THE ANALYTIC RANK OF A FAMILY OF ELLIPTIC CURVES

LIEM MAI

ABSTRACT We study the family of elliptic curves $E_m X^3 + Y^3 = m$ where *m* is a cubefree integer

The elliptic curves E_m with even analytic rank and those with odd analytic rank are proved to be equally distributed. It is proved that the number of cubefree integers $m \leq X$ such that the analytic rank of E_m is even and ≥ 2 is at least $CX^{2/3-\varepsilon}$, where ε is arbitrarily small and C is a positive constant, for X large enough. Therefore, if we assume the Birch and Swinnerton-Dyer conjecture, the number of all cubefree integers $m \leq X$ such that the equation $X^3 + Y^3 = m$ have at least two independent rational solutions is at least $CX^{2/3-\varepsilon}$.

1. **Introduction.** For an elliptic curve *E* over \mathbb{Q} , the set of all rational points $E(\mathbb{Q})$ is known to be a finitely generated abelian group by a theorem of Mordell-Weil. We will call its rank the *(algebraic) rank* of the elliptic curve. It is positive if and only if *E* has infinitely many rational points. One important problem in the study of elliptic curves is to determine their ranks.

Attached to an elliptic curve *E* of conductor *N*, we have an *L*-series $L_E(s) = \sum_{n=1}^{\infty} a_n n^{-s}$ (see Silverman [12]). If we define

$$\zeta_E(s) = N^{s/2} (2\pi)^{-s} \Gamma(s) L_E(s),$$

then for modular elliptic curves it is known that $\zeta_E(s)$ has analytic continuation and satisfies

$$\zeta_E(s) = W\zeta_E(2-s)$$

with $W = \pm 1$. Here, W is called the *root number*. The so-called Taniyama-Weil conjecture says that all elliptic curves over Q are modular (see Taniyama [13]). Weil's converse theorem allows us to reduce the conjecture to a problem in analytic continuation and functional equation of a family of Dirichlet series (see Weil [14]).

In connection with the rank of an elliptic curve E, the weak form of Birch and Swinnerton-Dyer conjecture states that the rank of E is equal to the order of vanishing at the central point s = 1 of $L_E(s)$ and its parity is determined by the root number (see Silverman [12]).

DEFINITION. The analytic rank of an elliptic curve *E* is the order of vanishing at the central point s = 1 of $L_E(s)$.

Received by the editors November 12, 1991

AMS subject classification 11G05, 14H52

[©] Canadian Mathematical Society 1993

Now, if χ is a Dirichlet character, we can form the twisted *L* series $L(s) = \sum_{n=1}^{\infty} a_n \chi(n) n^{-s}$. If χ is quadratic, this is an *L*-series of another elliptic curve E_{χ} over \mathbb{Q} . Fixing an elliptic curve *E* over \mathbb{Q} , we can consider the family E_{χ} of such twisted curves of *E*. What can we say about the number of such twisted curves which have algebraic rank $\geq r$, for a fixed positive integer *r*? What can we say about analytic rank?

In the case of such quadratic twists, Gouvea and Mazur in [4] gave a partial answer variation of the algebraic rank. More specifically let *E* have the Weierstrass equation $Y^2 = X^3 + AX + B$. For any squarefree integer *D*, denote E_D the quadratic twist of *E* by D (*i.e.* by the Legendre symbol $(\frac{D}{r})$). Then E_D is an elliptic curve and has the equation $DY^2 = X^3 + AX + B$. Assuming the Birch and Swinnerton-Dyer conjecture, Gouvea and Mazur have proved that for *X* large enough, the number of squarefree integers D < X such that E_D has even algebraic rank ≥ 2 (*i.e.* $W_{E_D} = 1$ and E_D has infinitely many rational points) is at least $CX^{1/2-\varepsilon}$ for *C* a positive constant and ε arbitrarily small. In general, no information is obtained for higher-order twisted curves. (See Silverman [12] for the definition of the twist of *E*.) In this paper, we consider certain cubic twists, namely

$$X^3 + Y^3 = m.$$

The problem of determining whether an integer can be expressed as the sum of two rational cubes has a long history. As mentioned in [15], Dickson listed 50 papers on the subject before 1918 in his History of the Theory of Numbers. Equivalently, we want to study the family of elliptic curves $E_m: X^3 + Y^3 = m$. It is known that they are twisted curves of the fixed elliptic curves $E_1: X^3 + Y^3 = 1$ by cubic characters. In [15], Zagier and Kramarz gave numerical data suggesting that about 23.3% of the curves E_m which have even algebraic rank (*i.e.* with root number 1, assuming the Birch and Swinnerton-Dyer conjecture) have algebraic rank ≥ 2 .

In this paper, we obtain a similar result to Gouvea and Mazur's for this family of cubic twisted curves.

MAIN THEOREM. For X large enough, the set of all cubefree integers m < X such that the analytic rank of E_m is even and greater or equal to 2 is at least $CX^{2/3-\varepsilon}$ for a positive constant C and arbitrarily small ε .

Therefore, assuming the Birch and Swinnerton-Dyer conjecture, the set of all cubefree integers m < X such that E_m has even rank ≥ 2 is at least $CX^{2/3-\varepsilon}$.

We recall some facts about the family E_m .

For *m* cubefree, the curve E_m : $X^3 + Y^3 = m$ has the Weierstrass form $Y^2 = X^3 - 2^4 3^3 m^2$. This can be seen through the map:

$$E_m: X^3 + Y^3 = m \longrightarrow E'_m: Y^2 = X^3 - 2^4 3^3 m^2$$

(X, Y) $\longmapsto (2^2 3(X^2 - XY + Y^2), 2^2 3^2 (X - Y)(X^2 - XY + Y^2)).$

About the torsion subgroup of $E_m(\mathbb{Q})$, Nagell (see [11]) showed that for $m \neq 1, 2$, $E_m(\mathbb{Q})$ is torsionfree and $|E_1(\mathbb{Q})| = 3$, $|E_2(\mathbb{Q})| = 2$.

The root number W_m is also known explicitly. Indeed Birch and Stephens in [1] prove that

(1)
$$W_m = \prod_p W_m(p)$$

where for $p \neq 3$,

$$W_m(p) = \begin{cases} -1 & \text{if } p | m, \quad p \equiv 2 \pmod{3} \\ 1 & \text{elsewhere} \end{cases}$$

and for p = 3,

$$W_m(3) = \begin{cases} 1 & \text{if } m \equiv \pm 1, \pm 3 \pmod{9} \\ -1 & \text{if } m \equiv 0, \pm 2, \pm 4 \pmod{9}. \end{cases}$$

In §2, we will prove that for X large enough, the number of cubefree integers m < X such that E_m has nonzero algebraic rank is at least $CX^{2/3-\varepsilon}$ for C a positive constant and ε arbitrarily small.

In §3, it is proved that the curves E_m with root number 1 have density $\frac{1}{2}$ among the set $\{m \text{ cubefree}\}$. Therefore, assuming the Birch and Swinnerton-Dyer conjecture, half of the E_m 's will have even rank and half with odd rank, asymptotically.

