THE ANALYTIC RANK OF A FAMILY OF ELLIPTIC CURVES

LIEM MAI

Abstract

We study the famıly of elliptic curves $E_{m} X^{3}+Y^{3}=m$ where m is a cubefree integer

The elliptic curves E_{m} with even analytic rank and those with odd analytic rank are proved to be equally distributed It is proved that the number of cubefree integers $m \leq X$ such that the analytic rank of E_{m} is even and ≥ 2 is at least $C X^{2 / 3-\varepsilon}$, where ε is arbitranily small and C is a positive constant, for X large enough Therefore, if we assume the Birch and Swinnerton-Dyer conjecture, the number of all cubefree integers $m \leq X$ such that the equation $X^{3}+Y^{3}=m$ have at least two independent rational solutions is at least $C X^{2 / 3} \varepsilon$

1. Introduction. For an elliptic curve E over \mathbb{Q}, the set of all rational points $E(\mathbb{Q})$ is known to be a finitely generated abelian group by a theorem of Mordell-Weil. We will call its rank the (algebraic) rank of the elliptic curve. It is positive if and only if E has infinitely many rational points. One important problem in the study of elliptic curves is to determine their ranks.

Attached to an elliptic curve E of conductor N, we have an L-series $L_{E}(s)=$ $\sum_{n=1}^{\infty} a_{n} n^{-s}$ (see Silverman [12]). If we define

$$
\zeta_{E}(s)=N^{s / 2}(2 \pi)^{-s} \Gamma(s) L_{E}(s),
$$

then for modular elliptic curves it is known that $\zeta_{E}(s)$ has analytic continuation and satisfies

$$
\zeta_{E}(s)=W \zeta_{E}(2-s)
$$

with $W= \pm 1$. Here, W is called the root number. The so-called Taniyama-Weil conjecture says that all elliptic curves over \mathbb{Q} are modular (see Taniyama [13]). Weil's converse theorem allows us to reduce the conjecture to a problem in analytic continuation and functional equation of a family of Dirichlet series (see Weil [14]).

In connection with the rank of an elliptic curve E, the weak form of Birch and Swinnerton-Dyer conjecture states that the rank of E is equal to the order of vanishing at the central point $s=1$ of $L_{E}(s)$ and its parity is determined by the root number (see Silverman [12]).

Definition. The analytic rank of an elliptic curve E is the order of vanishing at the central point $s=1$ of $L_{E}(s)$.

Received by the editors November 12, 1991
AMS subject classification 11G05, 14H52
(c) Canadian Mathematical Society 1993

Now, if χ is a Dirichlet character, we can form the twisted L series $L(s)=$ $\sum_{n=1}^{\infty} a_{n} \chi(n) n^{-s}$. If χ is quadratic, this is an L-series of another elliptic curve E_{χ} over \mathbb{Q}. Fixing an elliptic curve E over \mathbb{Q}, we can consider the family E_{χ} of such twisted curves of E. What can we say about the number of such twisted curves which have algebraic rank $\geq r$, for a fixed positive integer r ? What can we say about analytic rank?

In the case of such quadratic twists, Gouvea and Mazur in [4] gave a partial answer variation of the algebraic rank. More specifically let E have the Weierstrass equation $Y^{2}=X^{3}+A X+B$. For any squarefree integer D, denote E_{D} the quadratic twist of E by D (i.e. by the Legendre symbol (\underline{D})). Then E_{D} is an elliptic curve and has the equation $D Y^{2}=X^{3}+A X+B$. Assuming the Birch and Swinnerton-Dyer conjecture, Gouvea and Mazur have proved that for X large enough, the number of squarefree integers $D<X$ such that E_{D} has even algebraic rank ≥ 2 (i.e. $W_{E_{D}}=1$ and E_{D} has infinitely many rational points) is at least $C X^{1 / 2-\varepsilon}$ for C a positive constant and ε arbitrarily small. In general, no information is obtained for higher-order twisted curves. (See Silverman [12] for the definition of the twist of E.) In this paper, we consider certain cubic twists, namely

$$
X^{3}+Y^{3}=m .
$$

The problem of determining whether an integer can be expressed as the sum of two rational cubes has a long history. As mentioned in [15], Dickson listed 50 papers on the subject before 1918 in his History of the Theory of Numbers. Equivalently, we want to study the family of elliptic curves $E_{m}: X^{3}+Y^{3}=m$. It is known that they are twisted curves of the fixed elliptic curves $E_{1}: X^{3}+Y^{3}=1$ by cubic characters. In [15], Zagier and Kramarz gave numerical data suggesting that about 23.3% of the curves E_{m} which have even algebraic rank (i.e. with root number 1, assuming the Birch and Swinnerton-Dyer conjecture) have algebraic rank ≥ 2.

In this paper, we obtain a similar result to Gouvea and Mazur's for this family of cubic twisted curves.

Main Theorem. For X large enough, the set of all cubefree integers $m<X$ such that the analytic rank of E_{m} is even and greater or equal to 2 is at least $C X^{2 / 3-s}$ for a positive constant C and arbitrarily small ε.

Therefore, assuming the Birch and Swinnerton-Dyer conjecture, the set of all cubefree integers $m<X$ such that E_{m} has even rank ≥ 2 is at least $C X^{2 / 3-\varepsilon}$.

We recall some facts about the family E_{m}.
For m cubefree, the curve $E_{m}: X^{3}+Y^{3}=m$ has the Weierstrass form $Y^{2}=X^{3}-2^{4} 3^{3} m^{2}$.
This can be seen through the map:

$$
\begin{aligned}
E_{m}: X^{3}+Y^{3}=m & \rightarrow E_{m}^{\prime}: Y^{2}=X^{3}-2^{4} 3^{3} m^{2} \\
(X, Y) & \mapsto\left(2^{2} 3\left(X^{2}-X Y+Y^{2}\right), 2^{2} 3^{2}(X-Y)\left(X^{2}-X Y+Y^{2}\right)\right)
\end{aligned}
$$

About the torsion subgroup of $E_{m}(\mathbb{Q})$, Nagell (see [11]) showed that for $m \neq 1,2$, $E_{m}(\mathbb{Q})$ is torsionfree and $\left|E_{1}(\mathbb{Q})\right|=3,\left|E_{2}(\mathbb{Q})\right|=2$.

The root number W_{m} is also known explicitly. Indeed Birch and Stephens in [1] prove that

$$
\begin{equation*}
W_{m}=\prod_{p} W_{m}(p) \tag{1}
\end{equation*}
$$

where for $p \neq 3$,

$$
W_{m}(p)= \begin{cases}-1 & \text { if } p \mid m, \quad p \equiv 2(\bmod 3) \\ 1 & \text { elsewhere }\end{cases}
$$

and for $p=3$,

$$
W_{m}(3)= \begin{cases}1 & \text { if } m \equiv \pm 1, \pm 3(\bmod 9) \\ -1 & \text { if } m \equiv 0, \pm 2, \pm 4(\bmod 9) .\end{cases}
$$

In $\S 2$, we will prove that for X large enough, the number of cubefree integers $m<X$ such that E_{m} has nonzero algebraic rank is at least $C X^{2 / 3-\varepsilon}$ for C a positive constant and ε arbitrarily small.

In $\S 3$, it is proved that the curves E_{m} with root number 1 have density $\frac{1}{2}$ among the set $\{m$ cubefree $\}$. Therefore, assuming the Birch and Swinnerton-Dyer conjecture, half of the E_{m} 's will have even rank and half with odd rank, asymptotically.

