) 
1 elsewhere 

1 if/n = ± l , ± 3 (mod 9) 
- 1 if m = 0, ±2, ±4 (mod 9). 

In §2, we will prove that for X large enough, the number of cubefree integers m < X 
such that Em has nonzero algebraic rank is at least CX2I3~£ for C a positive constant and 
£ arbitrarily small. 

In §3, it is proved that the curves Em with root number 1 have density \ among the 
set {m cubefree}. Therefore, assuming the Birch and Swinnerton-Dyer conjecture, half 
of the Em

9s will have even rank and half with odd rank, asymptotically. 
In §4, we introduce the additional condition Wm = 1 and prove the main theorem. 

2. Distribution of the set of £m's with nonzero rank. In [4], it is shown that for 
every squarefree integer D of the form V(U3 + AUV2 + BV3), (U, V) G Z2 the quadratic 
twisted curve: 

ED:DY2 =X3 +AX + B 

contains a rational point which is either of infinite order or of order > 2. 
Since all ED except for a finite number have no rational torsion points of order > 2, 

they need only count the squarefree D < X of the form V(U3 +AUV2 + BV3). 
Recall that the twisted curves Em: X3 + Y3 = m has the Wejerstrass form: 

Ef
m:Y2=X3-2433m2. 

We will prove that, for certain m, then E'm contains integral, hence rational points. 
As mentioned in §1, all E'm except for m = 1 and 2 have no rational torsion, and we 

will count the cubefree integers m of that form. 

LEMMA 2.1. E'm has integral points 4=4> m has one of the six forms: ±b^a ~b \ 
±±(3a2b - 3b3) ± ±(a3 - 9ab2) for some a, bel. 

PROOF. Suppose E'm has an integral point (X, Y), then 

X3 = r2 + 3(12m)2 

= (y+ llmy/^XY- \2my/^3). 

https://doi.org/10.4153/CJM-1993-048-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1993-048-9


850 LIEM MAI 

Since the ring of integers OK of K = Q(v — 3) is a Dedekind domain, we have the 
factorization 

(y-i2m^) = n(^r 
which shows that X3 = U(PiPùmi = ïl(Pi)a'm' where at = 1 or 2. 

Since X G Z, 3|a,ra; for all /, hence 3|ra;. 
Therefore, since OK is a principal ideal domain, 

(y+12m/^3)=(n^ / 3 ) 3 

= (a + feV^^fora.^GZ. 

This implies 

Y + 12m\/^3 = a{a + / ^ V ^ ) 3 

= a((a3 - 9aZ?2) + y/^(3a2b - 3b3)) 

where a is a unit of the ring of integers Z[1+^~3]. 

If a = ±1 , then m = ±^(3fl2/? - 3/?3) = ±^^1, 

If a = ±± ± ^ , m = ±±(3a2b - 3b3) ± ±(a3 - 9ab2). 
Conversely, if m is one of the above forms, then E'm has at least one integral point, 

namely: 

(X, Y) = (a2 + 3b2, ±(a3 - 9ab2)) or 

(X, F) = L 2 + 3/?2, ±^(tf3 - 9aZ?2) ± ^-(3a2b - 3b3)) m 

LEMMA 2.2. Suppose (X, Y) G Ef
m(Q). Then there is e G Z swc/z ? t o X = X0/<?2, 

Y= Y0/e
3 andX0,Y0 G Z. 

PROOF. For any prime p such that vp(X) = (order of X at p) < 0, we have 

0 > vp{X3) = 3vp(X) = vp{Y2 + 3(12m2)) 

= vp(Y
2) = 2vp(Y). 