In §4, we introduce the additional condition $W_m = 1$ and prove the main theorem.

2. Distribution of the set of E_m 's with nonzero rank. In [4], it is shown that for every squarefree integer D of the form $V(U^3 + AUV^2 + BV^3)$, $(U, V) \in \mathbb{Z}^2$ the quadratic twisted curve:

$$E_D: DY^2 = X^3 + AX + B$$

contains a rational point which is either of infinite order or of order > 2.

Since all E_D except for a finite number have no rational torsion points of order > 2, they need only count the squarefree $D \le X$ of the form $V(U^3 + AUV^2 + BV^3)$.

Recall that the twisted curves E_m : $X^3 + Y^3 = m$ has the Weierstrass form:

$$E'_m: Y^2 = X^3 - 2^4 3^3 m^2.$$

We will prove that, for certain m, then E'_m contains integral, hence rational points.

As mentioned in §1, all E'_m except for m = 1 and 2 have no rational torsion, and we will count the cubefree integers m of that form.

LEMMA 2.1. E'_m has integral points $\iff m$ has one of the six forms: $\pm \frac{b(a^2-b^2)}{4}$, $\pm \frac{1}{24}(3a^2b-3b^3) \pm \frac{1}{24}(a^3-9ab^2)$ for some $a, b \in \mathbb{Z}$.

PROOF. Suppose E'_m has an integral point (X, Y), then

$$X^{3} = Y^{2} + 3(12m)^{2}$$

= (Y + 12m\sqrt{-3})(Y - 12m\sqrt{-3}).

Since the ring of integers O_K of $K = \mathbb{Q}(\sqrt{-3})$ is a Dedekind domain, we have the factorization

$$(Y + 12m\sqrt{-3}) = \prod (P_i)^{m_i} (Y - 12m\sqrt{-3}) = \prod (\bar{P}_i)^{m_i}$$

which shows that $X^3 = \prod (P_1 \overline{P}_1)^{m_i} = \prod (p_1)^{a_i m_i}$ where $a_i = 1$ or 2.

Since $X \in \mathbb{Z}$, $3|a_im_i$ for all *i*, hence $3|m_i$.

Therefore, since O_K is a principal ideal domain,

$$(Y+12m\sqrt{-3}) = \left(\prod P_i^{m_i/3}\right)^3$$
$$= (a+b\sqrt{-3})^3 \text{ for } a,b,\in\mathbb{Z}.$$

This implies

$$Y + 12m\sqrt{-3} = \alpha(a + b\sqrt{-3})^3$$

= $\alpha((a^3 - 9ab^2) + \sqrt{-3}(3a^2b - 3b^3))$

where α is a unit of the ring of integers $\mathbb{Z}[\frac{1+\sqrt{-3}}{2}]$.

If $\alpha = \pm 1$, then $m = \pm \frac{1}{12}(3a^2b - 3b^3) = \pm \frac{b(a^2 - b^2)}{4}$. If $\alpha = \pm \frac{1}{2} \pm \frac{\sqrt{-3}}{2}$, $m = \pm \frac{1}{24}(3a^2b - 3b^3) \pm \frac{1}{24}(a^3 - 9ab^2)$. Conversely, if *m* is one of the above forms, then E'_m has at least one integral point,

namely:

$$(X, Y) = \left(a^2 + 3b^2, \pm (a^3 - 9ab^2)\right) \text{ or}$$
$$(X, Y) = \left(a^2 + 3b^2, \pm \frac{1}{2}(a^3 - 9ab^2) \pm \frac{(-3)}{2}(3a^2b - 3b^3)\right)$$

LEMMA 2.2. Suppose $(X, Y) \in E'_m(\mathbb{Q})$. Then there is $e \in \mathbb{Z}$ such that $X = X_0/e^2$, $Y = Y_0 / e^3$ and $X_0, Y_0 \in \mathbb{Z}$.

PROOF. For any prime p such that $\nu_p(X) = (\text{order of } X \text{ at } p) < 0$, we have

$$0 > \nu_p(X^3) = 3\nu_p(X) = \nu_p(Y^2 + 3(12m^2))$$

= $\nu_p(Y^2) = 2\nu_p(Y).$

In particular $2|\nu_p(X)$.

Let $e = \prod_{\substack{p \text{ prime} \\ \nu_p(X) < 0}} p^{-\nu_p(X)/2}$ and $X_0 = Xe^2$, $Y_0 = Ye^3$ then $X_0, Y_0 \in \mathbb{Z}$.

Lemma 2.2 implies that if E'_m has a rational point then E'_{me^3} has an integral point for some $e \in \mathbb{Z}$, and vice versa. We want to count

 $#\{m \text{ cubefree } \leq X : E'_m \text{ has rational points}\}$ = #{*m* cubefree $\leq X : E'_{me^3}$ has integral points for some $e \in \mathbb{Z}$ } $= \# \left\{ m \text{ cubefree } \leq X : m = \frac{b(a^2 - b^2)}{4\nu^3} \text{ or } \right\}$ $m = \pm \frac{1}{24e^3} (3a^2b - 3b^3) \pm \frac{1}{24e^3} (a^3 - 9ab^2) \text{ for some } a, b, e \in \mathbb{Z} \Big\}.$

https://doi.org/10.4153/CJM-1993-048-9 Published online by Cambridge University Press

Now fix e = 1 and consider the case $m = \frac{b(a^2 - b^2)}{4}$. Let Φ be the following injection: $S = \{(a, b) : (a, b) = 1, m = b(a^2 - (4b)^2) \le X \text{ and } m \text{ is cubefree}\}$ $\rightarrow T = \{(a', b') : m' = \frac{b'(a'^2 - b'^2)}{4} \le X \text{ and } m' \text{ is cubefree}\}$ $(a, b) \mapsto (a, 4b).$

Our aim is to prove $|T| \gg X^{2/3}$. For each *m*, we can find at most $d(m) = O(X^{\varepsilon})$ values for *b* and for each *b*, at most 2 values of *a* such that $m = \frac{b(a^2 - b^2)}{4}$. Therefore, $|T| \gg X^{2/3}$ will imply that:

 $#\{m \le X, m \text{ is cubefree and } E'_m \text{ has an integral point}\} \gg X^{2/3-\varepsilon}.$

To do this, we will prove that $|S| \gg X^{2/3}$. More generally, we will prove that:

THEOREM 1. Given integers M and a_0 , b_0 , such that b_0 , $a_0 - 4b_0$, $a_0 + 4b_0$ are relatively prime to 2M and positive integers m_1 , m_2 , m_3 such that $m_1 \ge 2$, $m_2 + m_3 \ge 5$. Let

$$S_{1} = \{(a,b) : m = b(a^{2} - (4b)^{2}) < X, (a,b) = 1, b, a - 4b, a + 4b are m_{1}, m_{2}, m_{3} powerfree respectively, a \equiv a_{0} \pmod{2M}, b \equiv b_{0} (\text{mod } 2M)\}$$

then

$$|S_1| \ge CX^{2/3} + O(X^{1/3 + 1/3m_2 + 1/3m_3 + \varepsilon}) + O(X^{1/2 + \varepsilon})$$

where C > 0, ε is arbitrarily small and X is large enough.

