# Reducibility in $A_{\mathbb{R}}(K), C_{\mathbb{R}}(K)$, and $A(K)$ 

R. Rupp and A. Sasane


#### Abstract

Let $K$ denote a compact real symmetric subset of $\mathbb{C}$ and let $A_{\mathbb{R}}(K)$ denote the real Banach algebra of all real symmetric continuous functions on $K$ that are analytic in the interior $K^{\circ}$ of $K$, endowed with the supremum norm. We characterize all unimodular pairs $(f, g)$ in $A_{\mathbb{R}}(K)^{2}$ which are reducible. In addition, for an arbitrary compact $K$ in $\mathbb{C}$, we give a new proof (not relying on Banach algebra theory or elementary stable rank techniques) of the fact that the Bass stable rank of $A(K)$ is 1 . Finally, we also characterize all compact real symmetric sets $K$ such that $A_{\mathbb{R}}(K)$, respectively $C_{\mathbb{R}}(K)$, has Bass stable rank 1.


## 1 Introduction

The concept of stable rank of a ring was introduced by H. Bass [2] to study some stabilisation questions in algebraic $K$-theory. We recall this notion below.

Definition 1.1 Let $\mathcal{A}$ be a commutative ring with an identity element, denoted by 1 . Let $n \in \mathbb{N}=\{1,2,3, \ldots\}$. An element $a=\left(a_{1}, \ldots, a_{n}\right) \in \mathcal{A}^{n}$ is called unimodular if there exists a $b=\left(b_{1}, \ldots, b_{n}\right) \in \mathcal{A}^{n}$ such that

$$
\sum_{k=1}^{n} b_{k} a_{k}=1
$$

We denote by $U_{n}(\mathcal{A})$ the set of unimodular elements of $\mathcal{A}^{n}$.
We say that $a=\left(a_{1}, \ldots, a_{n}\right) \in U_{n}(\mathcal{A})$ is reducible (in $\left.\mathcal{A}\right)$, if there exist $h_{1}, \ldots$, $h_{n-1} \in \mathcal{A}$ such that $\left(a_{1}+h_{1} a_{n}, \ldots, a_{n-1}+h_{n-1} a_{n}\right) \in U_{n-1}(\mathcal{A})$.

The Bass stable rank of $\mathcal{A}$, denoted by $\operatorname{bsr} \mathcal{A}$, is the least $n \in \mathbb{N}$ such that every $a \in U_{n+1}(\mathcal{A})$ is reducible, and it is infinite if no such integer $n$ exists.

The Bass stable rank of several complex Banach algebras of analytic functions is well known: for example, if $K$ is compact in $\mathbb{C}$, then the Bass stable rank of $A(K)$ is 1 , where $A(K)$ denotes the set of all continuous functions on $K$ that are analytic in the interior $K^{\circ}$ of $K$; see [5, Theorem 2.3] and [13].

In [17], Brett Wick considered reducibility questions in the real Banach algebra $A_{\mathbb{R}}(\overline{\mathrm{D}})$ consisting of those elements of the disk algebra $A(\overline{\mathrm{D}})$ that have real Fourier coefficients, or equivalently, those elements from the disk algebra that satisfy the symmetry condition $f(z)=\left(f\left(z^{*}\right)\right)^{*}$ for all $z \in \overline{\mathbb{D}}$. (Throughout this article, we use the following notation.)

[^0]Notation 1.2 We use $z^{*}$ to denote the complex conjugate of $z$, and we use $\bar{\Omega}$ to denote the closure of the set $\Omega \subset \mathbb{C}$.

Bass and topological stable ranks of $A_{\mathbb{R}}(\overline{\mathrm{ID}})$ play an important role in control theory in the problem of stabilization of linear systems. We refer the reader to [11, 16] for background on the connection between stable rank and control theory.

In this article, we study the reducibility of corona pairs in some real Banach algebras of real symmetric functions. We define these in Definition 1.4 below.

Definition 1.3 Let $K$ denote a compact subset of $\mathbb{C}$ and let $A(K)$ denote the complex Banach algebra of all continuous functions on $K$ that are analytic in the interior $K^{\circ}$ of $K$, endowed with the supremum norm $\|f\|_{\infty}=\sup _{z \in K}|f(z)|$, whereas $R(K)$ denotes the uniform closure of all rational functions with poles off $K$.

Definition 1.4 If $K$ is real symmetric (that is, $z \in K$ if and only if $z^{*} \in K$ ), we use the symbol $A_{\mathbb{R}}(K)$ (respectively $R_{\mathbb{R}}(K)$ ) to denote the set of functions $f$ belonging to $A(K)$, (respectively $R(K))$ that are real symmetric, that is, $f(z)=\left(f\left(z^{*}\right)\right)^{*}(z \in K)$.

Moreover, $C_{\mathbb{R}}(K)$ denotes the set of complex-valued, bounded, continuous functions $f$ defined on $K$, that satisfy $f(z)=\left(f\left(z^{*}\right)\right)^{*}(z \in K)$.

Let $\mathbb{R}[z]$ denote the set of all polynomial functions with real coefficients, and $\mathbb{R}(z)$ the set of all rational functions, which are ratios of polynomials from $\mathbb{R}[z]$.

## 2 The Bass Stable Rank of $R_{\mathbb{R}}(K)$ Is at Most 2

In this section we prove that if $\mathbb{C} \backslash K$ has only finitely many connected components, then $\operatorname{tsr} A_{\mathbb{R}}(K) \leq 2$ and so $\operatorname{bsr} A_{\mathbb{R}}(K) \leq 2$. We will do this by first computing the topological stable rank (defined below) and using the known fact that the Bass stable rank is bounded above by the topological stable rank (Proposition 2.2).

Definition 2.1 [12] Let $\mathcal{A}$ denote a commutative unital Banach algebra. The topological stable rank of $\mathcal{A}$, denoted by $\operatorname{tsr} \mathcal{A}$, is the minimum $n \in \mathbb{N}$ such that $U_{n}(\mathcal{A})$ is dense in $\mathcal{A}^{n}$, and is infinite if no such integer exists.

We recall the following result [4, Theorem 3, p. 293].
Proposition 2.2 Let $\mathcal{A}$ be a commutative unital real (or complex) Banach algebra. If $U_{n}(\mathcal{A})$ is a dense subset of $\mathcal{A}^{n}$, then $\operatorname{bsr} \mathcal{A} \leq n$.

We will use the following fact several times in some of our proofs.
Lemma 2.3 Let $\mathcal{A}$ be a ring such that $\mathbb{R}[z] \subset \mathcal{A} \subset A_{\mathbb{R}}(K)$. If the Bass stable rank of $\mathcal{A}$ is 1 , then $K \cap \mathbb{R}$ is totally disconnected.

Proof If $K \cap \mathbb{R}$ is not totally disconnected, then there exists a closed connected subset $L$ of $K \cap \mathbb{R}$ which is not a singleton, so two different real numbers $a, b$ belong to $L \subset \mathbb{R}$. But then the interval $[a, b]$ is contained in $L$. (If not, we have $c \in \mathbb{R} \backslash L$ such that $a<c<b$. Since $L$ is closed, it follows that for a sufficiently small $r$, we have that $(c-r, c+r) \subset \mathbb{R} \backslash L$, and so $L$ splits into the disjoint closed union $L=$
$([a, c-r] \cap L) \cup([c+r, b] \cap L)$.) But then the unimodular pair $\left(z-\frac{a+b}{2},(z-a)(z-b)\right)$ is not reducible by the intermediate value theorem for real continuous functions on the interval $[a, b]$, a contradiction. Hence $K \cap \mathbb{R}$ is totally disconnected.

Theorem 2.4 Let $K$ be a real symmetric subset of $(\mathbb{C}$.
(i) The topological stable rank of $R_{\mathbb{R}}(K)$ is at most 2.
(ii) The topological stable rank of $R_{\mathbb{R}}(K)$ is equal to 1 if and only if $K^{\circ}=\varnothing$ and $K \cap \mathbb{R}$ is totally disconnected.

Proof We will show that $U_{2}\left(R_{\mathbb{R}}(K)\right)$ is dense in $R_{\mathbb{R}}(K)^{2}$. Take $(f, g) \in R_{\mathbb{R}}(K)^{2}$ and approximate $f, g$ by real symmetric rational functions $r, s$, respectively. Since $r \in$ $\mathbb{R}(z)$, we have the following representation for $r$ :

$$
r(z)=\frac{C \prod\left(z-r_{j}\right) \prod\left(z-w_{j}\right)\left(z-w_{j}^{*}\right)}{q}
$$

where $C$, $r_{j}$ are real numbers, $q \in \mathbb{R}[z]$ has no zeros in $K$, and $w_{j}$ denote the nonreal zeros of $r$. If $r$ and $s$ have a common root in $K$, then we replace $r_{j}, w_{j}, w_{j}^{*}$ by $r_{j}+\epsilon, w_{j}+\epsilon, w_{j}^{*}+\epsilon$ with a sufficiently small real $\epsilon$ so that the new real symmetric rational function $\widetilde{r}$ has no common root with $s$ in $K$. Thus $(\widetilde{r}, s) \in U_{2}\left(R_{\mathbb{R}}(K)\right)$ is near $(f, g)$. So $\operatorname{tsr} R_{\mathbb{R}}(K) \leq 2$.