In particular 2\i/p(X). 
Let e - n pprime p^/p(X)/2 and X0 = Xe2, F0 = Ye3 then X0, F 0 e l • 

i/p(X)<0 

Lemma 2.2 implies that if £^ has a rational point then E'me3 has an integral point for 
some e G Z, and vice versa. We want to count 

#{m cubefree < X : Ef
m has rational points} 

= #{m cubefree < X : Ef
me3 has integral points for some e G Z} 

= # ( m cubefree <X : m = or 
4e3 

m = ±——r(3a2b — 3b3) ± ——-z(a3 — 9ab2) for some a,b,e G Z 
24^ 24eJ 
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Now fix e — 1 and consider the case m — b(a ~b ). Let O be the following injection: 

S = {(a,b): (a,b)=l, m = b(a2 - (4b)2) < X and m is cubefree} 

T \< / I A ' fry2 - v2) ^ v A ,. K f 
—» T = {(a ,b) : m = < A and m is cubefree 

(a,fc)»->(a,4fc). 

Our aim is to prove | T\ ^> X2/3. For each m, we can find at most d(m) = 0(X£) values 
for b and for each b, at most 2 values of a such that m = b{fl ̂ b ). Therefore, | T| ^> X2!3 

will imply that: 

#{m < X, m is cubefree and £^ has an integral point} ^> X2'3~e. 

To do this, we will prove that \S\ > X2I3. 
More generally, we will prove that: 

THEOREM 1. Given integers M and ao, bo, such that bo, ao — 4bo, ao + 4&o are rel
atively prime to 2M and positive integers m\, mi, m^ such that mi > 2, n\2 + m^ > 5. 
Let 

Si = {(a,b) : m = £(<?2 - (4b)2) < X, (a,b) = 1, b,a-4b,a + 4b are 
ni\, ni2, ni3 powerfree respectively, a = ao (mod 2M), b = bo 
(mod 2M)} 

then 
\S\\ > CX2!3 +0(Xxl3+xl3m2+xl3m^E) + 0(Xxl2+£) 

where C > 0, e is arbitrarily small andX is large enough. 

PROOF OF THE THEOREM. At first, note that the above conditions on (a, b) imply that 
b, a — 4/?, a + 4b are pairwise coprime. 

If we choose (a, b) such that b < (X/16)1/3 then (4b)2 < X/b. In this case, if a2 < 
2(46)2,then<32 < X/b+(4b)2, Le. m = b(a2-(4b)2) < Xanda-4fc, a+4Z?are < Xxl3. 
We have 

N = E ( E M W ) ( E M«O)( E Mf) 

> E ( E E E M<OM*W)) 
(a,b)=\ V dwi|6 ^ 2 | a - 4 6 fmi\a+4b / 

0<b<(X/\6)1/3 d<X]/3mi e<CX'/3-2 / < X ' / 3 - 3 

4£<a<4v /2£ 
a=a0 (mod 2M),b=bo (mod 2M) 

E /i(<0M*W) E E 1 
d<CX1/3,n> 0<^<(X/16) ]/3 4 ^ < a < 4 ^ 
e < x i /3m 2 fc=0 (mod<Ti) Û = 4 ^ (mod em2 ) 
f<^Xl/3m2 b=b0 (mod 2M) a=-4Z? (mod/w3) 

(d,2M)=(e,2M)=(f,2M)=l a=a° ( m o d 2 M ) 
(a,6)=l 
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Note that em2,fm and 2M are pairwise coprime. 

Now 

E 1 = E EM(«) 
a=* (mod em2fmi 2M) a~* (mod ^m2/w3 2M) n\b 

E/*(*)( E i 
n|fc A/n<af<B/n 

a=na'=* (mod em2fm3 2M) 

(n and em2fm2M are coprime since f fc, (a2 - (4Z?)22Af) j = 1) 

B-A „ /x (n ) 

em2fm32M \) 

. . lu Aï r i L 

+ 0(X£). 

e^f^2M^b n \^b 

B-A <t>(b) 

Then 

f 4>/2-4 
1*1 > £ /*0M(*W) E /3 tp^ZÂÏ^^+ °(jr)J 

d^X1/3"1! 0<^<(X/16) ' /3 

e < X l / 3 m 2 fe0 ( m o d J w l ) 