PROOF OF THE THEOREM. At first, note that the above conditions on (a, b) imply that b, a - 4b, a + 4b are pairwise coprime.

If we choose (a, b) such that $b \le (X/16)^{1/3}$ then $(4b)^2 \le X/b$. In this case, if $a^2 \le 2(4b)^2$, then $a^2 \le X/b + (4b)^2$, *i.e.* $m = b(a^2 - (4b)^2) \le X$ and a - 4b, a + 4b are $\ll X^{1/3}$. We have

$$\begin{split} |S_{1}| &= \sum_{(a,b)\in S_{1}} \left(\sum_{d^{m_{1}}|b} \mu(d)\right) \left(\sum_{e^{m_{2}}|a-4b} \mu(e)\right) \left(\sum_{f^{m_{3}}|a+4b} \mu(f)\right) \\ &\geq \sum_{\substack{(a,b)=1\\0 < b \le (X/16)^{1/3}\\4b \le a \le 4\sqrt{2}b\\a \equiv a_{0} \pmod{2M}, b \equiv b_{0} \pmod{2M}} \left(\sum_{\substack{d^{m_{1}}|b\\d \ll X^{1/3m_{1}}\\e \ll X^{1/3m_{2}}\\f \ll X^{1/3m_{3}}\\(d,2M) = (e,2M) = (f,2M) = 1} \mu(d)\mu(e)\mu(f) \sum_{\substack{0 < b \le (X/16)^{1/3}\\b \equiv b_{0} \pmod{2M}}} \sum_{\substack{d \le 4\sqrt{2}b\\b \equiv b_{0} \pmod{2M}}} \mu(d)\mu(e)\mu(f) \sum_{\substack{a \equiv 4b \pmod{e^{m_{2}}}\\b \equiv b_{0} \pmod{2M}}} \sum_{\substack{d \ge a \le 4\sqrt{2}b\\a \equiv a_{0} \pmod{2M}}} 1 \\ \end{split}$$

Note that e^{m_2} , f^{m_3} and 2M are pairwise coprime. Now

$$\sum_{\substack{A \le a \le B\\(mod \ e^{m_2} f^{m_3} 2M)}} 1 = \sum_{\substack{A \le a \le B\\(mod \ e^{m_2} f^{m_3} 2M)}} \sum_{\substack{n \mid a\\(mod \ e^{m_2} f^{m_3} 2M)}} \mu(n)$$
$$= \sum_{\substack{n \mid b\\n \mid b}} \mu(n) \left(\sum_{\substack{A/n \le a' \le B/n\\a=na' \equiv * \pmod{e^{m_2} f^{m_3} 2M}}} 1\right)$$
$$(n \text{ and } e^{m_2} f^{m_3} 2M \text{ are coprime since } \left(b, (a^2 - (4b)^2 2M)\right)$$

(*n* and $e^{m_2}f^{m_3}2M$ are coprime since $(b, (a^2 - (4b)^2 2M)) = 1)$

$$= \sum_{n|b} \mu(n) \left\{ \frac{B-A}{ne^{m_2} f^{m_3} 2M} + O(1) \right\}$$

= $\frac{B-A}{e^{m_2} f^{m_3} 2M} \sum_{n|b} \frac{\mu(n)}{n} + O\left(\sum_{n|b} |\mu(n)|\right)$
= $\frac{B-A}{e^{m_2} f^{m_3} 2M} \frac{\phi(b)}{b} + O(X^{\varepsilon}).$

Then

$$\begin{split} |S_{1}| &\geq \sum_{\substack{d \ll X^{1/3m_{1}} \\ e \ll X^{1/3m_{2}} \\ f \ll X^{1/3m_{2}} \\ f \ll X^{1/3m_{3}} \\ (d,2M) &= (e,2M) = (f,2M) = 1}} \mu(d)\mu(e)\mu(f) \sum_{\substack{0 < b \leq (X/16)^{1/3} \\ b \equiv 0 \pmod{d^{m_{1}}} \\ b \equiv b_{0} \pmod{d^{m_{1}}} \\ b \equiv b_{0} \pmod{d^{m_{1}}} \\ b \equiv b_{0} \pmod{d^{m_{1}}} \\ (d,2M) &= (e,2M) = (f,2M) = 1 \\ \begin{cases} \frac{1}{e^{m_{2}}f^{m_{3}}} \sum_{\substack{0 < b \leq (X/16)^{1/3} \\ b \equiv 0 \pmod{d^{m_{1}}} \\ b \equiv b_{0} \pmod{d^{m_{1}}} \\ d^{(M)}\mu(e)\mu(f) \\ e^{m_{2}}f^{m_{3}}} \sum_{\substack{0 < b \leq (X/16)^{1/3} \\ b \equiv b_{0} \pmod{d^{m_{1}}} \\ b \equiv b_{0} \pmod{d^{m_{1}}}} \\ b \equiv b_{0} \pmod{d^{m_{1}}} \\ b \equiv b_{0} (\max{d^{m_{1}}} \\ b \equiv b_{0} (\max{d^{m_{1}}} \\ b \equiv b_{0} (\max{d^{m_{1}} b = b_$$

since the series $\sum_{d} \frac{1}{d^{m_1}}$ converges.

$$\sum_{\substack{0 < b \le (X/16)^{1/3} \\ b \equiv 0 \pmod{d^{m_1}} \\ b \equiv b_0 \pmod{d^{m_1}}}} \phi(b) = \sum_{\substack{0 < b \le (X/16)^{1/3} \\ b \equiv 0 \pmod{d^{m_1}} \\ b \equiv b_0 \pmod{d^{m_1}} \\ c = \sum_{\substack{t \le (X/16)^{1/3} \\ tb' \equiv 0 \pmod{d^{m_1}} \\ tb' \equiv b_0 \pmod{d^{m_1}} \\ c = \sum_{\substack{r \mid d^{m_1} 2M \\ (t, d^{m_1} \cdot 2M) = r \\ t \le (X/16)^{1/3} / t}} \mu(t) \sum_{\substack{0 < b' \le (X/16)^{1/3} / t \\ tb' \equiv b_0 \pmod{d^{m_1}} \\$$

The last step follows noting that if $(r, 2M) \neq 1$, then $(t, 2M) \neq 1$ and this contradicts the condition $tb' \equiv b_0 \pmod{2M}$, and $(b_0, 2M) = 1$. Moreover, the two congruence conditions on b' can be combined into one, as (t, 2M) = 1, and $(t, d^{m_1}) = r$. Therefore, we have

$$\sum_{\substack{0 < b \le (X/16)^{1/3} \\ b \equiv 0 \pmod{d^{m_1}} \\ b \equiv b_0 \pmod{2M}}} \phi(b) = \sum_{r|d^{m_1}} \sum_{\substack{0 \le t \le (X/16)^{1/3} \\ (t,d^{m_1}.2M) = r}} \mu(t) \sum_{\substack{0 < b' \le (X/16)^{1/3}/t \\ b' \equiv b'_0 \pmod{d^{m_1}/r}.2M}} b'$$

where b'_0 is an integer such that $tb'_0 \equiv b_0 \pmod{2M}$.