Suppose that $K^{\circ}=\varnothing$ and $K \cap \mathbb{R}$ is totally disconnected. We must show that $U_{1}\left(R_{\mathbb{R}}(K)\right)$ is dense in $R_{\mathbb{R}}(K)$. Let $f \in R_{\mathbb{R}}(K)$. Given $\epsilon>0$, by the definition of $R_{\mathbb{R}}(K)$ we can find a real symmetric rational function $r$ with poles off $K$ such that $\|f-r\|_{\infty}<\epsilon / 2$. Since $r \in \mathbb{R}(z)$ has poles off $K$, it again has the following representation:

$$
r(z)=\frac{C \prod\left(z-r_{j}\right) \prod\left(z-w_{j}\right)\left(z-w_{j}^{*}\right)}{q}
$$

where $C, r_{j}$ are real numbers, $q \in \mathbb{R}[z]$ has no zeros in $K$, and $w_{j}$ denote the non-real zeros of $r$. If $r$ has any zeros in $K$, then, since $K \cap \mathbb{R}$ is totally disconnected, we can replace $r_{j}$ by $r_{j}+\delta$ with sufficiently small $\delta>0$, such that $r_{j}+\delta \in \mathbb{R} \backslash K$. Since $K^{\circ}$ is void, we can replace all non-real zeros $w_{j}, w_{j}^{*}$ by $w_{j}+\rho, w_{j}^{*}+\rho^{*}$, where $|\rho|$ is small such that the new real symmetric rational function $\widetilde{r}$ has no zeros in $K$ and moreover $\|r-\widetilde{r}\|_{\infty}<\epsilon / 2$. Since $\widetilde{r} \in \mathbb{R}(z)$ has zeros and poles off $K$, it is invertible in $R_{\mathbb{R}}(K)$, and we also have $\|f-\widetilde{r}\|_{\infty}<\epsilon$.

Suppose now that the topological stable rank of $R_{\mathbb{R}}(K)$ is 1 , that is, $U_{1}\left(R_{\mathbb{R}}(K)\right)$. is dense in $R_{\mathbb{R}}(K)$. Then by Proposition 2.2 it follows that the Bass stable rank of $R_{\mathbb{R}}(K)=1$ as well. By Lemma $2.3, K \cap \mathbb{R}$ is totally disconnected.

If $K^{\circ}$ is not empty we show that $U_{1}\left(R_{\mathbb{R}}(K)\right)$ is not dense in $R_{\mathbb{R}}(K)$, a contradiction. Note that $U_{1}\left(R_{\mathbb{R}}(K)\right)$ is the set of units in $R_{\mathbb{R}}(K)$, and $f$ is invertible as an element in $R_{\mathbb{R}}(K)$ only if it has no zero in $K$. Now consider $z_{0}$ in the interior $K^{\circ}$ of $K$, and let the open disk $D\left(z_{0}, r\right)$ be contained in $K^{\circ}$. But by Hurwitz's theorem, the uniform limit of a sequence of nowhere-vanishing analytic functions on a connected open set $U$ is either identically zero or has no zeros in $U$; see [1, Theorem 2 , p. 178]. So taking any function in $R_{\mathbb{R}}(K)$ with finitely many zeros in $D\left(z_{0}, r\right)$, say $\left(z-z_{0}\right)\left(z-z_{0}^{*}\right)$, we see that it cannot be the uniform limit of a sequence in $U_{1}\left(R_{\mathbb{R}}(K)\right)$. So tsr $R_{\mathbb{R}}(K)>1$.

In light of Theorem 2.4, Proposition 2.2 yields the following.
Corollary 2.5 Let $K$ denote a real symmetric compact subset of $(\mathbb{C}$. The Bass stable rank of $R_{\mathbb{R}}(K)$ is at most 2 .

Of course, it is natural to ask for conditions for Bass stable rank to be 1 .
Lemma 2.6 Let $K$ denote a real symmetric compact subset of $\mathbb{C}$ such that $K \cap \mathbb{R}$ is totally disconnected. Then the set of elements $u \cdot r$, where $u \in R_{\mathbb{R}}(K)^{-1}$ and the real symmetric rational function $r \in R_{\mathbb{R}}(K)$ has only non-real zeros, is dense in $R_{\mathbb{R}}(K)$.

Proof Let $f \in R_{\mathbb{R}}(K)$. Given $\epsilon>0$, by the definition of $R_{\mathbb{R}}(K)$ we can find a real symmetric rational function $r$ with poles off $K$ such that $\|f-r\|_{\infty}<\epsilon / 2$. Since $r \in \mathbb{R}(z)$ has poles off $K$, it again has the following representation:

$$
r(z)=\frac{C \prod\left(z-r_{j}\right) \prod\left(z-w_{j}\right)\left(z-w_{j}^{*}\right)}{q}
$$

where $C, r_{j}$ are real numbers, $q \in \mathbb{R}[z]$ has no zeros in $K$, and $w_{j}$ denote the non-real zeros of $r$. If $r$ has any zeros in $K$, then since $K \cap \mathbb{R}$ is totally disconnected, we can replace $r_{j}$ by $r_{j}+\delta$ with sufficiently small $\delta>0$, such that $r_{j}+\delta \in \mathbb{R} \backslash K$. The new real symmetric rational function $\widetilde{r}$ has only non-real zeros in $K$ and has the form $u \cdot r$ from the assertion. Moreover $\|r-\widetilde{r}\|_{\infty}<\epsilon / 2$. Hence we conclude $\|f-\widetilde{r}\|_{\infty}<\epsilon$.

Theorem 2.7 Let $K$ denote a real symmetric compact subset of $(\mathbb{C}$. The Bass stable rank of $R_{\mathbb{R}}(K)$ is 1 if and only if $K \cap \mathbb{R}$ is totally disconnected.

Proof If the Bass stable rank of $R_{\mathbb{R}}(K)$ ) is equal to 1 , then by Lemma $2.3, K \cap \mathbb{R}$ is totally disconnected. Assuming that $K \cap \mathbb{R}$ is totally disconnected we must show that every unimodular pair $(f, g)$ is reducible. For unimodular $(f, g) \in U_{2}\left(R_{\mathbb{R}}(K)\right)$ there exist $\alpha, \beta \in R_{\mathbb{R}}(K)$ such that $\alpha(z) f(z)+\beta(z) g(z)=1,(z \in K)$. We now approximate $\alpha$ by functions of the form $u \cdot r$, where $u \in R_{\mathbb{R}}(K)^{-1}$ and $r$ has only non-real zeros; see Lemma 2.6 To be precise $\|u \cdot r-\alpha\|_{\infty} \cdot\|f\|_{\infty}<1 / 2$. This gives

$$
|u(z) r(z) f(z)+\beta(z) g(z)|=|1+(u(z) r(z)-\alpha(z)) f(z)| \geq 1-1 / 2=1 / 2
$$

for all $z \in K$. Hence $u \cdot r \cdot f+\beta \cdot g=: U \in R_{\mathbb{R}}(K)^{-1}$.
Claim: $\quad(u r, g)$ is reducible, that is, there exists $h \in R_{\mathbb{R}}(K)$ such that $u r+h g \in$ $R_{R}(K)^{-1}$.

To this end we look at the product representation

$$
r(z)=\frac{C \prod\left(z-w_{j}\right)\left(z-w_{j}^{*}\right)}{q}
$$

where $C$, $r_{j}$ are real numbers, $q \in \mathbb{R}[z]$ has no zeros in $K$, and $w_{j}$ denote the nonreal zeros of $r$. It is enough to show that $\left(\prod\left(z-w_{j}\right)\left(z-w_{j}^{*}\right), g\right)$ is reducible. For the moment we will work with the complex Banach algebra $R(K)$. The Bass stable rank of
$R(K)$ is 1 (see [6, Theorem 3.1]). Fix a non-real zero $w$ of $r$. Then the unimodular pair $((z-w), g)$ is reducible in $R(K)$, i.e., there exists a $k \in R(K)$ such that $z-w+k(z) g(z)$ is invertible in $R(K)$. By symmetrization we conclude that $z-w^{*}+k\left(z^{*}\right)^{*} g(z)$ is also invertible in $R(K)$. Multiplying both results shows that

$$
\nu_{w}:=(z-w)\left(z-w^{*}\right)+(\underbrace{k(z)\left(z-w^{*}\right)+k\left(z^{*}\right)^{*}(z-w)+k(z) k\left(z^{*}\right)^{*} g(z)}_{=: k_{w}(z)}) g(z)
$$

is invertible in $R(K)$. But $\nu_{w}, k_{w}$ are real symmetric and consequently, by taking the product of the $\nu_{w}$ corresponding to each non-real zero $w$, we see that $(u r, g)$ is reducible in $R_{\mathbb{R}}(K)$. Starting from $u r+h g=v \in R_{\mathbb{R}}(K)^{-1}$ we conclude $u r f+h f g=v f$. Recalling now that $u r f+\beta g=U \in R_{\mathbb{R}}(K)^{-1}$ gives us $v f+(\beta-h f) g=U \in R_{\mathbb{R}}(K)^{-1}$. This shows that $(f, g)$ is reducible.