In $\S 4$, we introduce the additional condition $W_{m}=1$ and prove the main theorem.
2. Distribution of the set of E_{m} 's with nonzero rank. In [4], it is shown that for every squarefree integer D of the form $V\left(U^{3}+A U V^{2}+B V^{3}\right),(U, V) \in \mathbb{Z}^{2}$ the quadratic twisted curve:

$$
E_{D}: D Y^{2}=X^{3}+A X+B
$$

contains a rational point which is either of infinite order or of order >2.
Since all E_{D} except for a finite number have no rational torsion points of order >2, they need only count the squarefree $D \leq X$ of the form $V\left(U^{3}+A U V^{2}+B V^{3}\right)$.

Recall that the twisted curves $E_{m}: X^{3}+Y^{3}=m$ has the Wejerstrass form:

$$
E_{m}^{\prime}: Y^{2}=X^{3}-2^{4} 3^{3} m^{2}
$$

We will prove that, for certain m, then E_{m}^{\prime} contains integral, hence rational points.
As mentioned in $\S 1$, all E_{m}^{\prime} except for $m=1$ and 2 have no rational torsion, and we will count the cubefree integers m of that form.

Lemma 2.1. E_{m}^{\prime} has integral points $\Longleftrightarrow m$ has one of the six forms: $\pm \frac{b\left(a^{2}-b^{2}\right)}{4}$, $\pm \frac{1}{24}\left(3 a^{2} b-3 b^{3}\right) \pm \frac{1}{24}\left(a^{3}-9 a b^{2}\right)$ for some $a, b \in \mathbb{Z}$.

Proof. Suppose E_{m}^{\prime} has an integral point (X, Y), then

$$
\begin{aligned}
X^{3} & =Y^{2}+3(12 m)^{2} \\
& =(Y+12 m \sqrt{-3})(Y-12 m \sqrt{-3}) .
\end{aligned}
$$

Since the ring of integers O_{K} of $K=\mathbb{Q}(\sqrt{-3})$ is a Dedekind domain, we have the factorization

$$
\begin{aligned}
& (Y+12 m \sqrt{-3})=\prod\left(P_{t}\right)^{m_{t}} \\
& (Y-12 m \sqrt{-3})=\prod\left(\bar{P}_{t}\right)^{m_{t}}
\end{aligned}
$$

which shows that $X^{3}=\Pi\left(P_{t} \bar{P}_{t}\right)^{m_{t}}=\Pi\left(p_{t}\right)^{a_{t} m_{t}}$ where $a_{t}=1$ or 2 .
Since $X \in \mathbb{Z}, 3 \mid a_{l} m_{l}$ for all i, hence $3 \mid m_{l}$.
Therefore, since O_{K} is a principal ideal domain,

$$
\begin{aligned}
(Y+12 m \sqrt{-3}) & =\left(\prod P_{t}^{m_{t} / 3}\right)^{3} \\
& =(a+b \sqrt{-3})^{3} \text { for } a, b, \in \mathbb{Z}
\end{aligned}
$$

This implies

$$
\begin{aligned}
Y+12 m \sqrt{-3} & =\alpha(a+b \sqrt{-3})^{3} \\
& =\alpha\left(\left(a^{3}-9 a b^{2}\right)+\sqrt{-3}\left(3 a^{2} b-3 b^{3}\right)\right)
\end{aligned}
$$

where α is a unit of the ring of integers $\mathbb{Z}\left[\frac{1+\sqrt{-3}}{2}\right]$.
If $\alpha= \pm 1$, then $m= \pm \frac{1}{12}\left(3 a^{2} b-3 b^{3}\right)= \pm \frac{b\left(a^{2}-b^{2}\right)}{4}$.
If $\alpha= \pm \frac{1}{2} \pm \frac{\sqrt{-3}}{2}, m= \pm \frac{1}{24}\left(3 a^{2} b-3 b^{3}\right) \pm \frac{1}{24}\left(a^{3}-9 a b^{2}\right)$.
Conversely, if m is one of the above forms, then E_{m}^{\prime} has at least one integral point, namely:

$$
\begin{gathered}
(X, Y)=\left(a^{2}+3 b^{2}, \pm\left(a^{3}-9 a b^{2}\right)\right) \quad \text { or } \\
(X, Y)=\left(a^{2}+3 b^{2}, \pm \frac{1}{2}\left(a^{3}-9 a b^{2}\right) \pm \frac{(-3)}{2}\left(3 a^{2} b-3 b^{3}\right)\right)
\end{gathered}
$$

Lemma 2.2. Suppose $(X, Y) \in E_{m}^{\prime}(\mathbb{Q})$. Then there is $e \in \mathbb{Z}$ such that $X=X_{0} / e^{2}$, $Y=Y_{0} / e^{3}$ and $X_{0}, Y_{0} \in \mathbb{Z}$.

PRoof. For any prime p such that $\nu_{p}(X)=($ order of X at $p)<0$, we have

$$
\begin{aligned}
0>\nu_{p}\left(X^{3}\right) & =3 \nu_{p}(X)=\nu_{p}\left(Y^{2}+3\left(12 m^{2}\right)\right) \\
& =\nu_{p}\left(Y^{2}\right)=2 \nu_{p}(Y)
\end{aligned}
$$

In particular $2 \mid \nu_{p}(X)$.
Let $e=\prod_{p \text { prime }} p^{-\nu_{p}(X) / 2}$ and $X_{0}=X e^{2}, Y_{0}=Y e^{3}$ then $X_{0}, Y_{0} \in \mathbb{Z}$.
Lemma 2.2 implies that if E_{m}^{\prime} has a rational point then $E_{m e^{3}}^{\prime}$ has an integral point for some $e \in \mathbb{Z}$, and vice versa. We want to count
$\#\left\{m\right.$ cubefree $\leq X: E_{m}^{\prime}$ has rational points $\}$
$=\#\left\{m\right.$ cubefree $\leq X: E_{m e^{3}}^{\prime}$ has integral points for some $\left.e \in \mathbb{Z}\right\}$
$=\#\left\{m\right.$ cubefree $\leq X: m=\frac{b\left(a^{2}-b^{2}\right)}{4 e^{3}}$ or

$$
\left.m= \pm \frac{1}{24 e^{3}}\left(3 a^{2} b-3 b^{3}\right) \pm \frac{1}{24 e^{3}}\left(a^{3}-9 a b^{2}\right) \text { for some } a, b, e \in \mathbb{Z}\right\} .
$$

Now fix $e=1$ and consider the case $m=\frac{b\left(a^{2}-b^{2}\right)}{4}$. Let Φ be the following injection:

$$
\begin{aligned}
S=\{(a, b):(a, b)=1 & \left., m=b\left(a^{2}-(4 b)^{2}\right) \leq X \text { and } m \text { is cubefree }\right\} \\
& \rightarrow T=\left\{\left(a^{\prime}, b^{\prime}\right): m^{\prime}=\frac{b^{\prime}\left(a^{\prime 2}-b^{\prime 2}\right)}{4} \leq X \text { and } m^{\prime} \text { is cubefree }\right\} \\
(a, b) & \mapsto(a, 4 b) .
\end{aligned}
$$

Our aim is to prove $|T| \gg X^{2 / 3}$. For each m, we can find at most $d(m)=O\left(X^{\varepsilon}\right)$ values for b and for each b, at most 2 values of a such that $m=\frac{b\left(a^{2}-b^{2}\right)}{4}$. Therefore, $|T| \gg X^{2 / 3}$ will imply that:

$$
\#\left\{m \leq X, m \text { is cubefree and } E_{m}^{\prime} \text { has an integral point }\right\} \gg X^{2 / 3-\varepsilon} .
$$