We need a lemma:

Lemma 2.3.

$$\sum_{\substack{0 < x \le Z \\ x \equiv x_0(n)}} x = \frac{1}{2n} Z^2 + O(Z).$$

PROOF. Note that we can always choose $0 \le x_0 \le n$. Moreover, if $n \ge Z$ the conclusion is clear. Therefore, we need only consider the case $n \le Z$. In that case, we have

$$\sum_{\substack{0 < x \le Z \\ x \equiv x_0 \pmod{n}}} x = \sum_{\substack{-x_0/n < y \le (Z - x_0)/n}} (x_0 + ny)$$

= $\sum_y x_0 + n \sum_y y$
= $x_0 \left(\frac{Z}{n} + O(1)\right) + n \left(\frac{1}{2}\left(\frac{Z}{n}\right)^2 + O\left(\frac{Z}{n}\right)\right)$
= $\frac{1}{2n} Z^2 + O(Z).$

Applying the lemma, we have:

$$\sum_{\substack{0 < b \le (X/16)^{1/3} \\ b \equiv 0 \pmod{d^{m_1}} \\ b \equiv b_0 \pmod{d^{m_1}}}} \phi(b) = \sum_{\substack{r \mid d^{m_1} \\ (t, d^{m_1} 2M) = r}} \sum_{\substack{t \le (X/16)^{1/3} \\ (t, d^{m_1} 2M) = r}} \mu(t) \left\{ \frac{1}{(d^{m_1}/r)4M} \frac{(X/16)^{2/3}}{t^2} + O\left(\frac{X^{1/3}}{t}\right) \right\}$$
$$= \sum_{\substack{r \mid d^{m_1} \\ (t, d^{m_1} 2M) = r}} \sum_{\substack{t \le (X/16)^{1/3} \\ (t, d^{m_1} 2M) = r}} \frac{\mu(t)}{t^2} \left\{ \frac{r}{d^{m_1}} \frac{1}{4M} (X/16)^{2/3} \right\} + O(X^{1/3} \log X)$$
$$= (X/16)^{2/3} \frac{1}{4M} \frac{1}{d^{m_1}} \sum_{\substack{r \mid d^{m_1} \\ (t, d^{m_1} 2M) = r}} \frac{\mu(t)}{t^2} + O(X^{1/3} \log X).$$

Writing t = rs, we may suppose that (r, s) = 1, else $\mu(t) = 0$. Moreover $(rs, d^{m_1}2M) = r$, then $(s, d^{m_1}2M) = 1$. Hence:

$$\sum_{\substack{0 < b \le (X/16)^{1/3} \\ b \equiv 0 \pmod{d^{m_1}} \\ b \equiv b_0 \pmod{d^{m_1}}}} \phi(b) = (X/16)^{2/3} \frac{1}{4M} \frac{1}{d^{m_1}} \sum_{r|d^{m_1}} \frac{\mu(r)}{r} \sum_{\substack{s \le X^{1/3}/r \\ (s,d^{m_1} 2M) = 1}} \frac{\mu(s)}{s^2} + O(X^{1/3} \log X)$$
$$= (X/16)^{2/3} \frac{1}{4M} \frac{1}{d^{m_1}} \sum_{r|d^{m_1}} \frac{\mu(r)}{r}$$
$$\left\{ \frac{1}{\zeta(2)} \prod_{p|d^{m_1} 2M} \left(1 - \frac{1}{p^2}\right)^{-1} + O\left(\frac{r}{X^{1/3}}\right) \right\} + O(X^{1/3} \log X)$$
$$(X/16)^{2/3} \frac{1}{q^3} - \frac{1}{q^3} \left(1 - \frac{1}{p^2}\right)^{-1} + O\left(\frac{r}{X^{1/3}}\right) \right\}$$

$$= \frac{(X/16)^{2/3}}{\zeta(2)} \frac{1}{4M} \frac{1}{d^{m_1}} \left(\sum_{r \mid d^{m_1}} \frac{\mu(r)}{r} \right) \left(\prod_{p \mid d^{m_1} 2M} \left(1 - \frac{1}{p^2} \right)^{-1} \right) + O(X^{1/3} \log X) = \frac{(X/16)^{2/3}}{\zeta(2)} \frac{1}{4M} \frac{1}{d^{m_1}} \prod_{p \mid 2M} \left(1 - \frac{1}{p^2} \right)^{-1} \prod_{p \mid d} \left(1 + \frac{1}{p} \right)^{-1} + O(X^{1/3} \log X).$$

Therefore, we get

$$\begin{aligned} |S_1| \ge \left(\sum_{\substack{e \ll X^{1/3m_2} \\ (e,2M)=1}} \frac{\mu(e)}{e^{m_2}}\right) \left(\sum_{\substack{f \ll X^{1/3m_3} \\ (f,2M)=1}} \frac{\mu(f)}{f^{m_3}}\right) \left(\sum_{\substack{d \ll X^{1/3m_1} \\ (d,2M)=1}} \frac{\mu(d)}{d^{m_1}} \prod_{p|d} \left(1 + \frac{1}{p}\right)^{-1}\right) C_0. X^{2/3} \\ &+ O(X^{1/3+1/3m_2+1/3m_3+\varepsilon}) + O\left(X^{1/3}\log X \sum_{d \ll X^{1/3m_1}} 1\right) \end{aligned}$$

where $C_0 = \frac{4\sqrt{2}-4}{(16)^{2/3}} \frac{1}{(2M)^2} \frac{1}{2\zeta(2)} \prod_{p|2M} \left(1 - \frac{1}{p^2}\right)^{-1}$. The error term is

$$O(X^{1/3+1/3m_2+1/3m_3+\varepsilon}) + O(X^{1/2+\varepsilon}).$$

The main term is

$$\frac{1}{L(m_2,\chi_0)}\frac{1}{L(m_3,\chi_0)}C_0PX^{2/3}+O(X^{1/2+\varepsilon})$$

where χ_0 is the principal character mod 2*M* and

$$P = \sum_{\substack{d \ll X^{1/3m_1} \\ (d,2M)=1}} \frac{\mu(d)}{d^{m_1}} \prod_{p|d} \left(1 + \frac{1}{p}\right)^{-1}$$

= $\sum_{\substack{d=1 \\ (d,2M)=1}}^{\infty} \frac{\mu(d)}{d^{m_1}} \prod_{p|d} \left(1 + \frac{1}{p}\right)^{-1} + O(X^{(-m_1+1)/3m_1})$
= $\prod_{(p,2M)=1} \left(1 - \frac{1}{p^{m_1-1}(p+1)}\right) + O(X^{-1/6}).$

Since the Euler product

$$\prod_{(p,2M)=1} \left(1 - \frac{1}{p^{s-m_1}} \frac{1}{p^{m_1-1}(p+1)} \right)$$

converges absolutely for $\operatorname{Re}(s) \ge m_1$ and each Euler factor is nonzero at $s = m_1$, P is also nonzero.