Now we make the assumption that $\mathbb{C} \backslash K$ has only finitely many connected components. Then the real symmetric rational functions with poles off $K$ are dense in $A_{\mathbb{R}}(K)$ (and so $A_{\mathbb{R}}(K)=R_{\mathbb{R}}(K)$ ). Indeed, given $f \in A_{\mathbb{R}}(K)$ and $\epsilon>0$, Mergelyan's theorem gives the existence of a rational function $\widetilde{r}$ with poles off $K$ such that

$$
\|f-\widetilde{r}\|_{\infty}<\epsilon / 2
$$

The desired real symmetric rational function $r$ can now be obtained simply by symmetrization:

$$
r(z):=\frac{\widetilde{r}(z)+\left(\widetilde{r}\left(z^{*}\right)\right)^{*}}{2} \quad(z \in K)
$$

Then $r$ has poles off $K$ and $\|f-r\|_{\infty}<\epsilon$.
Corollary 2.8 Let $K$ denote a real symmetric compact subset of $\mathbb{C}$ such that $\mathbb{C} \backslash K$ has only finitely many connected components. Then Bass stable rank and topological stable rank of $A_{\mathbb{R}}(K)$ is at most 2 .

## 3 Preliminaries

### 3.1 Lemmas on Zero and Level Sets.

In this subsection, we collect some technical lemmas on zero sets and level sets.
Definition 3.1 For $g \in A(K)$ the zero set $Z_{g}$ of $g$ is $Z_{g}:=\{z \in K \mid g(z)=0\}$, and for $\delta>0$ the level set $Z_{g}(\delta)$ of $g$ is $Z_{g}(\delta):=\{z \in K| | g(z) \mid \leq \delta\}$. Of course, the inclusion $Z_{g} \subset Z_{g}(\delta)$ holds.

The following property of level sets and zero sets will play an important role in the sequel.

Lemma 3.2 Let $K$ denote a compact subset of $\mathbb{C}$. For every function $g \in A(K)$ and every $\delta>0$ the following holds.
(i) Every component of $\mathbb{C} \backslash Z_{g}(\delta)$ contains a component of $\mathbb{C} \backslash K$.
(ii) Every component of $\mathbb{C} \backslash Z_{g}$ contains a component of $\mathbb{C} \backslash K$.

These assertions also hold if $K^{\circ}=\varnothing$.
Proof Obviously, there is only one unbounded component $G_{\infty}$ of the complement, because $Z_{g}(\delta)$ (respectively $Z_{g}$ ) is compact. But then the unbounded component of C $\backslash K$ belongs to $G_{\infty}$.
(ii) Let $G$ denote a bounded component of $\mathbb{C} \backslash Z_{g}(\delta)$.

Claim: If there exists a bounded component $G$ of the complement $\mathbb{C} \backslash Z_{g}(\delta)$, then we must have $G \cap(\mathbb{C} \backslash K) \neq \varnothing$.

Assuming the contrary, there exists a bounded component of $\mathbb{C} \backslash Z_{g}(\delta)$ such that $G \subset K$. If $K^{\circ}=\varnothing$, then no such open $G$ exists, so we are done. If $K^{\circ} \neq \varnothing$, then we proceed as follows. Being in the complement of the level set, we must have $|g(z)| \geq \delta$ for all $z \in \partial G \subset K$. On the other hand, $|g(z)| \leq \delta$ for all $z \in \partial G \subset K$, because

$$
\partial G \subset \partial\left(\mathbb{C} \backslash Z_{g}(\delta)\right)=\partial Z_{g}(\delta) \subset Z_{g}(\delta)
$$

This gives $|g(z)|=\delta$ for all $z \in \partial G$. The maximum modulus theorem now shows that in fact we must have $G \subset Z_{g}(\delta)$, a contradiction. Hence no such bounded component of the complement of $Z_{g}(\delta)$ can exist. Thus $G$ must intersect a component $C$ of $\mathbb{C} \backslash K$. By connectedness we now conclude $C \subset G$, proving the assertion.
(iii) The proof for $\mathbb{C} \backslash Z_{g}$ is entirely similar.

In order to facilitate handling zero sets, we prove the following result, in which we enclose the zero set by finitely many closed sets.

Lemma 3.3 Let $K$ denote a real symmetric compact subset of $\mathbb{C}$, and let $U$ denote an open real symmetric neighborhood of $K$ in $\mathbb{C}$. If $g \in A_{\mathbb{R}}(K)$, then for all $\delta>0$, there exist finitely many closed sets $H_{1}, \ldots, H_{N} \subset U$ lying symmetrically with respect to the real axis, that is, $H_{j}=H_{k}^{*}$ for certain $j, k$, with the following properties:
(i) $Z_{g} \subset \bigcup_{j=1}^{N} H_{j}$ and $\left(\bigcup_{j=1}^{N} H_{j}\right) \cap K \subset Z_{g}(\delta)$.
(ii) $H_{j} \cap H_{k}=\varnothing(j \neq k)$.
(iii) (a) If no real zero of $g$ belongs to $H_{j}$, then $H_{j} \cap K \cap \mathbb{R}=\varnothing, H_{j} \cap K$ belongs entirely to the upper (respectively lower) half-plane and $H_{j} \cap K=H_{k}^{*} \cap K$ for some $j \neq k$.
(b) If at least one real zero belongs to $H_{j}$ (that is, $x_{0} \in Z_{g} \cap H_{j} \cap \mathbb{R}$ ), then $H_{j}=H_{j}^{*}$ holds and $H_{j}$ is connected.
(iv) If the zero $z_{0}$ belongs to $H_{j}$, then there exists a disc $D$ with center $z_{0}$ such that $D \cap K \subset H_{j}$.
Before we prove this lemma, we make the following observations.
Remarks 3.4 1. A construction of the covering sets in $K$ is possible if the components of the (relatively) open sets $H:=\{z \in K| | g(z) \mid<\delta\}$ are open. This is the case if $H$ is locally connected, for example if $K$ is bounded by finitely many pairwise disjoint Jordan curves.
2. A similar result is true in case $g \in A(K)$, where $K$ is compact but not necessarily real symmetric. The corresponding covering of the zero set intersected with $K$ belongs to $Z_{g}(\delta)$ and consists of pairwise disjoint, connected sets. Assertions (ii), (iii), and (iv) remain true.

Proof We extend the real symmetric continuous function $g$ from $K$ likewise to the closure $\bar{U}$, the extension being denoted by $g_{0}$. The zero set $Z_{g} \subset K$ is compact, and so finitely many components $K_{j}, j=1, \ldots, M$, of the open set

$$
H:=\left\{z \in U| | g_{0}(z) \mid<\delta\right\}
$$

will suffice to cover $Z_{g}$. Since $H$ is symmetric with respect to the real axis, its components are symmetric as well. Unfortunately, the closures $\overline{K_{j}}$ need not be disjoint. However, we may take the closed connected components of $\bigcup_{j=1}^{N} \overline{K_{j}}$, and there are at most $M$ such components. These components are symmetric as well.

To ensure all four assertions we must eventually truncate the closed sets $\overline{K_{j}}$.
(i) If no real zero of $g$ belongs to the set $\overline{K_{j}}$, then $|g(z)| \geq \rho_{j}>0$ for all $z \in$ $\left(\overline{K_{j}} \cap K \cap \mathbb{R}\right) \times\left(|\operatorname{Im}(z)| \leq \delta_{j}\right)$ for a sufficiently small $\delta_{j}>0$. Hence no zero of $g$ belongs to $z \in\left(\overline{K_{j}} \cap K \cap \mathbb{R}\right) \times\left(|\operatorname{Im}(z)| \leq \delta_{j}\right)$. We truncate as follows: $H_{j}:=$ $\overline{K_{j}} \cap K \cap\left(\operatorname{Im}(z) \geq \delta_{j}\right)$ (and a corresponding reflected set $H_{j}^{*}$ in the lower halfplane). The closed set $\overline{K_{j}} \cap K$ splits in two closed sets belonging entirely to the upper (respectively lower) half-plane.
(ii) If at least one real zero of $g$ belongs to $\overline{K_{j}}$, then we do not truncate, that is, $H_{j}:=\overline{K_{j}}$. By symmetry we have $H_{j}=H_{j}^{*}$ and $H_{j}=\overline{K_{j}}$ is connected, because $K_{j}$ is. All the zeros of $g$ belong to exactly one closed set $K_{j}, j=1, \ldots, N$, by construction.

To prove the last assertion, take a small disc $D$ with center $z_{0} \in Z_{g} \cap H_{j}$ such that $D \subset\left\{|\operatorname{Im}(z)| \geq \delta_{j}\right\}$ in case (i) above and $|g(z)|<\delta$ holds for all $z \in D \cap K$. By the construction, $D \cap K \subset \bigcup_{j=1}^{N} H_{j}$. Because the sets $H_{j}$ are compact and pairwise disjoint, they have a positive distance from each other. So choosing the radius of the disc $D$ small enough gives $D \cap K \subset H_{j}$.

### 3.2 Factorization Theorem for Units

We begin with the following definition of sign-functions, and prove Theorem 3.6 on units, which will be needed later.

Definition 3.5 A sign-function $\chi \in A_{\mathbb{R}}(K)$ is a function satisfying $\chi^{2}=1$ on $K$. (Note that $K$ may be disconnected.)