To do this, we will prove that $|S| \gg X^{2 / 3}$.
More generally, we will prove that:
Theorem 1. Given integers M and a_{0}, b_{0}, such that $b_{0}, a_{0}-4 b_{0}, a_{0}+4 b_{0}$ are relatively prime to $2 M$ and positive integers m_{1}, m_{2}, m_{3} such that $m_{l} \geq 2, m_{2}+m_{3} \geq 5$. Let

$$
\begin{aligned}
S_{1}=\{(a, b): & m=b\left(a^{2}-(4 b)^{2}\right)<X,(a, b)=1, b, a-4 b, a+4 b \text { are } \\
& m_{1}, m_{2}, m_{3} \text { powerfree respectively, } a \equiv a_{0}(\bmod 2 M), b \equiv b_{0} \\
& (\bmod 2 M)\}
\end{aligned}
$$

then

$$
\left|S_{1}\right| \geq C X^{2 / 3}+O\left(X^{1 / 3+1 / 3 m_{2}+1 / 3 m_{3}+\varepsilon}\right)+O\left(X^{1 / 2+\varepsilon}\right)
$$

where $C>0, \varepsilon$ is arbitrarily small and X is large enough.
Proof of the Theorem. At first, note that the above conditions on (a, b) imply that $b, a-4 b, a+4 b$ are pairwise coprime.

If we choose (a, b) such that $b \leq(X / 16)^{1 / 3}$ then $(4 b)^{2} \leq X / b$. In this case, if $a^{2} \leq$ $2(4 b)^{2}$, then $a^{2} \leq X / b+(4 b)^{2}$, i.e. $m=b\left(a^{2}-(4 b)^{2}\right) \leq X$ and $a-4 b, a+4 b$ are $\ll X^{1 / 3}$. We have

$$
\begin{aligned}
& \left|S_{1}\right|=\sum_{(a, b) \in S_{1}}\left(\sum_{d^{m^{m}} \mid b} \mu(d)\right)\left(\sum_{e^{m_{2}} \mid a-4 b} \mu(e)\right)\left(\sum_{f^{m_{3}} \mid a+4 b} \mu(f)\right) \\
& \geq \sum_{\substack{(a, b)=1 \\
0<b \leq(X / 16)^{1 / 3} \\
4 b \leq a \leq 4 \sqrt{2} b \\
(\bmod 2 M), b \equiv b_{0}(\bmod 2 M)}}\left(\sum_{\substack{d^{m_{1} \mid b} \\
d \ll X^{1 / 3 m_{1}}}} \sum_{\substack{e^{m_{2}} \mid a-4 b \\
e \ll X^{1 / 3 m_{2}}}} \sum_{\substack{f^{m} \mid a+4 b \\
f \ll X^{1 / 3 m_{3}}}} \mu(d) \mu(e) \mu(f)\right)
\end{aligned}
$$

Note that $e^{m_{2}}, f^{m_{3}}$ and $2 M$ are pairwise coprime.

Now

$$
\begin{aligned}
\sum_{\substack{A \leq a \leq B \\
a \equiv *\left(\bmod e^{m_{2}} f^{m_{3}} 2 M\right) \\
(a, b)=1}} 1= & \sum_{\substack{A \leq a \leq B \\
a \equiv *\left(\bmod e^{m_{2}} f^{m_{3}} 2 M\right)}} \sum_{n \mid a}^{n \mid b} \downarrow \\
& =\sum_{n \mid b} \mu(n)\left(\sum_{\substack{A / n \leq a^{\prime} \leq B / n \\
a=n a^{\prime} \equiv *\left(\bmod e^{m_{2}} f^{m_{3}} 2 M\right)}} 1\right)
\end{aligned}
$$

$$
\left(n \text { and } e^{m_{2}} f^{m_{3}} 2 M \text { are coprime since }\left(b,\left(a^{2}-(4 b)^{2} 2 M\right)\right)=1\right)
$$

$$
\begin{aligned}
& =\sum_{n \mid b} \mu(n)\left\{\frac{B-A}{n e^{m_{2}} f^{m_{3}} 2 M}+O(1)\right\} \\
& =\frac{B-A}{e^{m_{2}} f^{m_{3}} 2 M} \sum_{n \mid b} \frac{\mu(n)}{n}+O\left(\sum_{n \mid b}|\mu(n)|\right) \\
& =\frac{B-A}{e^{m_{2}} f^{m_{3}} 2 M} \frac{\phi(b)}{b}+O\left(X^{\varepsilon}\right)
\end{aligned}
$$

Then
since the series $\sum_{d} \frac{1}{d^{m_{1}}}$ converges.

$$
\begin{aligned}
& \left|S_{1}\right| \geq \sum_{\substack{d \ll X^{1 / 3 m_{1}} \\
e<X^{1 / 3 m_{2}} \\
f<X^{1 / 3 m_{3}} \\
(d, 2 M)=(e, 2 M)=(f, 2 M)=1}} \mu(d) \mu(e) \mu(f) \sum_{\substack{0<b \leq(X / 16)^{1 / 3} \\
b \equiv 0\left(\bmod d^{m_{1}}\right) \\
b \equiv b_{0}(\bmod 2 M)}}\left(\frac{4 \sqrt{2}-4}{e^{m_{2}} f^{m_{3}} 2 M} \phi(b)+O\left(X^{v}\right)\right) \\
& =\frac{4 \sqrt{2}-4}{2 M} \sum_{\substack{d \ll X^{1 / 3 m_{1}} \\
e<X^{1 / 3} m_{2} \\
f<X^{1 / 3 m_{3}} \\
(d, 2 M)=(e, 2 M)=(f, 2 M)=1}} \mu(d) \mu(e) \mu(f) \\
& \left\{\frac{1}{e^{m_{2}} f^{m_{3}}} \sum_{\substack{0<b \leq(X / 16)^{1 / 3} \\
b \equiv 0\left(\bmod d^{m_{1}}\right) \\
b \equiv b_{0}(\bmod 2 M)}} \phi(b)+O\left(\frac{X^{1 / 3+\varepsilon}}{d^{m_{1}}}\right)\right\} \\
& =\frac{4 \sqrt{2}-4}{2 M} \sum_{\substack{d \ll X^{1 / 3 m_{1}} \\
e<X^{1 / 3 m_{2}} \\
f<X^{1 / 2 m_{3}} \\
(d, 2 M)=(e, 2 M)=(f, 2 M)=1}} \frac{\mu(d) \mu(e) \mu(f)}{e^{m_{2}} f^{m_{3}}} \sum_{\substack{\left.0<b \leq(X / 16)^{1 / 3} \\
b=0(\bmod)^{m}\right) \\
b \equiv b_{0}(\bmod 2 M)}} \phi(b) \\
& +O\left(X^{1 / 3+1 / 3 m_{2}+1 / 3 m_{3}+\varepsilon}\right)
\end{aligned}
$$

Now

$$
\begin{aligned}
& \sum_{\substack{0<b \leq(X / 16)^{1 / 3} \\
b \equiv 0\left(\bmod d^{1 / 3}\right) \\
b \equiv b_{0}(\bmod 2 M)}} \phi(b)=\sum_{\substack{0<b \leq(X / 16)^{1 / 3} \\
b \equiv 0\left(\bmod d^{m}\right) \\
b \equiv b_{0}(\bmod 2 M)}} b \sum_{t \mid b} \frac{\mu(t)}{t} \\
& =\sum_{t \leq(X / 16)^{1 / 3}} \mu(t) \sum_{\begin{array}{l}
0<b^{\prime} \leq(X / 16)^{1 / 3 / 2} / t \\
t b^{\prime} \equiv 0\left(\bmod d^{m_{1}}\right) \\
t b^{\prime} \equiv b_{0}(\bmod 2 M)
\end{array}} b^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{\substack{m^{m}}} \sum_{\substack{t \leq X / X / 6)^{1 / 3} \\
\left(t, d^{m} 1.2 M\right)=r}} \mu(t) \sum_{\substack{0<b^{\prime} \leq(X / 16)^{1 / 3} / t \\
\text { th } \\
t b^{\prime} \equiv 0\left(\bmod d^{m}\right) \\
t b_{0}(\bmod 2 M)}} b^{\prime} .
\end{aligned}
$$