This concludes the proof of Theorem 1.

3. Distribution of the set of E_m 's with nonzero rank. In this section, we will prove that the set of $\{m \text{ cubefree} : W_m = 1\}$ has density $\frac{1}{2}$ in the set of cubefree integers *m*.

LEMMA 3.1. For any Dirichlet character τ of conductor q, we have

$$\sum_{m \text{ cubefree} \le X} (-1)^{\tau_2(m)} \tau(m) = O\left(\sqrt{X}(\log X)\sqrt{q}\log q\right)$$

where $\tau_2(m)$ is the number of distinct primes $p \equiv 2 \pmod{3}$ such that p|m.

PROOF. Every cubefree integer can be written uniquely in the form r^2s , where r, s are squarefree integers and (r, s) = 1. We have

$$\tau_2(r^2s) = \tau_2(r^2) + \tau_2(s) = \tau_2(r) + \tau_2(s).$$

Then

$$\sum_{\substack{m \text{ cubefree } \le X\\ 3 \nmid m}} (-1)^{\tau_2(m)} \tau(m) = \sum_{\substack{r^2 s \le X\\ (r,3) = (s,3) = (r,s) = 1}} (-1)^{\tau_2(r)} \tau(r^2) (-1)^{\tau_2(s)} \tau(s)$$
$$= \sum_{r,s} \chi(r) \tau(r^2) \chi(s) \tau(s)$$

where the sum only includes squarefree values of r, and s and $\chi(\cdot) = (\frac{1}{3})$, the nonprincipal character module 3. (As 3 n/r and r is squarefree, $(-1)^{\tau_2(r)} = \chi(r)$). Then

$$\sum_{\substack{m \text{ cubefree} \le X \\ 3 \not\mid m}} (-1)^{\tau_2(m)} \tau(m) = \sum_{\substack{r \le \sqrt{X} \\ r \text{ squarefree}}} \chi(r) \tau(r^2) \sum_{\substack{s \le X/r^2 \\ s \text{ squarefree}}} \chi_r(s) \chi(s) \tau(s)$$

in which χ_r is the principal character modulo *r*, *i.e.* $\chi_r(s) = 1$ if (r, s) = 1 and 0 otherwise. Now

$$\sum_{\substack{m \text{ cubefree} \leq X \\ 3 \not \mid m}} (-1)^{\tau_2(m)} \tau(m) = \sum_{\substack{r \leq \sqrt{X} \\ r \text{ squarefree}}} \chi(r) \tau(r^2) \sum_{s \leq X/r^2} \chi_r(s) \chi(s) \tau(s) \left(\sum_{t^2 \mid s} \mu(t)\right)$$
$$= \sum_{\substack{r \leq \sqrt{X} \\ r \text{ squarefree}}} \chi(r) \tau(r^2) \sum_{t \leq \sqrt{X}/r} \mu(t) \chi_r(t^2) \chi(t^2) \tau(t^2)$$
$$\times \sum_{s_0 \leq X/r^2 t^2} \chi_r(s_0) \chi(s_0) \tau(s_0).$$

The innermost sum is $O(\sqrt{q} \log q)$ by the Polya-Vinogradov inequality, then we have

$$\sum_{\substack{m \text{ cubefree } \le X \\ 3 \not\mid m}} (-1)^{\tau_2(m)} \tau(m) = \sum_{\substack{r \le \sqrt{X} \\ r \text{ squarefree}}} O\left(\frac{\sqrt{X}}{r} \sqrt{q} \log q\right) = O\left(\sqrt{X}(\log X) \sqrt{q} \log q\right).$$

Finally we have:

$$\sum_{\substack{m \text{ cubefree} \le X}} (-1)^{\tau_2(m)} \tau(m) = \sum_{\substack{m \text{ cubefree} \le X \\ 3 \not m}} + \sum_{\substack{m \text{ cubefree} \le X \\ 3 \not m}} + \sum_{\substack{m \text{ cubefree} \le X/3 \\ 3 \not m_1}} + \sum_{\substack{m_2 \text{ cubefree} \le X/9 \\ 3 \not m_1}} + \sum_{\substack{m_2 \text{ cubefree} \le X/9 \\ 3 \not m_2}} + O(\sqrt{X} \log X \sqrt{q} \log q).$$

Here, $p^k \parallel m$ means that $p^k \mid m$ but $p^s \not\mid m$ for s > k.

LEMMA 3.2. The set {m cubefree, $\tau_2(m)$ is even} has density $\frac{1}{2}$ in the set {m cubefree}.

PROOF. We have

$$\sum_{\substack{m \text{ cube free } \le X \\ \tau_2(m) \text{ is even}}} 1 = \sum_{\substack{m \text{ cube free } \le X \\ = \frac{1}{2}} \frac{1}{\sum_{\substack{m \text{ cube free } \le X \\ x \text{ cube free } \le X \\ = \frac{1}{2} \sum_{\substack{m \text{ cube free } \le X \\ x \text{ cube free } \le X \\ = \frac{1}{2} \sum_{\substack{m \text{ cube free } \le X \\ x \text{ cube free } \le X \\ = \frac{1}{2} \sum_{\substack{m \text{ cube free } \le X \\ x \text{ cube free } \le X \\ = \frac{1}{2} \sum_{\substack{m \text{ cube free } \le X \\ x \text{ cube free } \le X \\ = \frac{1}{2} \sum_{\substack{m \text{ cube free } \le X \\ x \text{ cube free } \le X \\ = \frac{1}{2} \sum_{\substack{m \text{ cube free } \le X \\ x \text{ cube free } \le X \\ = \frac{1}{2} \sum_{\substack{m \text{ cube free } \le X \\ x \text{ cube free } \le X \\ = \frac{1}{2} \sum_{\substack{m \text{ cube free } \le X \\ x \text{ cube free } \le X \\ = \frac{1}{2} \sum_{\substack{m \text{ cube free } \le X \\ x \text{ cube free } \le X \\ = \frac{1}{2} \sum_{\substack{m \text{ cube free } \le X \\ x \text{ cube free } \le X \\ x \text{ cube free } x \text{ cube free } x \\ = \frac{1}{2} \sum_{\substack{m \text{ cube free } \le X \\ x \text{ cube free } x \text{ cube free } x \\ x \text{ cube free } x \text{ cube free } x \\ x \text{ cube free } x \text{ cube free } x \text{ cube free } x \\ x \text{ cube free } x \\ x \text{ cube free } x \text{$$

We also use the following well-known fact:

LEMMA 3.3. The set {m cubefree} has density $\frac{1}{\zeta(3)}$ in the set of positive integers. Now we want to prove

THEOREM 2. The set $\{m \text{ cubefree}, W_m = 1\}$ has density $\frac{1}{2}$ in the set $\{m \text{ cubefree}\}$. PROOF. By (1) in §1, we have

$$\sum_{\substack{m \text{ cubefree } \le X \\ W_m = 1}} 1 = \sum_{\substack{m \text{ cubefree } \le X \\ \tau_2(m) \text{ is even} \\ m \equiv \pm 1, \pm 3 \pmod{9}}} 1 + \sum_{\substack{m \text{ cubefree } \le X \\ \tau_2(m) \text{ is odd} \\ m \equiv 0, \pm 2, \pm 4 \pmod{9}}} 1.$$

For $m \equiv 0 \pmod{9}$, we get

$$\sum_{\substack{m \text{ cubefree } \le X \\ \tau_2(m) \text{ is odd} \\ m \equiv 0 \pmod{9}}} 1 = \sum_{\substack{m \text{ cubefree} \le X/9 \\ \tau_2(m) \text{ is odd} \\ 3 \not / m}} 1 \quad \text{(by Lemma 3.1)}$$
$$= \frac{1}{2} \sum_{\substack{m \text{ cubefree} \le X/9 \\ 3 \not / m}} 1 + O(\sqrt{X} \log X)$$
$$= \sum_{\substack{m \text{ cubefree} \le X \\ \tau_2(m) \text{ is even} \\ m \equiv 0 \pmod{9}}} 1 + O(\sqrt{X} \log X).$$

For $m \equiv \pm 3 \pmod{9}$, similarly we get

$$\sum_{\substack{m \text{ cubefree } \leq X \\ \tau_2(m) \text{ is even} \\ m \equiv \pm 3 \pmod{9}}} 1 = \frac{1}{2} \sum_{\substack{m \text{ cubefree } \leq X \\ m \equiv \pm 3 \pmod{9}}} 1 + O(\sqrt{X} \log X).$$

For (i, 3) = 1, we get

$$\sum_{\substack{m \text{ cubefree } \leq X \\ \tau_2(m) \text{ is even} \\ m \equiv i \pmod{9}}} 1 = \sum_{\substack{m \text{ cubefree } \leq X \\ \tau_2(m) \text{ is even} }} \frac{1}{\phi(9)} \sum_{\chi \pmod{9}} \chi(m) \bar{\chi}(i)$$

$$= \sum_{\chi \pmod{9}} \bar{\chi}(i) \frac{1}{\phi(9)} \sum_{\substack{m \text{ cubefree } \leq X \\ \tau_2(m) \text{ is even} }} \chi(m)$$

$$= \frac{1}{6} \sum_{\chi} \bar{\chi}(i) \sum_{\substack{m \text{ cubefree } \leq X \\ m \text{ cubefree } \leq X }} \chi(m) \left(\frac{1}{2} \left(1 + (-1)^{\tau_2(m)}\right)\right)$$

$$= \frac{1}{12} \sum_{\chi} \bar{\chi}(i) \sum_{\substack{m \text{ cubefree } \leq X \\ m \text{ cubefree } \leq X }} \chi(m) + O(\sqrt{X} \log X) \quad \text{(by Lemma 3.1)}$$

$$= \frac{1}{12} \sum_{\substack{m \text{ cubefree } \leq X \\ m \equiv i \pmod{9}}} \chi(i) \chi(m) + O(\sqrt{X} \log X)$$

Therefore, we get

$$\sum_{\substack{m \text{ cubefree} \le X \\ W_m = 1}} 1 = \frac{1}{2} \sum_{\substack{m \text{ cubefree} \le X \\ m \equiv \pm 1, \pm 3 \pmod{9}}} 1 + \frac{1}{2} \sum_{\substack{m \text{ cubefree} \le X \\ m \equiv 0, \pm 2, \pm 4 \pmod{9}}} 1 + O(\sqrt{X} \log X)$$
$$= \frac{1}{2} \sum_{\substack{m \text{ cubefree} \le X \\ m \text{ cubefree} \le X}} 1 + O(\sqrt{X} \log X).$$

4. Distribution of E_m 's with nontrivial even analaytic rank. We restate the main theorem.

MAIN THEOREM. For X large enough, we have:

{*m* cubefree $\langle X : Analytic rank of E_m is even and \geq 2$ } $\gg X^{2/3-\varepsilon}$.

PROOF. If we choose *m* of the form $m = b(a^2 - (4b)^2)$ then rank $(E_m) \ge 1$. Since E_m is a CM elliptic curve, the analytic rank of E_m is ≥ 1 by Coates and Wiles' theorem [3]. Moreover, if we choose *m* such that the root number $W_m = 1$, then the analytic rank of E_m is even and hence ≥ 2 .

In Theorem 1, we choose

$$m_1 = m_2 = 2, \quad m_3 = 3$$

and

M = 9.

For a given congruence class $(a_0, b_0) \mod 18$, W_m is determined completely by the parity of $\tau_2(m)$. For example, if we choose $(a_0, b_0) \equiv (3, 1) \pmod{18}$ then $m \equiv 2 \pmod{9}$, *i.e.* $W_m = 1$ iff $\tau_2(m)$ is odd. Choose (a_0, b_0) so that $W_m = 1$ if and only if $\tau_2(m)$ is odd. Then

 $\#\{m \text{ cubefree } \leq X : \text{Analytic rank of } E_m \text{ is even and } \geq 2\} \geq |S_2|$

where

$$S_{2} = \{m \leq X : m = b(a^{2} - (4b)^{2}) \text{ for some } a, b \in \mathbb{N}, (a, b) = 1, 0 < b \leq (X/16)^{1/3}, 4b \leq a \leq 4\sqrt{2}b, b, a - 4b \text{ are squarefree, and } a + 4b \text{ is cubefree, } a \equiv a_{0} \pmod{18}, b \equiv b_{0} \pmod{18} \text{ and } \tau_{2}(m) \text{ is odd} \}.$$

Letting (*) be the conditions on (a, b) such that $m = b(a^2 - (4b)^2) \in S_2$, except for the last condition on $\tau_2(m)$, we see that the theorem follows if we can show

$$\sum_{\substack{(a,b) \text{ satisfies } (*) \\ \tau_2(m) \text{ is odd}}} 1 = CX^{2/3} + O(X^{13/21+\varepsilon}).$$

We have

$$\sum_{\substack{(a,b) \text{ satisfies } (*) \\ \tau_2(m) \text{ is odd}}} 1 = \sum_{\substack{(a,b) \text{ satisfies } (*)}} \frac{1}{2} \left(1 - (-1)^{\tau_2(m)} \right)$$
$$= \frac{1}{2} \sum_{\substack{(a,b) \text{ satisfies } (*)}} 1 - \frac{1}{2} \sum_{\substack{(a,b) \text{ satisfies } (*)}} (-1)^{\tau_2(m)}.$$

By Theorem 2 (and our choice of m_1 , m_2 , m_3), the first sum is $CX^{2/3} + O(X^{11/18+\varepsilon})$ where C > 0 and ε is arbitrarily small. Now, for $m \in S_2$, we have:

$$(-1)^{\tau_2(m)} = (-1)^{\tau_2(b)} (-1)^{\tau_2(a-4b)} (-1)^{\tau_2(a+4b)}$$
$$= \left(\frac{b_0}{3}\right) \left(\frac{a_0 - 4b_0}{3}\right) (-1)^{\tau_2(a+4b)}$$

since b and a - 4b are squarefree. For example, if $(a_0, b_0) \equiv (3, 1) \pmod{18}$ then $\left(\frac{b_0}{3}\right)\left(\frac{a_0-4b_0}{3}\right) = -1$.