/<X ! / 3 m 3 b=bo (mod 2M) 
(d,2M)=(é?,2M)=(/\2Af)= 1 

4^/2-4 
_ E /X(d)/X(6)/X(f) 

y < X l / 3 m 3 

(d,2M)=(e,2M)=(f,1M)= 1 

f 1 _ ... . - / X 1 / 3 ^ S «*> + 0h>sr) * •> ( K ^ X / l ô ) 1 / 3 

6=0 (mod dm\) 
b=b0 (mod 2M) 

4\/2-4 »(d),jL(e)ii(f) 
IM ^ ptni-fm?, 2—1 

^1VI rf<X1/3mi ^ " 0<^<(X/16) ' /3 

e < x i / 3 m 2 ^ = 0 ( m o d ^ m i ) 
/<X ! / 3 w 3 b=k0 (mod 2Af) 

(d,2M)=(e,2M)=(/\2M)= 1 

+ (9(X1/3+1/3m2+1/3m3+e) 

since the series £</ ^7 converges. 
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Now 

E m= E *>E^ 
0<&<(X/16)'/3 0<^<(X/16)'/3 t\b 
b=0 (mod dm\ ) 6=0 (mod dm\ ) 
6=60 (mod 2M) b=b0 (mod 2M) 

= E n(» E *' 
?<(X/16)'/3 0<b'<(X/\6)]/3/t 

tb'=0 (mod Jmi ) 
rf>'=fc0 (mod 2M) 

= E E M(0 E *' 
r|Jwi2M K(X/16) ' /3 0<b'<(X/\6)1/3/t 

(t,dmx 2M)=r tb'=0 (mod dm\ ) 
rf>'=&0 (mod 2M) 

= E E M(0 E *'• 
r\dm\ t<(X/\6)1/3 0<b'<(X/\6)l/3/t 

(t,dmi .2Af)=r tb'=Q (mod dm\ ) 
tb'=b0 (mod 2M) 

The last step follows noting that if (r, 2M) ^ 1, then (t, 2M) ^ 1 and this contradicts 
the condition tb' = bo (mod 2M), and (Z?o, 2M) = 1. Moreover, the two congruence 
conditions on b' can be combined into one, as (t, 2M) = 1, and (f, dmi) = r. Therefore, 
we have 

E <m = E E MO E b' 
0<fc<(X/16)'/3 r|<Ti 0<K(X/16)1/3 0<b'<(X/16)1/3/r 
6=0 (mod Jwi ) (f,<Ti .2A^l=r &'=£' (mod {dm\ jr)2M) 
b=b0 (mod 2M) 

where Z?Q is an integer such that tbf
0 = bo (mod 2M). 

We need a lemma: 

LEMMA 2.3. 

£ *=-^Z 2 + 0(Z). 
0 < J C < Z Z ^ 

x^x0 («) 

PROOF. Note that we can always choose 0 < xo < n. Moreover, if n > Z the 
conclusion is clear. Therefore, we need only consider the case n < Z. In that case, we 
have 

J2 x= J2 (xo + ny) 
0<x<Z -x0/n<y<(Z-x0)/n 

x=xo (mod n) 

=,(f+«.>Hï(iMi) 
= 1 Z 2 + 0(Z). 

2n 
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Applying the lemma, we have: 

E «»-E E * i ' a l T ^ ) 
(KJKCX/lô)1/3 H<Ti K(X/ 
b=0 (mod dm\ ) (?,Jmi .2Af)=r 
^=^0 (mod2M) 

E E ^(i^/i6)2 /3)+o(x'/MogX) 
^ - K(X/!6)'/3 <* l ^ ' 4 M 

(?,dmi .2M)=r 

= ( X / 1 6 ) 2 / 3 i i ^ 2 fW'/'iogX). 