The last step follows noting that if $(r, 2 M) \neq 1$, then $(t, 2 M) \neq 1$ and this contradicts the condition $t b^{\prime} \equiv b_{0}(\bmod 2 M)$, and $\left(b_{0}, 2 M\right)=1$. Moreover, the two congruence conditions on b^{\prime} can be combined into one, as $(t, 2 M)=1$, and $\left(t, d^{m_{1}}\right)=r$. Therefore, we have

$$
\sum_{\substack{0<b \leq(X / 16)^{1 / 3}}} \phi(b)=\sum_{\substack{r \mid d^{m_{1}}}} \sum_{\substack{0 \leq t \leq(X / 16)^{1 / 3} \\ b \equiv b_{0}\left(\bmod d^{m_{1}}\right) \\(\bmod 2 M)}} \mu(t) \sum_{\substack{\left.0<d^{m_{1}} .2 M\right)=r}} \sum_{\substack{0 \leq(X / 16)^{1 / 3} / t \\ b^{\prime} \equiv b_{0}^{\prime}\left(\bmod \left(d^{m_{1}} / r\right) .2 M\right)}} b^{\prime}
$$

where b_{0}^{\prime} is an integer such that $t b_{0}^{\prime} \equiv b_{0}(\bmod 2 M)$.
We need a lemma:
Lemma 2.3.

$$
\sum_{\substack{0<x \leq Z \\ x \equiv x_{0}(n)}} x=\frac{1}{2 n} Z^{2}+O(Z)
$$

Proof. Note that we can always choose $0 \leq x_{0} \leq n$. Moreover, if $n \geq Z$ the conclusion is clear. Therefore, we need only consider the case $n \leq Z$. In that case, we have

$$
\begin{aligned}
\sum_{\substack{0<x \leq Z \\
x \equiv x_{0}(\bmod n)}} x & =\sum_{-x_{0} / n<y \leq\left(Z-x_{0}\right) / n}\left(x_{0}+n y\right) \\
& =\sum_{y} x_{0}+n \sum_{y} y \\
& =x_{0}\left(\frac{Z}{n}+O(1)\right)+n\left(\frac{1}{2}\left(\frac{Z}{n}\right)^{2}+O\left(\frac{Z}{n}\right)\right) \\
& =\frac{1}{2 n} Z^{2}+O(Z) .
\end{aligned}
$$

Applying the lemma, we have:

$$
\begin{aligned}
\sum_{\substack{0<b \leq(X / 16)^{1 / 3} \\
b \equiv 0\left(\bmod d^{m_{1}}\right) \\
b \equiv b_{0}(\bmod 2 M)}} \phi(b) & =\sum_{r \mid d^{m^{m_{2}}}} \sum_{\substack{t \leq(X / 16)^{1 / 3} \\
\left(t, d^{m_{1}} 2 M\right)=r}} \mu(t)\left\{\frac{1}{\left(d^{m_{1}} / r\right) 4 M} \frac{(X / 16)^{2 / 3}}{t^{2}}+O\left(\frac{X^{1 / 3}}{t}\right)\right\} \\
& =\sum_{r \mid d^{m_{1}}} \sum_{\substack{t \leq(X / 16)^{1 / 3} \\
\left(t, d^{m_{1}} 2 M\right)=r}} \frac{\mu(t)}{t^{2}}\left\{\frac{r}{d^{m_{1}}} \frac{1}{4 M}(X / 16)^{2 / 3}\right\}+O\left(X^{1 / 3} \log X\right) \\
& =(X / 16)^{2 / 3} \frac{1}{4 M} \frac{1}{d^{m_{1}}} \sum_{r \mid d^{m_{1}}} r \sum_{\substack{t<X^{1 / 3} \\
\left(t, d^{m_{1}} 2 M\right)=r}} \frac{\mu(t)}{t^{2}}+O\left(X^{1 / 3} \log X\right) .
\end{aligned}
$$

Writing $t=r s$, we may suppose that $(r, s)=1$, else $\mu(t)=0$. Moreover $\left(r s, d^{m_{1}} 2 M\right)=$ r, then $\left(s, d^{m_{1}} 2 M\right)=1$. Hence:

$$
\begin{aligned}
\sum_{\substack{0<b \leq(X / 16)^{1 / 3} \\
b \equiv 0\left(\bmod d^{m_{1}}\right) \\
b \equiv b_{0}(\bmod 2 M)}} \phi(b)= & (X / 16)^{2 / 3} \frac{1}{4 M} \frac{1}{d^{m_{1}}} \sum_{r \mid d^{m_{1}}} \frac{\mu(r)}{r} \sum_{\substack{s \leq X^{1 / 3} / r \\
\left(s, d^{M_{1}} 2 M\right)=1}} \frac{\mu(s)}{s^{2}}+O\left(X^{1 / 3} \log X\right) \\
= & (X / 16)^{2 / 3} \frac{1}{4 M} \frac{1}{d^{m_{1}}} \sum_{r \mid d^{m_{1}}} \frac{\mu(r)}{r} \\
& \left\{\frac{1}{\zeta(2)} \prod_{p \mid d^{m_{1}} 12 M}\left(1-\frac{1}{p^{2}}\right)^{-1}+O\left(\frac{r}{X^{1 / 3}}\right)\right\}+O\left(X^{1 / 3} \log X\right) \\
= & \frac{(X / 16)^{2 / 3}}{\zeta(2)} \frac{1}{4 M} \frac{1}{d^{m_{1}}}\left(\sum_{r \mid d^{m_{1}}} \frac{\mu(r)}{r}\right)\left(\prod_{p \mid d^{m_{1}} 2 M}\left(1-\frac{1}{p^{2}}\right)^{-1}\right) \\
& +O\left(X^{1 / 3} \log X\right) \\
= & \frac{(X / 16)^{2 / 3}}{\zeta(2)} \frac{1}{4 M} \frac{1}{d^{m_{1}}} \prod_{p \mid 2 M}\left(1-\frac{1}{p^{2}}\right)^{-1} \prod_{p \mid d}\left(1+\frac{1}{p}\right)^{-1}+O\left(X^{1 / 3} \log X\right) .
\end{aligned}
$$

Therefore, we get

$$
\begin{aligned}
\left|S_{1}\right| \geq(& \left.\sum_{\substack{e \lll 1^{1 / 3 m_{2}} \\
(e, 2 M=1}} \frac{\mu(e)}{e^{m_{2}}}\right)\left(\sum_{\substack{\left.f \ll X^{1 / 3 m_{3}} \\
f, 2 M\right)=1}} \frac{\mu(f)}{f^{m_{3}}}\right)\left(\sum_{\substack{d \ll X^{1 / 3 m_{1}} \\
(d, 2 M)=1}} \frac{\mu(d)}{d^{m_{1}}} \prod_{p \mid d}\left(1+\frac{1}{p}\right)^{-1}\right) C_{0} \cdot X^{2 / 3} \\
& +O\left(X^{1 / 3+1 / 3 m_{2}+1 / 3 m_{3}+\varepsilon}\right)+O\left(X^{1 / 3} \log X \sum_{d \ll X^{1 / 3 m_{1}}} 1\right)
\end{aligned}
$$

where $C_{0}=\frac{4 \sqrt{2}-4}{(16)^{2 / 3}} \frac{1}{2 M)^{2}} \frac{1}{2 \zeta(2)} \Pi_{p \mid 2 M}\left(1-\frac{1}{p^{2}}\right)^{-1}$.
The error term is

$$
O\left(X^{1 / 3+1 / 3 m_{2}+1 / 3 m_{3}+\varepsilon}\right)+O\left(X^{1 / 2+\varepsilon}\right)
$$