Therefore, the theorem follows from

LEMMA 4.1.

$$\sum_{\substack{(a,b) \text{ satisfies } (*) \\ \text{for some } m}} (-1)^{\tau_2(a+4b)} = O(X^{13/21+\varepsilon}).$$

PROOF. Denote the sum on the left hand side as S'_2 , we have

$$S'_{2} = \sum_{\substack{0 < b \le (X/16)^{1/3} \\ b \equiv b_{0} \pmod{2M} \\ b \text{ squarefree}}} \sum_{\substack{4b \le a \le 4\sqrt{2}b \\ a \equiv a_{0} \pmod{2M} \\ a - 4b \text{ squarefree} \\ (a,b) = 1}} (-1)^{\tau_{2}(a+4b)}.$$

To simplify the notations, let a' = a - 4b, $a'_0 = a_0 - 4b_0$ and $C = 4\sqrt{2} - 4$. Also note that the condition (a, b) = 1 is equivalent to (a', b) = 1 for our set. We have:

$$S'_{2} = \sum_{\substack{0 < b \le (X/16)^{1/3} \\ b \equiv b_{0} \pmod{2M}}} \sum_{\substack{a' \le Cb \\ a' \equiv a'_{0} \pmod{2M} \\ (a',b)=1 \\ a'+8b \text{ is cubefree}}} (-1)^{\tau_{2}(a'+8b)} \sum_{\substack{d'|b}{2}} \mu(d) \sum_{e^{2}|a'} \mu(e)$$

$$= \sum_{\substack{d \ll X^{1/6} \\ e \ll X^{1/6} \\ (d,2M) = (e,2M) = 1}} \mu(d)\mu(e) \sum_{\substack{0 < b \le (X/16)^{1/3} \\ b \equiv 0 \pmod{2M} \\ b \equiv b_{0} \pmod{2M}}} \sum_{\substack{a' \le Cb \\ a' \equiv a'_{0} \pmod{2M} \\ a' \equiv 0 \pmod{2M} \\ a' \equiv 0 \pmod{2^{2}} \\ a' + 8b \text{ is cubefree} \\ (a',b) \equiv 1}$$

The contribution of terms with $Y < e \ll X^{1/6}$ where Y is a parameter to be chosen later, is

$$\ll \sum_{\substack{d \ll X^{1/6} \\ Y < e \ll X^{1/6} \\ (d,2M) = (e,2M) = 1}} |\mu(d)\mu(e)| \sum_{\substack{0 < b \le (X/16)^{1/3} \\ b \equiv b_0 \pmod{2M} \\ b \equiv 0 \pmod{2M} \\ b \equiv 0 \pmod{d^2}}} \left(O\left(\frac{b}{e^2}\right) \right)$$

$$= \sum_{\substack{d \ll X^{1/6} \\ Y < e \ll X^{1/6} \\ Y < e \ll X^{1/6} \\ \end{array}} |\mu(d)\mu(e)| O\left(\frac{X^{2/3}}{e^2d^2}\right)$$

$$= O\left(\frac{X^{2/3}}{Y}\right).$$

Now, the contribution of terms with $0 < e \le Y$ is

Let us write $na'' + 8b = r^2s$ where r, s are squarefree and (r, s) = 1. Also denote χ_r the principal character modulo r, we see that the above is

$$\sum_{\substack{d \ll X^{1/6} \\ 0 < e \le Y \\ (d,2M) = (e,2M) = 1}} \mu(d)\mu(e) \sum_{\substack{0 < b \le (X/16)^{1/3} \\ b \equiv 0 \pmod{d^2} \\ b \equiv b_0 \pmod{d^2} \\ n \le Cb}} \sum_{\substack{n \le Cb \\ r \text{ squarefree}}} \mu(n) \sum_{\substack{0 \le r \le \sqrt{(C+8)b} \\ r \text{ squarefree}}} \left(\frac{r}{3}\right) \\ \times \sum_{\substack{8b/r^2 \le s \le (C+8)b/r^2 \\ r^2 s \equiv a_0' + 8b \pmod{2M} \\ r^2 s \equiv 8b \pmod{2M} \\ r^2 s \equiv 8b \pmod{2M} \\ r^2 s \equiv 8b \pmod{2} \\ r^2 s \equiv 8b \pmod{2} \\ r^2 s \equiv 8b \pmod{2} \\ n \le c \le Y \\ (d,2M) = (e,2M) = 1 \end{cases} \sum_{\substack{0 \le r \le \sqrt{(C+8)b} \\ b \equiv 0 \pmod{2M} \\ b \equiv 0 \pmod{2M} \\ m \le Cb}} \mu(n) \sum_{\substack{0 \le r \le \sqrt{(C+8)b} \\ r \text{ squarefree}}} \left(\frac{r}{3}\right) \\ \times \sum_{\substack{0 \le s_1 \le \sqrt{(C+8)b}/r} \\ 0 \le s_1 \le \sqrt{(C+8)b}/r} \chi_r(s_1)\mu(s_1) \sum_{\substack{8b/r^2 s_1^2 \le s_2 \le (C+8)b/r^2 s_1^2 \\ r^2 s_1^2 s_2 \equiv 8b \pmod{2} \\ r^2 s_1^2 s_2 \equiv 8b (m d n)$$

Consider the terms with $n \ge Z$, where Z is another parameter to be chosen later. The contribution of such terms is, on noting n|b,

$$\begin{split} \ll & \sum_{d,e} \sum_{b} \sum_{Z \le n} \sum_{r} \sum_{s_1} \left(O\left(\frac{b}{r^2 s_1^2 e^2 n}\right) + O(1) \right) \\ &= \sum_{d,e} \sum_{b} \sum_{Z \le n} \sum_{r} \left(O\left(\frac{b}{r^2 e^2 n}\right) + O\left(\frac{\sqrt{b}}{r}\right) \right) \\ &= \sum_{d,e} \sum_{b} \sum_{Z \le n} \left(O\left(\frac{b}{e^2 n}\right) + O(b^{1/2} \log b) \right) \\ &= \sum_{d,e} \sum_{b} \left(O\left(\frac{b^{1+\varepsilon}}{Z e^2}\right) + O(b^{1/2+\varepsilon}) \right) \\ &= \sum_{d,e} \left(O\left(\frac{X^{2/3+\varepsilon}}{Z d^2 e^2}\right) + O\left(\frac{X^{1/2+\varepsilon}}{d^2}\right) \right) \\ &= O\left(\frac{X^{2/3+\varepsilon}}{Z}\right) + O(X^{1/2+\varepsilon}Y). \end{split}$$