Theorem 3.6 (Units) Let $K$ denote a real symmetric compact subset of $\mathbb{C}$ and let $\mathcal{A}$ denote one of the algebras $A_{\mathbb{R}}(K), C_{\mathbb{R}}(K)$. For any unit $u \in \mathcal{A}^{-1}$ we have two factorizations:
(F1) $u=p \cdot \exp (H)$, where $p$ denotes a real symmetric invertible rational function $p \in \mathcal{A}^{-1}$ and a function $H \in C(K)$.
(F2) $u=p \cdot \chi \cdot \exp (h)$, where $p$ denotes a real symmetric invertible rational function $p \in \mathcal{A}^{-1}, \chi \in \mathcal{A}$ is a sign-function, and $h$ is a real symmetric function in $\mathcal{A}$.
The rational function $p$ in (F1) is the same as that in (F2).
Proof First of all we prove the theorem in case $\mathcal{A}=C_{\mathbb{R}}(K)$.
(F1): We prove the existence of a real symmetric rational function $p$ with poles off $K$ and $H \in C(K)$ such that $u=p \cdot \exp (H)$.

Without symmetry this would be the assertion of [3, Theorem 4.29]. The need for symmetry causes some difficulty in the proof in [3], and so we include it in modified form. By means of an affine transformation, preserving symmetry, we may assume that

$$
K \subset(0,1) \times(-1,1)=: Q
$$

Tietze's Theorem gives a continuous extension $f_{0}: Q \rightarrow \mathbb{C}$ of $u$ from $K$ to $Q$. It can be chosen to be real symmetric. Let $L:=f_{0}^{-1}(\{0\})$. This is a closed subset of $Q$ disjoint from $K$, so by compactness there exists an $r \geq 0$ such that $|z-w| \geq r(z \in K, w \in L)$. Let $m$ be a positive integer such that $m>\sqrt{2} / r$ and consider the squares

$$
Q_{j, k}:=\left[\frac{j-1}{m}, \frac{j}{m}\right] \times\left[\frac{k-1}{m}, \frac{k}{m}\right] \text { with center } p_{j, k}:=\frac{j-1 / 2}{m}+i \frac{k-1 / 2}{m}
$$

for all $j, k \in\{1, \ldots, m\}$, and their reflections

$$
Q_{j, k}:=\left[\frac{j-1}{m}, \frac{j}{m}\right] \times\left[\frac{k+1}{m}, \frac{k}{m}\right] \text { with center } p_{j, k}:=\frac{j-1 / 2}{m}+i \frac{k+1 / 2}{m}
$$

for all $k=-m, \ldots,-1$ and $j=1, \ldots, m$.
As will be seen, the two symmetrically situated squares $Q_{j,-1}$ and $Q_{j, 1}$ play a different role. Hence we define the rectangles $R_{j}:=Q_{j,-1} \cup Q_{j, 1}$ with center $p_{j}:=\frac{j-1 / 2}{m}$, $j=1, \ldots, m$. We define

$$
\begin{aligned}
\mathcal{K} & :=\left\{(j, k)\left|1 \leq j,|k| \leq m \text { and } Q_{j, k} \cap K \neq \varnothing\right\}\right. \\
\mathcal{K}_{\varnothing} & :=\left\{(j, k)\left|1 \leq j,|k| \leq m \text { and } Q_{j, k} \cap K=\varnothing\right\} .\right.
\end{aligned}
$$

By symmetry we have either the case that both $(j,-1)$ and $(j, 1)$ belong to $\mathcal{K}$, or the case that both $(j,-1)$ and $(j, 1)$ belong to $\mathcal{K}_{\varnothing}$, hence we have

$$
R_{j} \subset \bigcup_{(j, k) \in \mathcal{K}} Q_{j, k} \quad \text { or } \quad R_{j} \subset \bigcup_{(j, k) \in \mathcal{K}_{\varnothing}} Q_{j, k}, \quad(j=1, \ldots m)
$$

We have that $K \subset K_{1}$, where $K_{1}$ is the closed set defined by $K_{1}:=\bigcup_{(j, k) \in \mathcal{K}} Q_{j, k}$, and from the choice of $m$ and $r$ it also follows that $K_{1} \subset Q \backslash L$. Note that either $R_{j} \subset K_{1}$ or $R_{j} \cap K_{1}=\varnothing$ holds for $j=1, \ldots, m$. Let $f_{1}$ be the restriction of $f_{0}$ to $K_{1}$. Since $K_{1}$ is a union of squares $Q_{j, k}$, each interval $\left\{\frac{j}{m}\right\} \times\left[\frac{k-1}{m}, \frac{k}{m}\right]$ and each interval $\left[\frac{j-1}{m}, \frac{k}{m}\right] \times\left\{\frac{k}{m}\right\}, k=1, \ldots, m$, either lies wholly in $K_{1}$ or meets $K_{1}$ only at endpoints or does not meet $K_{1}$ at all. By symmetry this is also true for the reflected squares in the lower half-plane. At each endpoint where $f_{1}$ is not already defined, give it the value 1. Then for any interval $I=[a, b]$ of the above kind that does not lie wholly in $K_{1}$, $f_{1}(a), f_{1}(b)$ are non-zero complex numbers and $f_{1}$ is not defined in $(a, b)$. Extending the continuous function with values $\log f_{1}(a), \log f_{1}(b)$ from the compact set $\{a, b\}$ to $[a, b]$ gives a function which, when exponentiated, gives a continuous extension of $f_{1}$ to a map of $I$ into $\mathbb{C} \backslash\{0\}$.

In order to preserve symmetry we now proceed in a different manner than in [3]: by symmetry we have a real symmetric, continuous, zero-free extension $f_{2}$ of $f_{1}$ to the closed set

$$
K_{2}:=K_{1} \cup\left(\bigcup_{j=1}^{m} \bigcup_{2 \leq|k| \leq m} \partial Q_{j, k}\right)
$$

of the rectangle $Q$. The same is true for the boundaries of the rectangles $R_{j}, j=$ $1, \ldots, m$. Note that the values on the boundary $\partial R_{j}$ are already defined by the values in $K_{2}$. We arrive at a symmetric, continuous, zero-free extension $f_{3}$ of $f_{2}$ to the closed set

$$
K_{3}:=K_{2} \cup\left(\bigcup_{j=1}^{m} \partial R_{j}\right)
$$

of the rectangle $Q$. The definitions of $\mathcal{K}_{\varnothing}$ and $K_{1}$ then show that

$$
\begin{aligned}
K_{3} \cap Q_{j, k} & =\partial Q_{j, k} \quad \text { for }(j, k) \in \mathcal{K}_{\varnothing} \text { and }|k| \geq 2 \\
K_{3} \cap R_{j} & =\partial R_{j} \quad \text { for }(j,-1) \text { and }(j, 1) \in \mathcal{K}_{\varnothing}
\end{aligned}
$$

For each such $(j, k)$ there exists an integer $n_{j, k}$ such that $\left(z-p_{j, k}\right)^{n_{j, k}} f_{3}(z)$ (respectively, $\left.\left(z-p_{j}\right)^{n_{j}} f_{3}(z)\right)$ has a zero-free, continuous extension $F_{j, k}$ to $Q_{j, k}$ (respectively, $R_{j}$ ); see [3, Theorems 4.23, 4.24]. Note that we can use reflection to obtain $p_{n,-k}=p_{n, k}^{*}$ and $n_{j,-k}=n_{j, k}$. Hence we can consistently define $F_{0}$ on the rectangle $Q$ by

$$
F_{0}(z):=f_{3}(z) \prod_{\substack{(j, k) \in \mathcal{K}_{\varnothing} \\|k| \geq 2}}\left(z-p_{j k}\right)^{n_{j, k}} \prod_{(j, \pm 1) \in \mathcal{K}_{\varnothing}}\left(z-p_{j}\right)^{n_{j}}
$$

for $z \in K_{3}$, and

$$
F_{0}(z):=F_{j^{\prime}, k^{\prime}}(z) \prod_{\substack{(j, k) \in \mathcal{K}_{\varnothing} \backslash\left(j^{\prime} k^{\prime}\right) \\|k| \geq 2}}\left(z-p_{j k}\right)^{n_{j, k}} \prod_{\substack{(j, \pm 1) \in \mathcal{K}_{\varnothing} \\ j \neq j^{\prime}}}\left(z-p_{j}\right)^{n_{j}}
$$

for all $z \in Q_{j^{\prime}, k^{\prime}}$ with $\left(j^{\prime} k^{\prime}\right) \in \mathcal{K}_{\varnothing}$ and all $z \in R_{j^{\prime}},\left(j^{\prime}, \pm 1\right) \in \mathcal{K}_{\varnothing}$. This function is continuous and zero-free on $Q$, and so it has a continuous logarithm there. The restriction to $K$ gives the desired symmetric product form. This completes the proof of (F1).
(F2): Because the units $u$ and $p$ are real symmetric, we derive

$$
\exp (H(z))=\exp \left(\left(H\left(z^{*}\right)\right)^{*}\right) \quad(z \in K)
$$

Hence for all $z \in K$, there exists an integer $k=k(z)$ such that $H(z)-\left(H\left(z^{*}\right)\right)^{*}=$ $2 k \pi i$, and so

$$
\frac{H(z)+\left(H\left(z^{*}\right)\right)^{*}}{2}=\left(H\left(z^{*}\right)\right)^{*}+k \pi i
$$

But the difference in the first identity is a bounded continuous function on $K$, and so only finitely many integers $k_{j}, j=1, \ldots, m$ can occur. Thus $K$ splits in disjoint compact sets $K_{j}, j=1, \ldots, m$, and the sign-function $\chi$ is given by

$$
\chi(z):=\exp \left(-k_{j} \pi i\right) \quad\left(z \in K_{j}, j=1, \ldots, m\right) .
$$

Defining $h \in C_{\mathbb{R}}(K)$ by

$$
h(z)=\frac{H(z)+\left(H\left(z^{*}\right)\right)^{*}}{2} \quad(z \in K)
$$

we conclude that

$$
\exp (H(z))=\exp \left(\left(H\left(z^{*}\right)\right)^{*}\right)=\exp (h(z)) \cdot \chi(z) \quad(z \in K)
$$

hence $u=p \cdot \exp (H)=p \cdot \chi \cdot \exp (h)$. Note that as $u, p, h$ are real symmetric, $\chi$ is real symmetric as well.