The main term is

$$
\frac{1}{L\left(m_{2}, \chi_{0}\right)} \frac{1}{L\left(m_{3}, \chi_{0}\right)} C_{0} P X^{2 / 3}+O\left(X^{1 / 2+\varepsilon}\right)
$$

where χ_{0} is the prinicpal character $\bmod 2 M$ and

$$
\begin{aligned}
P & =\sum_{\substack{d \ll X^{1 / 3 m_{1}} \\
(d, 2 M)=1}} \frac{\mu(d)}{d^{m_{1}}} \prod_{p \mid d}\left(1+\frac{1}{p}\right)^{-1} \\
& =\sum_{\substack{d=1 \\
(d, 2 M)=1}}^{\infty} \frac{\mu(d)}{d^{m_{1}}} \prod_{p \mid d}\left(1+\frac{1}{p}\right)^{-1}+O\left(X^{\left(-m_{1}+1\right) / 3 m_{1}}\right) \\
& =\prod_{(p, 2 M)=1}\left(1-\frac{1}{p^{m_{1}-1}(p+1)}\right)+O\left(X^{-1 / 6}\right)
\end{aligned}
$$

Since the Euler product

$$
\prod_{(p, 2 M)=1}\left(1-\frac{1}{p^{s-m_{1}}} \frac{1}{p^{m_{1}-1}(p+1)}\right)
$$

converges absolutely for $\operatorname{Re}(s) \geq m_{1}$ and each Euler factor is nonzero at $s=m_{1}, P$ is also nonzero.

This concludes the proof of Theorem 1.
3. Distribution of the set of E_{m} 's with nonzero rank. In this section, we will prove that the set of $\left\{m\right.$ cubefree : $\left.W_{m}=1\right\}$ has density $\frac{1}{2}$ in the set of cubefree integers m.

LEMMA 3.1. For any Dirichlet character τ of conductor q, we have

$$
\sum_{m \text { cubefree } \leq X}(-1)^{\tau_{2}(m)} \tau(m)=O(\sqrt{X}(\log X) \sqrt{q} \log q)
$$

where $\tau_{2}(m)$ is the number of distinct primes $p \equiv 2(\bmod 3)$ such that $p \mid m$.
Proof. Every cubefree integer can be written uniquely in the form $r^{2} s$, where r, s are squarefree integers and $(r, s)=1$. We have

$$
\begin{aligned}
\tau_{2}\left(r^{2} s\right) & =\tau_{2}\left(r^{2}\right)+\tau_{2}(s) \\
& =\tau_{2}(r)+\tau_{2}(s)
\end{aligned}
$$

Then

$$
\begin{aligned}
\sum_{\substack{m \text { cubefree } \leq X \\
3 \nmid m}}(-1)^{\tau_{2}(m)} \tau(m)= & \sum_{\substack{r^{2} s \leq X \\
(r, 3)=(s, 3)=(r, s)=1}}(-1)^{\tau_{2}(r)} \tau\left(r^{2}\right)(-1)^{\tau_{2}(s)} \tau(s) \\
& =\sum_{r, s} \chi(r) \tau\left(r^{2}\right) \chi(s) \tau(s)
\end{aligned}
$$

where the sum only includes squarefree values of r, and s and $\chi(\cdot)=(\overline{3})$, the nonprincipal character module 3. (As $3 \quad X r$ and r is squarefree, $(-1)^{\tau_{2}(r)}=\chi(r)$). Then

$$
\sum_{\substack{m \text { cubefree } \\ 3 \nmid m}}(-1)^{\tau_{2}(m)} \tau(m)=\sum_{\substack{r \leq \sqrt{X} \\ r \text { squarefree }}} \chi(r) \tau\left(r^{2}\right) \sum_{\substack{s \leq X / r^{2} \\ s \text { squarefree }}} \chi_{r}(s) \chi(s) \tau(s)
$$

in which χ_{r} is the principal character modulo r, i.e. $\chi_{r}(s)=1$ if $(r, s)=1$ and 0 otherwise. Now

$$
\begin{aligned}
\sum_{\substack{\text { cubefree } \leq X \\
3 \nmid m}}(-1)^{\tau_{2}(m)} \tau(m)= & \sum_{\substack{r \leq \sqrt{X} \\
r \text { squarefree }}} \chi(r) \tau\left(r^{2}\right) \sum_{s \leq X / r^{2}} \chi_{r}(s) \chi(s) \tau(s)\left(\sum_{t^{2} \mid s} \mu(t)\right) \\
= & \sum_{\substack{r \leq \sqrt{X} \\
r s q u a r e f r e e ~}} \chi(r) \tau\left(r^{2}\right) \sum_{t \leq \sqrt{X} / r} \mu(t) \chi_{r}\left(t^{2}\right) \chi\left(t^{2}\right) \tau\left(t^{2}\right) \\
& \times \sum_{s_{0} \leq X / r^{2} t^{2}} \chi_{r}\left(s_{0}\right) \chi\left(s_{0}\right) \tau\left(s_{0}\right) .
\end{aligned}
$$

The innermost sum is $O(\sqrt{q} \log q)$ by the Polya-Vinogradov inequality, then we have

$$
\sum_{\substack{m \text { cubefrree } \leq X \\ 3 \nmid m}}(-1)^{\tau_{2}(m)} \tau(m)=\sum_{\substack{r \leq \sqrt{X} \\ r \text { squarefree }}} O\left(\frac{\sqrt{X}}{r} \sqrt{q} \log q\right)=O(\sqrt{X}(\log X) \sqrt{q} \log q)
$$

Finally we have:

$$
\begin{aligned}
\sum_{m \text { cubefree } \leq X}(-1)^{\tau_{2}(m)} \tau(m) & =\sum_{\substack{m \text { cubefree } \leq X \\
3 \nmid m}}+\sum_{\substack{m \text { cubefree } \leq X \\
3 \| m}}+\sum_{\substack{\text { cubbefree }^{2} \leq X \\
3^{2} \| m}} \\
& =\sum_{\substack{m \text { cubefree } \leq X \\
3 \nmid m}}+\sum_{\substack{m_{1} \text { cubefree } \leq X / 3 \\
3 \not x_{1}}}+\sum_{\substack{m_{2} \text { cubefree } \leq X / 9 \\
3 \not m_{2}}} \\
& =O(\sqrt{X} \log X \sqrt{q} \log q) .
\end{aligned}
$$

Here, $p^{k} \| m$ means that $p^{k} \mid m$ but $p^{s} \chi_{m}$ for $s>k$.
Lemma 3.2. The set $\left\{m\right.$ cubefree, $\tau_{2}(m)$ is even $\}$ has density $\frac{1}{2}$ in the set $\{m$ cubefree $\}$.