Writing r = rs, we may suppose that (r, 5) = 1, else \i(i) — 0. Moreover (rs, dmx 2M) — 
r, then 0,dm'2M) = 1. Hence: 

E ^ ) - ^ / 1 6 ) 2 / 3 i ^ E ^ E fW/MogX) 
b~0 (mod <Ti ) (s,rfmi .2M)= 1 
b=b0 (mod2M) 

C(2) 4 A f d » . ^ , r ){plX2M\ P2I ) 

+ 0(X'/3logX) 

= (X/16)V3 j _ j _ i , 1 , 3 

C(2) 4M^^\ pi) "V p) 

Therefore, we get 

w>( E ^)( E f ) ( E ^n(. + i)>̂ '-' 
V e < X l /3m2 e J V /<<Xl/3m3 / 7 V J < X l / 3 W l

 a p\dX PJ J 
{e,2M)=\ <f,2M)=\ (d,2M)=l 

+ OCZ 1 / ^ 1 / 3 ^ 1 / 3 ^^) + o(x1/3 log* £ 
^<x ] / 3 w i 

where C0 = (16)2/3 (2Â7F2Ô2) r i p ^ 1 - ^ J . 
The error term is 

^ ^ l / 3 + l / 3 m 2 + 1 / 3 m 3 + e ^ + (^(X1/2^), 

The main term is 

1 

L(m2, xo)L(m3,Xo) 
C0PX2/3 + O(Xl/2+£) 
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where xo is the prinicpal character mod 2M and 

(d,2M)=l 

(d,2M)=l 

n (• ^ 1 - 1 ( ^ + 1 ) 

Since the Euler product 

1 Wotr1'6). 

n [! ^--.^.-i(p+i)J 
(/?,2M)=1 

converges absolutely for Re(s) > m\ and each Euler factor is nonzero at s = m\, P is 
also nonzero. 

This concludes the proof of Theorem 1. • 

3. Distribution of the set of Em 's with nonzero rank. In this section, we will prove 
that the set of {m cubefree : Wm = 1} has density \ in the set of cubefree integers m. 

LEMMA 3.1. For any Dirichlet character r of conductor q, we have 

£ (-l)T2(m)r(m) = 0(\/X(}ogX)y/qlogq) 
m cubefree <X 

where T2(m) is the number of distinct primes p = 2 (mod 3) such thatp\m. 

PROOF. Every cubefree integer can be written uniquely in the form r2^, where r, s 
are squarefree integers and (r, s) = 1. We have 

T2(r
2s) = T2(r

2) + T2(s) 

= T2(r)+T2(s). 

Then 

£ (-l)T2(m)r(m) = £ (-lp{rW)(-lP{Ms) 
m cubefree <X ^s^X 

3/w (r,3)=(s,3)=(r,s)=l 

r,s 

where the sum only includes squarefree values of r, and s and x(-) = ( 3 ), the nonprincipal 
character module 3. (As 3 jfr and r is squarefree, (—l)T2(r) = x(r)). Then 

£ ( - lp ( w )T(m)= £ xWr(^) E Xr(s)X(s)r(s) 
m cubefree <X r<\/x s^X/r2 

^Km r squarefree s squarefree 

https://doi.org/10.4153/CJM-1993-048-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1993-048-9


856 LIEM MAI 

in which \r is the principal character modulo r, i.e. Xr(s) = 1 if (r,s) = 1 and 0 otherwise. 
Now 

E (-\r(m)r(m) = £ X(r)r{?) £ Xr(s)x(s)r(s)(j2^t) 
m cubefree <X r<\/x s<X/r2 t2\s 

3 )(m r squarefree 

= E xirytf) £ M0xrC2)x('W) 
r<\/x t<y/x/r 

r squarefree 

X E Xr(s0)x(So)T(s0). 

s0<X/M 

The innermost sum is 0(^fq\ogq) by the Polya-Vinogradov inequality, then we have 

E (-l)T2(m)r(m) = £ o f — y ^ l o g ^ = O ^ l o g J O v ^ l o g ? ) . 
m cubefree <X r<\/~X y J 

3)(m r squarefree 

Finally we have: 

£ (-\y^>r(m)= £ + £ + £ 
m cubefree <X m cubefree <X m cubefree <X m cubefree <X 

3/m 3||m 32||m 

- £ + £ + £ 
mcubefree<X mx cubefree<X/3 m2 cubefree <X/9 

3 / m 3/m, 3/m2 

^OCv^logXy^log^). 