Now we consider the terms with $n \le Z$. Using the Polya-Vinogradov inequality and noting that s_2 is determined by congruences mod e^2n , such terms contribute

$$\ll \sum_{d,e} \sum_{b} \sum_{n \leq Z} \sum_{r} \sum_{s_{1}} O(e^{1+\varepsilon} n^{1/2+\varepsilon})$$

$$= \sum_{d,e} \sum_{b} \sum_{n \leq Z} \sum_{r} O\left(\frac{\sqrt{b}}{r} e^{1+\varepsilon} n^{1/2+\varepsilon}\right)$$

$$= \sum_{d,e} \sum_{b} \sum_{n \leq Z} O(b^{1/2+\varepsilon} e^{1+\varepsilon} n^{1/2+\varepsilon})$$

$$= \sum_{d,e} \sum_{b} O(b^{1/2+\varepsilon} e^{1+\varepsilon} Z^{1/2+\varepsilon})$$

$$= \sum_{d,e} O\left(\frac{X^{1/2+\varepsilon}}{d^{2}} e^{1+\varepsilon} Z^{1/2+\varepsilon}\right)$$

$$= O(X^{1/2+\varepsilon} Y^{2+\varepsilon} Z^{1/2+\varepsilon}).$$

In summary, we get

$$S_2' = O\left(\frac{X^{2/3}}{Y}\right) + O\left(\frac{X^{2/3+\varepsilon}}{Z}\right) + O(X^{1/2+\varepsilon}Y^{2+\varepsilon}Z^{1/2+\varepsilon}).$$

Choosing $Y = X^{1/21}$ and $Z = X^{1/21}$, we have

$$S_2' = O(X^{13/21+\varepsilon}).$$

This concludes the proof of Lemma 4.1 and also the Main Theorem.

REMARK. In the case that m = 3pq, where p, q are primes $\equiv 2 \pmod{3}$, $W_m = 1$. Satgé [8] computed the Selmer groups S_{λ} and $S_{\lambda'}$ (λ is a 3-isogeny and λ' its dual—more concretely, λ is the projection:

$$\lambda: E_m(\mathbb{C}) \longrightarrow \frac{E_m(\mathbb{C})}{\langle (0, \pm 12\sqrt{-3}m) \rangle} \cong E'_m(\mathbb{C})).$$

Indeed, $S_{\lambda} \cong (\mathbb{Z}/3\mathbb{Z})^3$ and $S'_{\lambda} \cong (0)$. By the exact sequences of descent:

$$0 \longrightarrow \frac{E'_m(\mathbb{Q})}{\lambda E_m(\mathbb{Q})} \longrightarrow S_{\lambda} \longrightarrow \mathbf{I}\!\!I[\lambda] \longrightarrow 0$$
$$0 \longrightarrow \frac{E_m(\mathbb{Q})}{\lambda' E'_m(\mathbb{Q})} \longrightarrow S'_{\lambda} \longrightarrow \mathbf{I}\!\!I'[\lambda'] \longrightarrow 0$$

and the fact that:

$$\operatorname{rank}(E_m(\mathbb{Q})) = \dim_{\mathbb{F}_3}\left(\frac{E_m(\mathbb{Q})}{\lambda'(E'_m(\mathbb{Q}))}\right) + \dim_{\mathbb{F}_3}\left(\frac{E'_m(\mathbb{Q})}{\lambda'(E_m(\mathbb{Q}))}\right) - 1$$

we see that if $m = 3pq = b(a^2 - (4b)^2)$ then $1 \le \operatorname{rank}(E_m) \le 2$. Since $W_m = 1$, assuming the Birch and Swinnerton-Dyer conjecture, we get $\operatorname{rank}(E_m) = 2$ and also $\mathbf{II}[\lambda] = 0$ by the above exact sequences. This happens when, say b = 3, a - 4b = q, a + 4b = p.

In other words, we have

COROLLARY. Assuming the Birch and Swinnerton-Dyer conjecture, if p, q are two primes such that p - q = 24, then rank $(E_m) = 2$, for m = 3pq and $\mathbf{II}[\lambda] = 0$.

Note that the number of such pairs of primes (p,q) satisfying $3pq \le X$ is conjectured to be

$$\gg \frac{X^{1/2}}{\log^2 X}$$

ACKNOWLEDGEMENT. The author wishes to thank Profs. Ram Murty and Kumar Murty for their suggestions and discussions during this work. He also thanks the referees for various helpful comments.

REFERENCES

- **1.** B J Birch and N M Stephens, *The parity of the rank of the Mordell-Weil group*, Topology 5(1966), 295–299
- **2.** J S Cassels, The rational solutions of the Diophantine equation $Y^2 = X^3 D$, Acta Math **82**(1950), 243–273
- 3. J Coates and A Wiles, On the conjecture of Birch and Swinnerton-Dyer, Invent Math 39(1977), 223-251
- **4.** F Gouvea and B Mazur, *The squarefree sieve and the rank of elliptic curves*, J Amer Math Soc (1) **4**(1991), 1–23
- 5. K Ireland and I M Rosen, A classical introduction to modern number theory, Springer-Verlag, New York, 1982
- 6. L Mai, The average analytic rank of a family of elliptic curves, J Number Theory, to appear
- 7. K Rubin, *The work of Kolyvagin on the arithmetics of elliptic curves*, Lecture Notes in Mathematics **1399**, New York, Springer-Verlag, 1989
- 8. P Satgé, Groupes de Selmer and corps cubiques, J Number Theory 23(1986), 294-317
- 9. _____, Quelques resultats sur les entiers qui sont sommes des cubes de deux rationels, Soc Math France, Asterisque 147-148(1987), 335-341
- **10.** _____, Un analogue du calcul de Heegner, Invent Math **87**(1987), 425–439
- **11.** E S Selmer, *The Diophantine equation* $AX^3 + BY^3 + CZ^3 = 0$, Acta Math **85**(1951), 203–362
- 12. J Silverman, The arithmetics of elliptic curves, Springer-Verlag, New York, 1986
- **13.** Y Taniyama, *L-functions of number fields and zeta functions of abelian varieties*, J Math Soc Japan **9**(1957), 330–336
- 14. A Weil, Uber die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen, Math Annalen 168 (1967), 149–156
- 15. D Zagier and G Kramarz, Numerical investigations related to the L-series of certain elliptic curves, J Ind Math. Soc. 52(1987), 51–69

Centre de Recherches Mathematiques Université de Montréal CP 6128-A Montreal, Quebec H3C 3J7