Proof. We have

$$
\begin{aligned}
\sum_{\substack{m \text { cubefree } \leq X \\
\tau_{2}(m) \text { is even }}} 1 & =\sum_{m \text { cubefree } \leq X} \frac{1}{2}\left(1+(-1)^{\tau_{2}(m)}\right) \\
& =\frac{1}{2} \sum_{m \text { cubefree } \leq X} 1+O(\sqrt{X} \log X)
\end{aligned}
$$

We also use the following well-known fact:
LEmma 3.3. The set $\{m$ cubefree $\}$ has density $\frac{1}{\zeta(3)}$ in the set of positive integers.
Now we want to prove
THEOREM 2. The set $\left\{m\right.$ cubefree, $\left.W_{m}=1\right\}$ has density $\frac{1}{2}$ in the set $\{m$ cubefree $\}$.
Proof. By (1) in §1, we have

$$
\sum_{\substack{m \text { cuberfree } \leq X \\ W_{m}=1}} 1=\sum_{\substack{m \text { cubefree } \leq X \\ \tau_{2}(m) \text { is even } \\ m \equiv \pm 1, \pm 3(\bmod 9)}} 1+\sum_{\substack{m \text { cubefree } \leq X \\ \tau_{2}(m) \text { is odd } \\ m \equiv 0, \pm 2, \pm 4(\bmod 9)}} 1 .
$$

For $m \equiv 0(\bmod 9)$, we get

$$
\begin{aligned}
\sum_{\substack{m \text { cubefree } \leq X \\
\tau_{2}(m) \text { Is odd } \\
m=0(\bmod 9)}} 1 & =\sum_{\substack{m \text { cubefree } \leq X / 9 \\
\tau_{2}(m) \text { Is sdd } \\
3 \nmid m}} 1 \quad(\text { by Lemma 3.1) } \\
& =\frac{1}{2} \sum_{\substack{\text { cubefree } \leq X / 9 \\
3 \nmid m}} 1+O(\sqrt{X} \log X) \\
& =\sum_{\substack{m \text { cubefree } \leq X \\
\tau_{2}(m) \text { seven } \\
m=0(\bmod 9)}} 1+O(\sqrt{X} \log X) .
\end{aligned}
$$

For $m \equiv \pm 3(\bmod 9)$, similarly we get

$$
\sum_{\substack{m \text { cubefree } \leq X \\ T_{2}(m) 1 \text { veven } \\ m \equiv \pm 3(\bmod 9)}} 1=\frac{1}{2} \sum_{\substack{m \text { cubefree } \leq X \\ m \equiv \pm 3(\bmod 9)}} 1+O(\sqrt{X} \log X)
$$

For $(i, 3)=1$, we get

$$
\begin{aligned}
\sum_{\substack{m \text { cubefree } \leq X \\
T_{2}(m) \text { sseven } \\
m \equiv l(\bmod 9)}} 1 & =\sum_{\substack{m \text { cubefree } \leq X \\
\tau_{2}(m) \text { is even }}} \frac{1}{\phi(9)} \sum_{\chi(\bmod 9)} \chi(m) \bar{\chi}(i) \\
& =\sum_{\chi(\bmod 9)} \bar{\chi}(i) \frac{1}{\phi(9)} \sum_{\substack{m \text { cubefree } \leq X \\
\tau_{2}(m) \text { is even }}} \chi(m) \\
& =\frac{1}{6} \sum_{\chi} \bar{\chi}(i) \sum_{m \text { cubefrree } \leq X} \chi(m)\left(\frac{1}{2}\left(1+(-1)^{\tau_{2}(m)}\right)\right) \\
& =\frac{1}{12} \sum_{\chi} \bar{\chi}(i) \sum_{m \text { cubefree } \leq X} \chi(m)+O(\sqrt{X} \log X) \quad \text { (by Lemma 3.1) } \\
& =\frac{1}{12} \sum_{m \text { cubefree } \leq X} \sum_{\chi} \bar{\chi}(i) \chi(m)+O(\sqrt{X} \log X) \\
& =\frac{1}{2} \sum_{m \text { cubefree } \leq X} 1+O(\sqrt{X} \log X) .
\end{aligned}
$$

Therefore, we get

$$
\begin{aligned}
\sum_{\substack{m \text { cubefree } \leq X \\
W_{m}=1}} 1 & =\frac{1}{2} \sum_{\substack{m \text { cubefree } \leq X \\
m \equiv \pm 1, \pm 3(\bmod 9)}} 1+\frac{1}{2} \sum_{\substack{m \text { cubefree } \leq X \\
m \equiv 0, \pm 2, \pm 4(\bmod 9)}} 1+O(\sqrt{X} \log X) \\
& =\frac{1}{2} \sum_{m \text { cubefree } \leq X} 1+O(\sqrt{X} \log X) .
\end{aligned}
$$

4. Distribution of E_{m} 's with nontrivial even analaytic rank. We restate the main theorem.

Main Theorem. For X large enough, we have:

$$
\left\{m \text { cubefree }<X: \text { Analytic rank of } E_{m} \text { is even and } \geq 2\right\} \gg X^{2 / 3-\varepsilon} .
$$

Proof. If we choose m of the form $m=b\left(a^{2}-(4 b)^{2}\right)$ then $\operatorname{rank}\left(E_{m}\right) \geq 1$. Since E_{m} is a CM elliptic curve, the analytic rank of E_{m} is ≥ 1 by Coates and Wiles' theorem [3]. Moreover, if we choose m such that the root number $W_{m}=1$, then the analytic rank of E_{m} is even and hence ≥ 2.

In Theorem 1, we choose

$$
m_{1}=m_{2}=2, \quad m_{3}=3
$$

and

$$
M=9 .
$$

For a given congruence class $\left(a_{0}, b_{0}\right) \bmod 18, W_{m}$ is determined completely by the parity of $\tau_{2}(m)$. For example, if we choose $\left(a_{0}, b_{0}\right) \equiv(3,1)(\bmod 18)$ then $m \equiv 2(\bmod 9)$, i.e. $W_{m}=1$ iff $\tau_{2}(m)$ is odd. Choose $\left(a_{0}, b_{0}\right)$ so that $W_{m}=1$ if and only if $\tau_{2}(m)$ is odd. Then

$$
\#\left\{m \text { cubefree } \leq X: \text { Analytic rank of } E_{m} \text { is even and } \geq 2\right\} \geq\left|S_{2}\right|
$$

where

$$
\begin{aligned}
S_{2}=\{m \leq X: & m=b\left(a^{2}-(4 b)^{2}\right) \text { for some } a, b \in \mathbb{N},(a, b)=1,0<b \leq \\
& (X / 16)^{1 / 3}, 4 b \leq a \leq 4 \sqrt{2} b, b, a-4 b \text { are squarefree, and } a+4 b \\
& \text { is cubefree, } a \equiv a_{0}(\bmod 18), b \equiv b_{0}(\bmod 18) \text { and } \tau_{2}(m) \text { is } \\
& \text { odd }\} .
\end{aligned}
$$

Letting (*) be the conditions on (a, b) such that $m=b\left(a^{2}-(4 b)^{2}\right) \in S_{2}$, except for the last condition on $\tau_{2}(m)$, we see that the theorem follows if we can show

$$
\sum_{\substack{(a, b) \text { satisfies }(*) \\ \tau_{2}(m) \text { is odd }}} 1=C X^{2 / 3}+O\left(X^{13 / 21+\varepsilon}\right) \text {. }
$$

We have

$$
\begin{aligned}
\sum_{\substack{(a, b) \text { satisfies }(*) \\
\tau_{2}(m) \text { is odd }}} 1 & =\sum_{(a, b) \text { satisfies }(*)} \frac{1}{2}\left(1-(-1)^{\tau_{2}(m)}\right) \\
& =\frac{1}{2} \sum_{(a, b) \text { satisfies }(*)} 1-\frac{1}{2} \sum_{(a, b) \text { satisfies }(*)}(-1)^{\tau_{2}(m)} .
\end{aligned}
$$

By Theorem 2 (and our choice of m_{1}, m_{2}, m_{3}), the first sum is $C X^{2 / 3}+O\left(X^{11 / 18+\varepsilon}\right)$ where $C>0$ and ε is arbitrarily small. Now, for $m \in S_{2}$, we have:

$$
\begin{aligned}
(-1)^{\tau_{2}(m)} & =(-1)^{\tau_{2}(b)}(-1)^{\tau_{2}(a-4 b)}(-1)^{\tau_{2}(a+4 b)} \\
& =\left(\frac{b_{0}}{3}\right)\left(\frac{a_{0}-4 b_{0}}{3}\right)(-1)^{\tau_{2}(a+4 b)}
\end{aligned}
$$

since b and $a-4 b$ are squarefree. For example, if $\left(a_{0}, b_{0}\right) \equiv(3,1)(\bmod 18)$ then $\left(\frac{b_{0}}{3}\right)\left(\frac{a_{0}-4 b_{0}}{3}\right)=-1$.