Here, pk \\ m means thatpk\m butps /m for 5 > k. m 

LEMMA 3.2. The set {m cubefree, TI(JY\) is even} has density ^ in the set {m cube-
free}. 

PROOF. We have 

E 1= E ^(i + (-DT2(m)) 
ra cubefree <X ra cubefree <X ^ 
T2(m) is even 

= l- £ l+0(\/xlogX) . 
^ m cubefree <X 

We also use the following well-known fact: 

LEMMA 3.3. The set {m cubefree} has density -J^ in the set of positive integers. 

Now we want to prove 

THEOREM 2. The set {m cubefree, Wm = 1 } has density ^ in the set {m cubefree}. 

PROOF. By ( 1 ) in § 1, we have 

E 1= E 1+ E i-
m cubefree <X m cubefree <X m cubefree <X 

Wm = \ T2(m) is even r2(m) is odd 
m=±l ,±3 (mod 9) m=0,±2,±4 (mod 9) 
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For m = 0 (mod 9), we get 

E 1 = E 1 (by Lemma 3.1) 
m cubefree <X m cubefree <X/9 
r2(m) is odd r2(m) is odd 

m=0 (mod 9) 3 j m 

= - E l+OCv'xiogX) 
7 m cubefree <X/9 

3/m 

E l+0(^XlogX). 
w cubefree <X 
T2(m) is even 
w=0 (mod 9) 

For ra = ±3 (mod 9), similarly we get 

1 
E 1 = 2 E l+0(>/xiogX). 

m cubefree <X ^ m cubefree <X 
r2(m) is even m=±3 (mod 9) 

w=±3 (mod 9) 

For (i, 3) = 1, we get 

E ! = E TT :̂ E xWx(0 
m cubefree <X m cubefree <X Yy^) x (mod 9) 
T2(m) is even T2(m) is even 
m=i (mod 9) 

= E X(0T^ E XW 
X (mod 9) 9 W m cubefree <X 

r2(ra) is even 

= zEx(0 E x(«)(^(i + (-DT2(m))) 
0 X m cubefree <X V Z y 

= Tj E X(0 E XW + ^(v^logX) (by Lemma 3.1) 2 

^ E ExCOxW + ̂ v/xiogX) 

X m cubefree <X 

E E 
m cubefree <X \ 

- E i + o(VxiogX). 
^ m cubefree <X 

m=i (mod 9) 

Therefore, we get 

E 1 = 5 E 1 + 5 E î + ocv'xiogX) 
m cubefree <X ^ m cubefree <X ^ m cubefree <X 

Wm = l m=±l ,±3 (mod 9) m=0,±2,±4 (mod 9) 

^ E î+ocv^iogx). 
2 m cubefree <X 
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4. Distribution of Em 's with nontrivial even analaytic rank. We restate the main 
theorem. 

MAIN THEOREM. For X large enough, we have: 

{m cubefree < X : Analytic rank ofEm is even and > 2} ^> X2/3_e. 

PROOF. If we choose m of the form m = b[a2 — (4b)2) thenrank(£m) > 1. Since Em 

is a CM elliptic curve, the analytic rank of Em is > 1 by Coates and Wiles' theorem [3]. 
Moreover, if we choose m such that the root number Wm = 1, then the analytic rank of 
Em is even and hence > 2. 

In Theorem 1, we choose 

m\ — ni2 — 2, m?, = 3 

and 

M = 9. 