The remaining case $\mathcal{A}=A_{\mathbb{R}}(K)$ now follows from the first case as follows. By the holomorphic inverse function theorem applied to $z \mapsto \exp (z)$, we see that it has a local holomorphic inverse around each point $z_{0}$, say $g_{z_{0}}$. Thus $z \mapsto h(z)=$ $g_{z_{0}}\left(u(z) \chi(z)(p(z))^{-1}\right)$ is holomorphic near $z_{0}$ as well.

### 3.3 Lemma on Relocation of Poles

In Sections [5] and 6e will often use the following useful fact.
Lemma 3.7 Let $K, L$ denote compact sets in $\mathbb{C}$ with $L \subset K$ and every component of $\mathbb{C} \backslash L$ contains a component of $\mathbb{C} \backslash K$. Suppose that $f \in C(K)$ is such that

$$
f(z)=p(z) \exp (k(z)) \quad(z \in L)
$$

where $k \in C(L)$ and $p$ is a rational function with poles and zeros off $L$.
(i) There exists a rational function $\widetilde{p}$ and a $\widetilde{k} \in C(L)$ such that

$$
f(z)=\widetilde{p}(z) \exp (\widetilde{k}(z)) \quad(z \in L)
$$

and $\widetilde{p}$ has its poles and zeros off $K$.
(ii) If $K, L, p$, $k$ are in addition real symmetric, then we can ensure that the $\widetilde{p}, \widetilde{k}$ constructed in (i) above are real symmetric as well.

In other words, we can shift the poles and zeros of $p$ from $\mathbb{C} \backslash L$ to $\mathbb{C} \backslash K$. In our applications later, typically $L=Z_{g}$, where $g \in A(K)$.
Proof Let $a$ denote a pole or zero of $p$ belonging to the component $G$ of $\mathbb{C} \backslash L$. By assumption every component of $\mathbb{C} \backslash L$ contains a component of $\mathbb{C} \backslash K$, and so there is a common point $b \in G \cap(\mathbb{C} \backslash K)$. Because $L$ does not separate $a$ and $b$ (that is, they lie in the same connected component $G$ of the complement of $L$ ), it follows from Eilenberg's theorem [3, Exercise 4.36] that there exists a logarithm $l \in C(L)$ such that

$$
\frac{z-a}{z-b}=\exp (l(z)) \quad(z \in L)
$$

Thus the claim in (i) follows.

If in addition $K, L, p$ are real symmetric, then in the above we have

$$
\frac{z-a^{*}}{z-b^{*}}=\exp \left(\left(l\left(z^{*}\right)\right)^{*}\right) \quad\left(z \in L^{*}=L\right)
$$

Consequently,

$$
\frac{z-a}{z-b} \cdot \frac{z-a^{*}}{z-b^{*}}=\exp \left(l(z)+\left(l\left(z^{*}\right)\right)^{*}\right)
$$

for all $z \in L$.

## 4 Reducibility in Real Symmetric Subalgebras of $A_{\mathbb{R}}(K)$

In this section, we will prove our main result in Theorem4.1
Theorem 4.1 Let $K$ denote a real symmetric compact subset of $\mathbb{C}$. The following assertions are equivalent for any unimodular pair $(f, g) \in A_{\mathbb{R}}(K)^{2}$ :
(i) There exists a sign-function $\chi \in A_{\mathbb{R}}(K)$, an invertible rational function $p \in$ $A_{\mathbb{R}}(K)^{-1}$, a continuous function $l \in C(K)$ such that for all $z \in Z_{g}$,

$$
\frac{\chi(z) \cdot f(z)}{p(z)}=\exp (l(z))
$$

and for every real zero $z$ of $g$,

$$
\frac{\chi(z) \cdot f(z)}{p(z)}>0
$$

(ii) $(f, g)$ is reducible in $A_{\mathbb{R}}(K)$, that is, there exists a unit $u \in A_{\mathbb{R}}(K)^{-1}$ and there exists $k \in A_{\mathbb{R}}(K)$ such that $f+k g=u$.

Remarks 4.2 1. There always exists a continuous logarithm $h$ for

$$
\chi(z) \cdot f(z) / p(z)
$$

on $Z_{g}$ provided that $\mathbb{C} \backslash Z_{g}$ is connected (see [3, Corollary 4.33]), and by Tietze's theorem, this can be extended to a continuous function on $K$.
2. Since the complex algebra $A(K)$ has Bass stable rank 1 (see for instance [5, Theorem 2.3], [13] or Theorem 5.1), there always exists a $k \in A(K)$ and a unit $u \in A(K)^{-1}$ such that $f+k g=u$. Again we can deduce $u=\chi \cdot p \cdot \exp (v)$ for a sign-function $\chi$ and certain $p, v \in A(K)$ by the analogue of the unit representation. The important point is that for reducibility in $A_{\mathbb{R}}(K)$, we must have real symmetric functions $\chi, p, v$ and the positivity on real zeros of $g$.

Proof (iil) $\Rightarrow$ (ii). If there exist $k \in A_{\mathbb{R}}(K)$ and a unit $u \in A_{\mathbb{R}}(K)^{-1}$ such that $f+k g=$ $u$, we use Theorem 3.6 to factor $u=p \cdot \chi \cdot \exp (l)$, where $p \in A_{\mathbb{R}}(K)^{-1}, l \in C_{\mathbb{R}}(K)$, and $\chi \in A_{\mathbb{R}}(K)$ is a sign-function. Obviously, for all $z \in Z_{g}$,

$$
\frac{\chi(z) \cdot f(z)}{p(z)}=\exp (l(z))
$$

and for all real zeros of $g$,

$$
\frac{\chi(z) \cdot f(z)}{p(z)}>0
$$

(ii) $\Rightarrow$ (iii). Now assume that there exist a sign-function $\chi \in A_{\mathbb{R}}(K)$, an invertible rational function $p \in A_{\mathbb{R}}(K)^{-1}$, and a function $l \in C(K)$ such that for all $z \in Z_{g}$,

$$
\frac{\chi(z) \cdot f(z)}{p(z)}=\exp (l(z))
$$

and for all real zeros of $g$,

$$
\frac{\chi(z) \cdot f(z)}{p(z)}>0
$$

We abbreviate $f_{0}:=\frac{\chi \cdot f}{p}$.
Step 1: There exist functions $h, k \in C_{\mathbb{R}}(K)$ with continuous partial derivatives in the interior $K^{\circ}$ of $K$, such that $f_{0}+h \cdot g=\exp (k)$. Moreover, $\frac{\partial h}{\partial \bar{z}}, \frac{\partial k}{\partial \bar{z}}$ are bounded in $K^{\circ}$.

We think of $f_{0}, g$ as extended to a sufficiently small real symmetric neighborhood $U \supset K$. To be precise: $f, \chi$ are extended symmetrically to $U$.

Since $\left(f_{0}, g\right)$ is unimodular in $C_{\mathbb{R}}(K)$, there exist $\delta>0$ and a sufficiently small real symmetric neighborhood $U \supset K$ such that $\left|f_{0}(z)\right|+|g(z)| \geq 4 \delta$ for all $z \in U$. The level sets with respect to $U$ are denoted by

$$
Z_{g}^{U}(\delta):=\{z \in U| | g(z) \mid \leq \delta\}
$$

By assumption, we have a continuous logarithm of $f_{0}$ on $Z_{g}$.
Claim: For sufficiently small $\delta>0$ there exists $L \in C(U)$ such that

$$
\frac{\chi(z) \cdot f(z)}{p(z)}=\exp (L(z)) \quad\left(z \in Z_{g}^{U}(2 \delta)\right)
$$

and $L(z)=l(z)\left(z \in Z_{g}\right)$.
Fix a symmetric, continuous extension $l_{0}$ of $l$ to $U$. For sufficiently small $\delta>0$ we have

$$
\operatorname{Re}\left(f_{0}(z) \exp \left(-l_{0}(z)\right)>1 / 2 \quad\left(z \in Z_{g}^{U}(2 \delta)\right)\right.
$$

Hence there exists a continuous logarithm $w$ of the function $f_{0} \exp \left(-l_{0}\right)$; the principal branch of the logarithm will do. But then we have

$$
f_{0}(z)=\exp \left(l_{0}(z)+w(z)\right) \quad\left(z \in Z_{g}^{U}(2 \delta)\right)
$$

This completes the proof of the Claim above.
By Lemma 3.3 (with $2 \delta$ instead of $\delta$ ), there exist finitely many pairwise disjoint closed sets $H_{1}, \ldots, H_{N} \subset U$ lying symmetrically with respect to the real axis, such that $Z_{g} \subset \bigcup_{j=1}^{N} H_{j}$ and $|g(z)| \leq 2 \delta$ holds there. Hence $\left|f_{0}(z)\right| \geq 2 \delta$ holds in the union of these sets intersected with $K$.