Therefore, the theorem follows from
Lemma 4.1.

$$
\sum_{\substack{(a, b) \text { satisfies }(*) \\ \text { for some } m}}(-1)^{\tau_{2}(a+4 b)}=O\left(X^{13 / 21+\varepsilon}\right) .
$$

Proof. Denote the sum on the left hand side as S_{2}^{\prime}, we have

$$
S_{2}^{\prime}=\sum_{\substack{0<b \leq(X / 16)^{1 / 3} \\ b \equiv b_{0}(\text { mod } 2 M) \\ b \text { squarefree }}} \sum_{\substack{4 \equiv a_{0} \leq a \leq 4 \sqrt{2} b \\ a-4 b \bmod \text { morerfee } \\ a+4 b \text { cubefree } \\(a, b)=1}}(-1)^{\tau_{2}(a+4 b)} .
$$

To simplify the notations, let $a^{\prime}=a-4 b, a_{0}^{\prime}=a_{0}-4 b_{0}$ and $C=4 \sqrt{2}-4$. Also note that the condition $(a, b)=1$ is equivalent to $\left(a^{\prime}, b\right)=1$ for our set. We have:

$$
\begin{aligned}
& S_{2}^{\prime}=\sum_{\substack{0<b \leq X / X / 16)^{1 / 3} \\
b \equiv b_{0}(\bmod 2 M)}} \sum_{\substack{a^{\prime} \leq C b \\
a^{\prime} \equiv a_{0}^{\prime} \leq \bmod 2 M \\
\left(a^{\prime}, b\right)=1 \\
a^{\prime}+8 b \text { is cubefree }}}(-1)^{\tau_{2}\left(a^{\prime}+8 b\right)} \sum_{d^{2} \mid b} \mu(d) \sum_{\substack{e^{2} \mid a^{\prime}}} \mu(e)
\end{aligned}
$$

The contribution of terms with $Y<e \ll X^{1 / 6}$ where Y is a parameter to be chosen later, is

$$
\begin{aligned}
& \ll \sum_{\substack{d \ll X^{1 / 6} \\
\left(d<e \ll 1^{1 / 6} \\
(d, 2 M)=(e, 2 M)=1\right.}}|\mu(d) \mu(e)| \sum_{\substack{0<b \leq(X / 16)^{1 / 3} \\
b=b_{0}(\bmod 2 M) \\
b \equiv 0\left(\bmod d^{2}\right)}}\left(O\left(\frac{b}{e^{2}}\right)\right) \\
& =\sum_{\substack{d \ll X^{1 / 6} \\
Y<e \ll X^{1 / 6}}}|\mu(d) \mu(e)| O\left(\frac{X^{2 / 3}}{e^{2} d^{2}}\right) \\
& =O\left(\frac{X^{2 / 3}}{Y}\right) .
\end{aligned}
$$

Now, the contribution of terms with $0<e \leq Y$ is

$$
\sum_{\substack{d<X^{\prime / 6} \\ 0<\leq \leq Y \\(d, 2 M)=(e, 2 M)=1}} \mu(d) \mu(e) \sum_{\substack{0<b \leq(X / 16)^{1 / 3} \\ b \equiv 0\left(\bmod d^{2}\right) \\ b \equiv b_{0}(\bmod 2 M)}} \sum_{\substack{n \mid b \\ n \leq C b}} \mu(n) \sum_{\substack{a^{\prime \prime} \leq C b / n \\ n a^{\prime \prime \prime}=a_{0}^{\prime}(\bmod 2 M) \\ n a^{\prime \prime}=0\left(\bmod e^{2}\right) \\ n a^{\prime \prime}+8 b \text { is cubefree }}}(-1)^{\tau_{2}\left(n a^{\prime \prime}+8 b\right)} .
$$

Let us write $n a^{\prime \prime}+8 b=r^{2} s$ where r, s are squarefree and $(r, s)=1$. Also denote χ_{r} the principal character modulo r, we see that the above is

$$
\begin{aligned}
& \sum_{\substack{d \ll 1 / 6 \\
0<e \leq Y \\
(d, 2 M)=(e, 2 M)=1}} \mu(d) \mu(e) \sum_{\substack{0<b \leq(X / 16)^{1 / 3} \\
b \equiv 0\left(\bmod d^{2}\right) \\
b \equiv b_{0}(\bmod 2 M)}} \sum_{\substack{n \mid b \\
n \leq C b}} \mu(n) \sum_{\substack{0 \leq r \leq \sqrt{(C+8) b} \\
r s q u a r e f r e e}}\left(\frac{r}{3}\right) \\
& \times \sum_{8 b / r^{2} \leq s \leq(C+8) b / r^{2}}\left(\frac{s}{3}\right) \chi_{r}(s) \\
& r_{s \equiv a_{0}^{\prime}+8 b(\bmod 2 M)} \\
& r^{2} s \equiv 8 b\left(\bmod e^{2}\right) \\
& r^{2} s=8 b(\bmod n) \\
& s \text { is squarefree }
\end{aligned}
$$

$$
\begin{aligned}
& \times \sum_{0 \leq s_{1} \leq \sqrt{(C+8) b} / r} \chi_{r}\left(s_{1}\right) \mu\left(s_{1}\right) \sum_{\substack{8 b / r^{2} s_{1}^{2} \leq s_{1} \leq(C+8) b / r_{1}^{2} s_{1}^{2} \\
r^{2} s_{1}^{2} s_{1} \equiv a_{0}^{2}+8 b(\bmod 2 M) \\
r^{2} s_{2}^{2} s_{0}=8 b\left(\bmod e^{2}\right) \\
r^{2} s_{1}^{2} s_{2} \equiv 8 b(\bmod n)}}\left(\frac{s_{2}}{3}\right) \chi_{r}\left(s_{2}\right) .
\end{aligned}
$$

Consider the terms with $n \geq Z$, where Z is another parameter to be chosen later. The contribution of such terms is, on noting $n \mid b$,

$$
\begin{aligned}
& \ll \sum_{d, e} \sum_{b} \sum_{Z \leq n} \sum_{r} \sum_{s_{1}}\left(O\left(\frac{b}{r^{2} s_{1}^{2} e^{2} n}\right)+O(1)\right) \\
& =\sum_{d, e} \sum_{b} \sum_{Z \leq n} \sum_{r}\left(O\left(\frac{b}{r^{2} e^{2} n}\right)+O\left(\frac{\sqrt{b}}{r}\right)\right) \\
& =\sum_{d, e} \sum_{b} \sum_{Z \leq n}\left(O\left(\frac{b}{e^{2} n}\right)+O\left(b^{1 / 2} \log b\right)\right) \\
& =\sum_{d, e} \sum_{b}\left(O\left(\frac{b^{1+\varepsilon}}{Z e^{2}}\right)+O\left(b^{1 / 2+\varepsilon}\right)\right) \\
& =\sum_{d, e}\left(O\left(\frac{X^{2 / 3+\varepsilon}}{Z d^{2} e^{2}}\right)+O\left(\frac{X^{1 / 2+\varepsilon}}{d^{2}}\right)\right) \\
& =O\left(\frac{X^{2 / 3+\varepsilon}}{Z}\right)+O\left(X^{1 / 2+\varepsilon} Y\right) .
\end{aligned}
$$