For a given congruence class (ao, bo) mod 18, Wm is determined completely by the parity 
of T2(m). For example, if we choose (ao,bo) = (3,1) (mod 18) then m = 2 (mod 9), 
i.e. Wm = 1 iff T2(m) is odd. Choose (ao, bo) so that Wm = 1 if and only if Ti(m) is odd. 
Then 

#{m cubefree < X : Analytic rank of Em is even and > 2} > |52| 

where 

52 = {m < X : m = b(a2 - (4b)2) for some a,b G N, (a,b) = 1, 0 < b < 
(X/16)1//3,4Z? < a < 4^/lb,b,a — 4bare squarefree, and a + 4b 
is cubefree, a = ao (mod 18), b = bo (mod 18) and r^ijn) is 
odd}. 

Letting (*) be the conditions on (a, b) such that m = b{a2 — (4b)2) E 52, except for 
the last condition on T2(ra), we see that the theorem follows if we can show 

£ 1 = CX2/3 + 0(Xl3'2l+£). 
(a,b) satisfies (*) 

Tjim) is odd 

We have 

E 1= E ^(i-(-DT2(m)) 
(a,b) satisfies (*) (a,b) satisfies (*) ^ 

T2(m) is odd 

= \ E i - i E (-DT2(m)-
^ (a,fc) satisfies (*) ^ («,£) satisfies (*) 
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By Theorem 2 (and our choice of m\, mi, mi), the first sum is CX2/3 + 0(Xn/ls+£) 
where O 0 and e is arbitrarily small. Now, for m G 52, we have: 

/ _ i y r 2 ( m ) _ /_^\T2(b)/_^\T2(a-4b)/^\T2(a+4b) 

= (f)P^)(-i)***> 
since b and a — 4b are squarefree. For example, if (ao,bo) = (3,1) (mod 18) then 
( ^ ) ( ^ o ) = = _ L 

Therefore, the theorem follows from 

LEMMA 4.1. 
\^ s_iy2(a+4b) _ Q,J£\3/2\+E\ 

(a,b) satisfies (*) 
for some m 

PROOF. Denote the sum on the left hand side as Sf
2, we have 

S'2= J2 E (-l)^a+4b\ 
0<b<(X/\6)1/3 4b<a<4y/2b 
b=b0 (mod 2M) a=a0 (mod 2Af) 

b squarefree a—4b squarefree 
a+4b cubefree 

(a,b)=\ 

To simplify the notations, let a' = a — 4b, af
0 = ao — 4bo and C = 4\fl — 4. Also 

note that the condition (a, b) = 1 is equivalent to {a', b) = 1 for our set. We have: 

sf
2= z E (-îp^ £ m £ m 

0<b<(X/\6)1/3 a'<Cb d2\b e2\a' 
b=bQ (mod2M) a'=a'0 (mod 2M) 

(a',b)=\ 
a'+Sb is cubefree 

E 
d<Xxl6 

(d,2M)=(e,2M)= 

H(d)v(e) £ 
0<b<(X/\6)1/3 

b=0 (mod d2) 
1 b=b0 (mod2M) 

E 
a'=a'0 (mod 2M) 

a'=0 (mod e2) 
«'+86 is cubefree 

(a',fc)=l 

(_iy2(a'+8b) 

The contribution of terms with Y < e <C X1 /6 where F is a parameter to be chosen 
later, is 

« £ HdMe)\ E fo(4)) 
y<e<X' / 6 =̂Z?o (mod2M) 

(rf,2Af)=(«,2Af)= 1 b=o (mod ^2) 

d^x'i* ye a J 

Y<e<€.Xxl6 
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Now, the contribution of terms with 0 < e < Y is 

E ti(dMe) £ E M(«) E (-ip<™"+8">. 
d^X 1 / 6 (Kfc^X/lô) 1 / 3 w|*> a"<Cb/n 

M , ^ , fe0(mod<*2) «<<& W ^ ( m o d 2 M ) 
(d,2M)=(e,2M)= 1 fe^ ( m o d 2M) W ' ^ 0 (mod , 2 ) 

na"+%b is cubefree 

Let us write na" + Sb = r2^ where r, 5 are squarefree and (r, 5) = 1. Also denote Xr 
the principal character modulo r, we see that the above is 