In particular, from the Claim above, there exist functions $l_{j}$, continuous in the closed sets $H_{j} \subset Z_{g}^{U}(2 \delta)$ such that $f_{0}(z)=\exp \left(l_{j}(z)\right),\left(z \in H_{j}, j=1, \ldots, N\right)$. By assertion (iiii) of Lemma3.3, we have $H_{j} \cap K \cap \mathbb{R}=\varnothing$ if no real zero of $g$ belongs to $H_{j}$. Moreover, $H_{j} \cap K$ belongs entirely to the upper (respectively lower) half-plane. The desired logarithm is very easy to obtain for these sets, because they do not intersect the real line. By symmetry we have $H_{j} \cap K=H_{k}^{*} \cap K$ for some $j \neq k$. Hence we may redefine $l_{j}(z)=\left(l_{k}\left(z^{*}\right)\right)^{*}$.

Thus only the case of a real zero $x_{0}$ of $g$ belonging to $H_{j}$ remains to be discussed. In this case $H_{j}$ is connected. By assumption $f_{0}\left(x_{0}\right)>0$ holds for every real zero $x_{0}$ of $g$. Because $f_{0}$ is symmetric, we derive

$$
f_{0}(z)=\exp \left(l_{j}(z)\right)=\exp \left(\left(l_{j}\left(z^{*}\right)\right)^{*}\right) \quad\left(z \in H_{j}=H_{j}^{*}\right)
$$

Because $H_{j}$ is connected and $l_{j}$ is continuous in $H_{j}$, there exists an integer $m$ such that $l_{j}(z)=\left(l_{j}\left(z^{*}\right)\right)^{*}+2 m \pi i\left(z \in H_{j}=H_{j}^{*}\right)$. Restricting to the real zero, $x_{0} \in H_{j} \cap \mathbb{R}$ of $g$ gives $\operatorname{Im} l_{j}\left(x_{0}\right)=m \pi$. As $f_{0}\left(x_{0}\right)=\exp \left(l_{j}\left(x_{0}\right)\right)>0$, the integer $m$ must be even. Now $l_{j}-m \pi i$ is the desired symmetric logarithm of $f_{0}$ on $H_{j}=H_{j}^{*}$.

Let $\chi_{j}$ denote a smooth real symmetric function being identically 1 on $H_{j}$ and identically 0 outside a neighborhood $W \subset U$ of $H_{j}$ sufficiently small such that this neighborhood does not intersect the other sets $H_{k}$ and $|g(z)| \leq 3 \delta(z \in K \cap W)$. Observe that the logarithm of $f_{0}$ exists and is bounded on $Z_{g}^{U}(2 \delta)$. Define the function $k$ by $k:=\sum_{j=1}^{N} \chi_{j} l_{j}$. Of course, $\partial k / \partial \bar{z}$ is bounded in $K^{\circ}$. By construction $k \in C_{\mathbb{R}}(K)$ and $k(z)=l_{j}(z)\left(z \in H_{j} \cap K, j=1, \ldots N\right)$. The desired function $h$ can now be defined as follows:

$$
h(z):= \begin{cases}\frac{\exp k(z)-f_{0}(z)}{g(z)} & \text { for } z \in K \backslash Z_{g} \\ 0 & \text { for } z \in Z_{g}\end{cases}
$$

This function belongs to $C_{\mathbb{R}}(K)$ because by Lemma 3.3 for the zero $z_{0} \in H_{j}$ there exists a disc $D$ with center $z_{0}$ such that $D \cap K \subset H_{j}$, so we have $h(z)=0$ for all $z \in D \cap K$. This implies also that $\partial h / \partial \bar{z}$ is bounded in $K^{\circ}$.

Step 2: There exist $h, k \in A_{\mathbb{R}}(K)$ such that $f_{0}+h g=\exp (k)$.
With the functions from Step 1, we define the real symmetric continuous function on $K$

$$
F:=\frac{f_{0}}{f_{0}+h g}=f_{0} \exp (-k)
$$

Clearly

$$
\frac{F}{f_{0}} \cdot f_{0}+\frac{1-F}{g} \cdot g=1
$$

Of course, we have that

$$
\begin{align*}
\frac{F}{f_{0}} & =\exp (-k),  \tag{4.1}\\
\frac{1-F}{g} & =h \exp (-k) \tag{4.2}
\end{align*}
$$

are real symmetric, continuous in $K, \partial h / \partial \bar{z}, \partial k / \partial \bar{z}$ are bounded in the interior $K^{\circ}$ of $K$. However, $h, k$ are not necessarily analytic in $K^{\circ}$. Therefore we seek for a $u \in$ $C_{\mathbb{R}}(K)$, which is continuously differentiable in $K^{\circ}$ such that

$$
\frac{\partial}{\partial \bar{z}}\left[\frac{\exp (u g)}{f_{0}+h g}\right]=0
$$

which implies the analyticity of $\frac{F}{f_{0}} \exp (u g)$ and $F \exp (u g)$. This yields the inhomogeneous $\bar{\partial}$-equation

$$
\frac{\partial u}{\partial \bar{z}}=\frac{1}{f_{0}+h g} \cdot \frac{\partial h}{\partial \bar{z}}=: \mu
$$

As is well known, one solution $u$ to the $\bar{\partial}$-equation is given by

$$
\begin{equation*}
u(z)=\frac{1}{2 \pi i} \int_{K^{\circ}} \frac{\mu(\zeta)}{\zeta-z} d \zeta \wedge d \bar{\zeta} \quad(z \in K) \tag{4.3}
\end{equation*}
$$

(See for instance [7, §1, Chapter VIII], where the result is given for the disc; in the general case, given a point $z_{0} \in K^{\circ}$, we first consider a disc $\Delta$ centered around $z_{0}$ and then split the integral in (4.3) into an integral over $\Delta$ and over $K^{\circ} \backslash \Delta$.) It is easy to check that $u$ given by (4.3) is in fact real symmetric. It is continuous on $K$ because it is the convolution of the bounded function $\mu$ and a $L^{1}$-function.

We now "replace" the function $F$ by $F \exp (u g)$. By multiplying (4.1) by $\exp (u g)$, we obtain that the function $\alpha:=F / f_{0} \exp (u g)=\exp [u g-k]$ belongs to $A_{\mathbb{R}}(K)$, and $\alpha$ is an exponential. Using (4.2), we also see that the function

$$
\beta:=\frac{1-F \exp (u g)}{g}=\left[h+f_{0} \frac{1-\exp (u g)}{g}\right] \exp (-k)
$$

is continuous up to all the boundary of $K$ and is analytic in the interior $K^{\circ}$. Since the identity $\alpha f_{0}+\beta g=1$ holds, this completes Step 2.

Recalling the abbreviation $f_{0}:=\frac{\chi \cdot f}{p}$ we see that also $(f, g)$ is reducible in $A_{\mathbb{R}}(K)$.

We generalize this characterization to some subalgebras of $A_{\mathbb{R}}(K)$, restricting ourselves to compact symmetric subset $K$ of $\mathbb{C}$ such that $\mathbb{C} \backslash K$ has finitely many components.

Definition 4.3 If $K$ denotes a compact subset of $\mathbb{C}$, then we say the corona theorem holds for $\mathcal{A}\left(\subset A_{\mathbb{R}}(K)\right)$ if the following is true for all $n \in \mathbb{N}:\left(f_{1}, \ldots, f_{n}\right) \in U_{n}(\mathcal{A})$ if and only if there exists a $\delta>0$ such that for all $z \in K, \sum_{j=1}^{n}\left|f_{j}(z)\right| \geq \delta$, that is, if and only if the functions $f_{1}, \ldots, f_{n}$ have no common zero in $K$.

That the corona theorem holds for $A_{\mathbb{R}}(K)$ follows easily from the corona theorem for the complex algebra $A(K)$ by symmetrization of the solution. We refer the reader to [9] for a constructive proof (using neither Gelfand theory nor Banach algebra theory) of the corona theorem for certain subalgebras of $A(K)$ under mild assumptions on $K$.

Corollary 4.4 Let $K$ denote a compact real symmetric subset of $\mathbb{C}$ such that $\mathbb{C} \backslash K$ has finitely many components. Let $\mathcal{A}$ denote a subalgebra of $A_{\mathbb{R}}(K)$ containing all real symmetric rational functions with poles off $K$, such that the corona theorem holds for $\mathcal{A}$. The following are equivalent for any unimodular pair $(f, g) \in U_{2}(\mathcal{A})$ :
(i) There exist a sign-function $\chi \in A_{\mathbb{R}}(K)$, an invertible rational function $p \in \mathcal{A}^{-1}$, and a function $l \in C(K)$ such that for all $z \in Z_{g}, \frac{\chi(z) \cdot f(z)}{p(z)}=\exp (l(z))$, and for every real zero $z$ of $g \frac{\chi(z) \cdot f(z)}{p(z)}>0$.
(ii) $(f, g)$ is reducible in $\mathcal{A}$, that is, there exists a unit $u \in \mathcal{A}^{-1}$ and there exists a $k \in \mathcal{A}$ such that $f+k g=u$.