Now we consider the terms with $n \leq Z$. Using the Polya-Vinogradov inequality and noting that s_{2} is determined by congruences $\bmod e^{2} n$, such terms contribute

$$
\begin{aligned}
& \ll \sum_{d, e} \sum_{b} \sum_{n \leq Z} \sum_{r} \sum_{s_{1}} O\left(e^{1+\varepsilon} n^{1 / 2+\varepsilon}\right) \\
& =\sum_{d, e} \sum_{b} \sum_{n \leq Z} \sum_{r} O\left(\frac{\sqrt{b}}{r} e^{1+\varepsilon} n^{1 / 2+\varepsilon}\right) \\
& =\sum_{d, e} \sum_{b} \sum_{n \leq Z} O\left(b^{1 / 2+\varepsilon} e^{1+\varepsilon} n^{1 / 2+\varepsilon}\right) \\
& =\sum_{d, e} \sum_{b} O\left(b^{1 / 2+\varepsilon} e^{1+\varepsilon} Z^{1 / 2+\varepsilon}\right) \\
& =\sum_{d, e} O\left(\frac{X^{1 / 2+\varepsilon}}{d^{2}} e^{1+\varepsilon} Z^{1 / 2+\varepsilon}\right) \\
& =O\left(X^{1 / 2+\varepsilon} Y^{2+\varepsilon} Z^{1 / 2+\varepsilon}\right) .
\end{aligned}
$$

In summary, we get

$$
S_{2}^{\prime}=O\left(\frac{X^{2 / 3}}{Y}\right)+O\left(\frac{X^{2 / 3+\varepsilon}}{Z}\right)+O\left(X^{1 / 2+\varepsilon} Y^{2+\varepsilon} Z^{1 / 2+\varepsilon}\right)
$$

Choosing $Y=X^{1 / 21}$ and $Z=X^{1 / 21}$, we have

$$
S_{2}^{\prime}=O\left(X^{13 / 21+\varepsilon}\right)
$$

This concludes the proof of Lemma 4.1 and also the Main Theorem.
REmARK. In the case that $m=3 p q$, where p, q are primes $\equiv 2(\bmod 3), W_{m}=1$. Satgé [8] computed the Selmer groups S_{λ} and $S_{\lambda^{\prime}}\left(\lambda\right.$ is a 3-isogeny and λ^{\prime} its dual-more concretely, λ is the projection:

$$
\left.\lambda: E_{m}(\mathbb{C}) \rightarrow \frac{E_{m}(\mathbb{C})}{\langle(0, \pm 12 \sqrt{-3} m)\rangle} \cong E_{m}^{\prime}(\mathbb{C})\right)
$$

Indeed, $S_{\lambda} \cong(\mathbb{Z} / 3 \mathbb{Z})^{3}$ and $S_{\lambda}^{\prime} \cong(0)$.
By the exact sequences of descent:

$$
\begin{aligned}
0 & \rightarrow \frac{E_{m}^{\prime}(\mathbb{Q})}{\lambda E_{m}(\mathbb{Q})} \rightarrow S_{\lambda} \rightarrow \mathbf{I I I}[\lambda] \rightarrow 0 \\
0 & \rightarrow \frac{E_{m}(\mathbb{Q})}{\lambda^{\prime} E_{m}^{\prime}(\mathbb{Q})} \rightarrow S_{\lambda}^{\prime} \rightarrow \text { II' }^{\prime}\left[\lambda^{\prime}\right] \rightarrow 0
\end{aligned}
$$

and the fact that:

$$
\operatorname{rank}\left(E_{m}(\mathbb{Q})\right)=\operatorname{dim}_{F_{3}}\left(\frac{E_{m}(\mathbb{Q})}{\lambda^{\prime}\left(E_{m}^{\prime}(\mathbb{Q})\right)}\right)+\operatorname{dim}_{F_{3}}\left(\frac{E_{m}^{\prime}(\mathbb{Q})}{\lambda^{\prime}\left(E_{m}(\mathbb{Q})\right)}\right)-1
$$

we see that if $m=3 p q=b\left(a^{2}-(4 b)^{2}\right)$ then $1 \leq \operatorname{rank}\left(E_{m}\right) \leq 2$. Since $W_{m}=1$, assuming the Birch and Swinnerton-Dyer conjecture, we get $\operatorname{rank}\left(E_{m}\right)=2$ and also $\boldsymbol{I I}[\lambda]=0$ by the above exact sequences. This happens when, say $b=3, a-4 b=q, a+4 b=p$.

In other words, we have

COROLLARY. Assuming the Birch and Swinnerton-Dyer conjecture, if p, q are two primes such that $p-q=24$, then $\operatorname{rank}\left(E_{m}\right)=2$, for $m=3$ pq and $\mathbf{I I I}[\lambda]=0$.

Note that the number of such pairs of primes (p, q) satisfying $3 p q \leq X$ is conjectured to be

$$
\gg \frac{X^{1 / 2}}{\log ^{2} X} .
$$

Acknowledgement. The author wishes to thank Profs. Ram Murty and Kumar Murty for their suggestions and discussions during this work. He also thanks the referees for various helpful comments.

References

1. B J Birch and N M Stephens, The parity of the rank of the Mordell-Well group, Topology 5(1966), 295-299
2. J S Cassels, The ratıonal solutions of the Dıophantine equatıon $Y^{2}=X^{3}-D$, Acta Math 82(1950), 243-273
3. J Coates and A Wiles, On the conjecture of Birch and Swinnerton-Dyer, Invent Math 39(1977), 223-251
4. F Gouvea and B Mazur, The squarefree sleve and the rank of elliptic curves, J Amer Math Soc (1) 4(1991), 1-23
5. K Ireland and I M Rosen, A classical introduction to modern number theory, Sprnger-Verlag, New York, 1982
6. L Ma1, The average analytic rank of a family of elliptic curves, J Number Theory, to appear
7. K Rubin, The work of Kolyvagin on the arthmetics of elliptic curves, Lecture Notes in Mathematics 1399, New York, Sprınger-Verlag, 1989
8. P Satgé, Groupes de Selmer and corps cublques, J Number Theory 23(1986), 294-317
9. , Quelques resultats sur les entıers qui sont sommes des cubes de deux rationels, Soc Math France, Asterisque 147-148(1987), 335-341
10.

Un analogue du calcul de Heegner, Invent Math 87(1987), 425-439
11. E S Selmer, The Diophantine equation $A X^{3}+B Y^{3}+C Z^{3}=0$, Acta Math 85(1951), 203-362
12. J Silverman, The arithmetics of elliptic curves, Sprınger-Verlag, New York, 1986
13. Y Tanıyama, L-functions of number fields and zeta functions of abelian variettes, J Math Soc Japan 9(1957), 330-336
14. A Weıl, Uber dıe Bestimmung Dirichletscher Reihen durch Funktıonalgleıchungen, Math Annalen 168 (1967), 149-156
15. D Zagier and G Kramarz, Numerical investigations related to the L-series of certain elliptic curves, J Ind Math Soc 52(1987), 51-69

Centre de Recherches Mathematiques
Université de Montréal
CP 6128-A
Montreal, Quebec
H3C $3 J 7$