£ n(d)n(e) E £ M(«) E (^ 
^<CX>/6 O ^ ^ X / 1 6 ) 1 / 3 n|fc 0<r<%/(C+8)£ J 

<«JS&>=, issgssa"^* rsquarefree 

E (̂ W) 
^s^a'ç+Sb (mod 2M) 

^s=8fc (mod e2) 
^s^Sb (mod n) 
s is squarefree 

£ M(d)/z(d) £ E /*(«) E ( ^ 
d<&X1/6 0</,<(X/16)1/3 W|fc 0<r<>/(CT8Jï V ^ 7 

0 < e < r £=0(mod</2) n<Cb rsquarefree 
(d,2M)=(e,2M)=\ b=b{) (m od 2M) 

X E Xr(Sl)KSi) E ( f ) x r f e ) . 
0<5,<x/(C+8)ft/r 8fc/r2s2<s2<(C+8)6/>-2^ J 

^ ^ ^ ^ O Q + S ^ (mod 2M) 

rs2
ls2=8b (mod e2) 

^5^2=8^ (mod n) 

Consider the terms with n > Z, where Z is another parameter to be chosen later. The 
contribution of such terms is, on noting n\b, 

b_ <<£ÇëÇÇH^)+0,l> 

= E E E E ( ° ( ; 4 M T ) ) 
d,e b Z<n r V x r e n J v r J J 

=£Ç(°©to<*"2i 

,y2/3+e x 

= o ( ^ - ) + 0 ( X | / 2 - y ) . 
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Now we consider the terms with n < Z. Using the Polya-Vinogradov inequality and 
noting that £2 is determined by congruences mod e2n, such terms contribute 

<EEEEE^lw»1/2+t) 
d,e b n<Z r S\ 

= EZ££tf(—*1+£«1/2+E 

d,e b n<Z r V r 

= EEE^ 1 / 2 t £ « l t £ « 1 / 2 + E ) 
d,e b n<Z 

= EE^ 1 / 2 + ^ 1 + £ z l / 2 + £ ) 
d,e b 

/ Y l / 2 + £ N 

= Eo(V"z"2") 
sy/y\ /2+£y2+£y\ /2+£\ 

In summary, we get 

/ y 2 / 3 x , y2/3+e . 

Choosing y = X1/21 and Z = X1/21, we have 

S£ = 0(X13/21+£). 

This concludes the proof of Lemma 4.1 and also the Main Theorem. • 

REMARK. In the case that m = 3pq, where p,q are primes = 2 (mod 3), Wm — 1. 
Satgé [8] computed the Selmer groups S\ and S\> (A is a 3-isogeny and A7 its dual—more 
concretely, A is the projection: 

A: Em(C) -> E^) ^ £^(C)). 
((0,±12>/=3m)> 

Indeed, SA ^ (Z/3Z)3 and SA ^ (0). 
By the exact sequences of descent: 

E' (Q) 

and the fact that: 

rank(£m(Q)) = d i m j f m ( Q M + d i m F f f"(Q) . 1 - 1 

we see that if m = 3pq = b(a2—(4b)2) then 1 < rank(£m) < 2. Since Wm = 1, assuming 
the Birch and Swinnerton-Dyer conjecture, we get rank(Zsm) = 2 and also M[A] = 0 by 
the above exact sequences. This happens when, say b = 3, a — 4b = q, a + 4b = p. 

In other words, we have 
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COROLLARY. Assuming the Birch and Swinnerton-Dyer conjecture, if p, q are two 
primes such thatp — q — 24, then rank(£m) = 2, for m = 3pq and M[A] = 0. 

Note that the number of such pairs of primes (p, q) satisfying 3pq < X is conjectured 
to be 
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