Proof (iii) $\Rightarrow$ (ii): Let there exist a $k \in \mathcal{A} \subset A_{\mathbb{R}}(K)$ and a unit $u \in \mathcal{A}^{-1} \subset A_{\mathbb{R}}(K)^{-1}$ (because of the corona theorem) such that $f+k g=u$. Using Theorem 3.6, we can factor $u=p \cdot \chi \cdot \exp (l)$, where the real symmetric rational $p \in A_{\mathbb{R}}(K)^{-1}$ also belongs to $\mathcal{A}^{-1}$ because of the corona theorem, the function $\chi \in A_{\mathbb{R}}(K)$ is a sign-function, and $l \in C_{\mathbb{R}}(K)$. Clearly, for all $z \in Z_{g}, \frac{\chi(z) \cdot f(z)}{p(z)}=\exp (l(z))$, and for all real zeros of $g$, $\frac{\chi(z) \cdot f(z)}{p(z)}>0$.
(ii) $\Rightarrow$ (iii): Assume that there exist a sign-function $\chi \in A_{\mathbb{R}}(K)$, an invertible rational function $p \in \mathcal{A}^{-1} \subset A_{\mathbb{R}}(K)^{-1}$, and a function $l \in C(K)$ such that for all $z \in Z_{g}$, $\frac{\chi(z) \cdot f(z)}{p(z)}=\exp (l(z))$, and for all real zeros of $g, \frac{\chi(z) \cdot f(z)}{p(z)}>0$. Using Theorem4.1 the pair $(f, g)$ is reducible in $A_{\mathbb{R}}(K)$, that is, there exists a unit $u \in A_{\mathbb{R}}(K)^{-1}$ and there exists a $k \in A_{\mathbb{R}}(K)$ such that $f+k g=u$. Using Mergelyan's theorem there exist rational functions $k_{n}$ with poles off $K$ converging uniformly to $k$ on $K$. Because $K$ is real symmetric, we can also approximate by the symmetrization of $k_{n}$, that is, the real rational functions $\widetilde{k}_{n}$ given by

$$
\widetilde{k}_{n}(z):=\frac{k_{n}(z)+\left(k_{n}\left(z^{*}\right)\right)^{*}}{2}
$$

converge uniformly to $k$ too. Since $u$ is a unit in $A_{\mathbb{R}}(K)$, we must have

$$
|u(z)|>\delta>0 \quad(z \in K)
$$

Choose a real symmetric rational function $k_{n} \in \mathcal{A}$ near $k$ such that

$$
\left|u(z)-\left(k(z)-k_{n}(z)\right) g(z)\right|>\delta / 2>0 \quad(z \in K)
$$

We conclude that $f+k_{n} g=u-\left(k-k_{n}\right) g$ (which belongs to the algebra $\mathcal{A}$ ) has no zeros in $K$ and so it is invertible because of the corona theorem. This completes the proof of the reducibility of $(f, g)$ in $\mathcal{A}$.

## 5 Bass Stable Rank of $A(K)$

The methods developed in the previous sections can be applied to prove that all unimodular pairs in $A(K)$ ( $K$ compact in $\mathbb{C}$ ), are reducible, that is, the Bass stable rank of $A(K)$ is 1 . This is well known (see [5, Theorem 2.3], [13]), but we present a proof which is independent of Banach algebra theory and elementary stable rank theory.

Theorem 5.1 Let $K$ denote a compact set in $(\mathbb{C}$. Then the stable rank of the algebra $A(K)$ is 1 , that is, every unimodular pair $(f, g)$ is reducible in $A(K)$.

Proof Given a unimodular pair $(f, g)$ in $A(K)$, we must show the existence of $h \in$ $A(K)$ and $u \in A(K)^{-1}$, such that $f+h g=u$. By unimodularity, we have a $\delta>0$ such that $|f(z)|+|g(z)| \geq 4 \delta$ for all $z \in K$. The function $f$ is continuous and zero-free in the zero set $Z_{g}$. Using the unit representation [3, Theorem 4.29] (Theorem3.6above without symmetry), we may write

$$
\begin{equation*}
f(z)=p(z) \cdot \exp (k(z)) \quad\left(z \in Z_{g}\right) \tag{5.1}
\end{equation*}
$$

where $p$ denotes a rational function with poles off $Z_{g}$, and $k \in C\left(Z_{g}\right)$. By Lemma3.2, every component of $\mathbb{C} \backslash Z_{g}$ contains a component of $\mathbb{C} \backslash K$. By Lemma 3.7 we can shift the poles and zeros of $p$ from $\mathbb{C} \backslash Z_{g}$ to $\mathbb{C} \backslash K$.

As in the justification of the Claim in Step 1 of the proof of Theorem4.1, we extend (5.1) to the level set $Z_{g}(2 \delta)$ for sufficiently small $\delta$, that is,

$$
f(z)=p(z) \cdot \exp (k(z)) \quad\left(z \in Z_{g}(2 \delta)\right)
$$

where $p$ denotes a rational function with poles off $K$ and $k \in C\left(Z_{g}(2 \delta)\right)$.
The rest of the proof is now analogous to the proof of Theorem 4.1, that is, we use Lemma 3.3 (without symmetry, of course) to facilitate handling the zero set of $g$ with finitely many closed connected, pairwise disjoint subsets of $U \supset K$ lying within $Z_{g}^{U}(\delta)$. Then we use $\bar{\partial}$-equations to make the smooth solutions for reducibility analytic in $K$.

## 6 When Is bsr $C_{\mathbb{R}}(K)=1$ or $A_{\mathbb{R}}(K)=1$ ?

In Section2, we gave a necessary and sufficient condition on $K$ so that the Bass stable rank of $R_{\mathbb{R}}(K)$ is 1 . In this section we give a similar characterization for the algebras $C_{\mathbb{R}}(K)$ and $A_{\mathbb{R}}(K)$.

### 6.1 Topological Theorems

We begin by proving two purely topological theorems, which are probably well known to the workers in the field; see [13] for a different characterization of the first one using the so-called "boundary principle".

Theorem 6.1 Let $K, L$ denote compact sets in $\mathbb{C}$ such that $L \subset K$. The following assertions are equivalent:
(i) Every continuous zero-free function $f \in C(L)$ can be extended to a continuous zero-free function $F \in C(K)$.
(ii) Every component of $\mathbb{C} \backslash L$ contains a component of $\mathbb{C} \backslash K$.

Proof (ii) $\Rightarrow$ (iii): By assumption, every continuous zero-free $f \in C(L)$ can be extended to a continuous zero-free function $F \in C(K)$. Assuming the contrary of (iii), there exists a component $G$ of $\mathbb{C} \backslash L$ containing no component of $\mathbb{C} \backslash K$, that is, $G \subset K$.

Of course, $G$ is not the unbounded component of $\mathbb{C} \backslash L$, because $G \subset K$. Fix a point $w \in G$. We conclude that $w \in K$ and $w \in \mathbb{C} \backslash L$. By assumption we can extend the continuous, zero-free function $f \in C(L)$ given by $f(z):=z-w$ to a continuous, zero-free function $F \in C(K)$. In particular, we have such an extension to the set $L \cup G \subset K$. This contradicts [3, Theorem 4.31].
(iii) $\Rightarrow$ (ii): Let $f \in C(L)$ be a function $f$ which is zero-free in the compact set $L$. Using the unit representation result [3, Theorem 4.29] (that is, Theorem 3.6 without symmetry), we may write $f(z)=p(z) \cdot \exp (k(z)),(z \in L)$, where $p$ denotes a rational function with poles and zeros off $L$, and $k \in C(L)$. By assumption every component of $\mathbb{C} \backslash L$ contains a component of $\mathbb{C} \backslash K$. Thus, applying Lemma3.7 we can shift the poles and zeros of $p$ from $\mathbb{C} \backslash L$ to $\mathbb{C} \backslash K$, and so

$$
f(z)=p(z) \cdot \exp (k(z)) \quad(z \in L)
$$

where $p$ denotes a rational function with poles and zeros off $K$, and $k \in C(L)$. By Tietze's extension theorem we can extend $k$ continuously to $k_{\mathrm{e}} \in C(K)$. The desired extension $F$ is now given by $F(z):=p(z) \cdot \exp \left(k_{\mathrm{e}}(z)\right),(z \in K)$.

So Lemma 3.2 now shows that given $g \in A(K)$, then every continuous, zero-free function can likewise be extended from the level set $Z_{g}(\delta)$ to $K$.

Theorem 6.2 Let $K$, $L$ denote compact, real symmetric sets in $\mathbb{C}$ such that $L \subset K$. The following assertions are equivalent:
(i) Every continuous zero-free function $f \in C_{\mathbb{R}}(L)$ can be extended to a continuous zero-free function $F \in C_{\mathbb{R}}(K)$.
(ii) Every component of $\mathbb{C} \backslash L$ contains a component of $\mathbb{C} \backslash K$ and every sign-function $\chi \in C_{\mathbb{R}}(L)$ can be extended to a continuous zero-free function $\chi_{e} \in C_{\mathbb{R}}(K)$.

Proof (ii) $\Rightarrow$ (iii): By assumption, every continuous zero-free $f \in C_{\mathbb{R}}(L)$ can be extended to a continuous zero-free function $F \in C_{\mathbb{R}}(K)$. If there exists a component $G$ of $\mathbb{C} \backslash L$ containing no component of $\mathbb{C} \backslash K$, then $G \subset K$ (see the implication (i) $\Rightarrow$ (ii) in the proof of Theorem6.1). Of course, $G$ is not the unbounded component of $\mathbb{C} \backslash L$, because $G \subset K$. Fix a point $w \in G$. We conclude that

$$
w \in K \quad \text { and } \quad w \in \mathbb{C} \backslash L
$$

By assumption we can extend the continuous, zero-free function $f \in C_{\mathbb{R}}(L)$ given by $f(z):=(z-w)\left(z-w^{*}\right)$ to a continuous, zero-free function $F \in C_{\mathbb{R}}(K)$. Fix a number $r>\sup |G|=\sup \left|G^{*}\right|$ and let $D:=\{z \in \mathbb{C}| | z \mid \leq r\}$. With these abbreviations we define the auxiliary function $H$ on $D$ by the formula:

$$
H(z):= \begin{cases}(z-w)\left(z-w^{*}\right) & \text { for } z \in D \backslash\left(G \cup G^{*}\right) \\ F(z) & \text { for } z \in G \cup G^{*}\end{cases}
$$

From

$$
\left[D \backslash\left(G \cup G^{*}\right)\right] \cap\left(\overline{G \cup G^{*}}\right) \subset \partial\left(G \cup G^{*}\right) \subset \partial G \cup \partial G^{*} \subset L \cup L^{*}=L
$$

it follows that $H$ is well defined, continuous and zero-free in the closed disk $D$ (note that $w \in G$ ), hence there exists a continuous logarithm $\phi$ :

$$
H(z)=\exp (\phi(z)) \quad(z \in D)
$$

In particular, $(z-w)\left(z-w^{*}\right)=\exp (\phi(z)),(r-\varepsilon \leq|z| \leq r)$. Taking the logarithm locally shows that $\phi$ is analytic, and so

$$
\frac{1}{z-w}+\frac{1}{z-w^{*}}=\phi^{\prime}(z) \quad(r-\varepsilon<|z|<r)
$$

Integration along the circle $|z|=r-\varepsilon / 2$ gives the contradiction $4 \pi i=0$. Hence no such component $G \subset K$ can exist. By (ii) we can extend every sign-function $\chi \in C_{\mathbb{R}}(L)$, because it is zero-free in $L$. Thus we have proved all assertions in (iii).
(iii) $\Rightarrow$ (ii): Let $f \in C_{\mathbb{R}}(L)$ be a function which is zero-free in the compact set $L$. Using the unit representation Theorem3.6, we may write

$$
f(z)=p(z) \cdot \chi(z) \cdot \exp (k(z)) \quad(z \in L)
$$

where $p$ is a real symmetric rational function with poles and zeros off $L, \chi \in C_{\mathbb{R}}(L)$ is a sign-function, and $k \in C_{\mathbb{R}}(L)$. By assumption every component of $\mathbb{C} \backslash L$ contains a component of $\mathbb{C} \backslash K$. Using Lemma 3.7 we can shift the poles and zeros of $p$ from $\mathbb{C} \backslash L$ to $\mathbb{C} \backslash K$ while respecting symmetry, that is,

$$
f(z)=p(z) \cdot \chi(z) \cdot \exp (k(z)) \quad(z \in L)
$$

where $p$ denotes a real symmetric rational function with poles and zeros off $K, \chi \in$ $C_{\mathbb{R}}(L)$ is a sign-function, and $k \in C_{\mathbb{R}}(L)$. By Tietze's extension theorem we can extend $k$ continuously and real symmetric to $k_{\mathrm{e}} \in C_{\mathbb{R}}(K)$. By assumption (iii) there exists a zero-free extension $\chi_{\mathrm{e}} \in C_{\mathbb{R}}(K)$ of $\chi$. The desired extension is now given by $F$, which is defined as follows: $F(z):=p(z) \cdot \chi_{\mathrm{e}}(z) \cdot \exp \left(k_{\mathrm{e}}(z)\right),(z \in K)$.

### 6.2 A Technical Lemma

Lemma 6.3 Let $K$ be a real symmetric compact set in $\mathbb{C}$, and let $g \in C_{\mathbb{R}}(K)$ with nonempty zero set $Z_{g} \subset K$ be given. Moreover, assume that $K \cap \mathbb{R}$ is totally disconnected. Then for every sign-function $\chi \in C_{\mathbb{R}}\left(Z_{g}\right)$, there exists a zero-free real symmetric extension $\chi_{\mathrm{e}} \in C_{\mathbb{R}}(K)$.

Proof We split $K$ into the upper part $K^{+}$belonging to the closed upper half-plane and the lower part $K^{-}$belonging to the closed lower half-plane. Since $K \cap \mathbb{R}$ is totally disconnected, its covering dimension is 0 ; see [10].

If $K \cap \mathbb{R}$ is empty, it is easy to construct a real symmetric extension of $\chi$ to $K$. As a sign-function, we must have two sets $K_{-1}, K_{1} \subset K^{+}$such that $\chi(z)= \pm 1$, for $z \in K_{ \pm 1}$, respectively. Then we have the logarithm $l(z)=i \pi$ on $K_{-1}$ and $l(z)=0$ on $K_{1}$, and by Tietze's theorem we can extend $l$ continuously to $K^{+}$. Because $K \cap \mathbb{R}$
is empty, we may use reflection to the lower half-plane to achieve a real symmetric extension of $l$ to $K$. Define $\chi_{e} \in C_{\mathbb{R}}(K)$ by

$$
\chi_{\mathrm{e}}(z):= \begin{cases}\exp (l(z)) & \text { for } z \in K^{+} \\ \exp \left(\left(l\left(z^{*}\right)\right)^{*}\right) & \text { for } z \in K^{-}\end{cases}
$$

So we may assume that $K \cap \mathbb{R}$ is nonempty and has dimension zero. With the notation $S^{0}:=\{-1,1\}$, we can apply Theorem III. 2 in [10] to obtain a real valued continuous extension $\chi_{0} \in C(K \cap \mathbb{R})$ of the restriction of $\chi$ to $Z_{g} \cap \mathbb{R}$ with values in $S^{0}$. So we obtain the sign-function $\chi_{0}$. Hence we may extend the domain of $\chi$ by

$$
\chi_{1}(z):= \begin{cases}\chi(z) & \text { for } z \in Z_{g} \backslash \mathbb{R} \\ \chi_{0}(z) & \text { for } z \in K \cap \mathbb{R}\end{cases}
$$

Using Tietze's theorem, we extend $\chi_{1}$ continuously to $K$. Take a continuous function $g_{1}$ vanishing exactly on $K \cap \mathbb{R}$. Then $Z_{g g_{1}}=Z_{g} \cup(K \cap \mathbb{R})$. It follows that the pair $\left(\chi_{1}, g g_{1}\right)$ is unimodular in the complex Banach algebra $C\left(K^{+}\right)$. But then the complement of the inversion set $I:=\left\{\lambda \in \mathbb{C} \mid\left(\chi_{1}-\lambda, g g_{1}\right)\right.$ is unimodular $\}$ satisfies $\mathbb{C} \backslash I=\chi_{1}\left(Z_{g g_{1}}\right) \subset\{-1,1\}$. Hence the complement of the inversion set $I$ is connected and $\lambda=0$ belongs to it, so a result of Corach and Suárez (see for example [13, Proposition 1.3]) tells us that $\left(\chi_{1}, g g_{1}\right)$ is reducible. Thus there exist $k \in C\left(K^{+}\right)$, $U \in C\left(K^{+}\right)^{-1}$ such that $\chi_{1}+k g g_{1}=U$. In particular,

$$
U(z)=\chi_{0}(z) \in \mathbb{R} \quad(z \in K \cap \mathbb{R})
$$

Hence the unit

$$
\chi_{\mathrm{e}}(z):= \begin{cases}U(z) & \text { for } z \in K^{+} \\ \left(U\left(z^{*}\right)\right)^{*} & \text { for } z \in K^{-}\end{cases}
$$

is well defined and is an extension of $\chi$.

### 6.3 When Is bsr $A_{\mathbb{R}}(K)=1$ ?

The following result answers a question posed in [14].
Theorem 6.4 Let $K$ denote a real symmetric compact set in $(\mathbb{C}$. The following assertions are equivalent:
(i) The Bass stable rank of $A_{\mathbb{R}}(K)$ is 1.
(ii) $K \cap \mathbb{R}$ is totally disconnected.

Proof (ii) $\Rightarrow$ (iii): Suppose that every unimodular pair is reducible. By Lemma 2.3, it follows that $K \cap \mathbb{R}$ is totally disconnected.
(iii) $\Rightarrow$ (il): We must show that every unimodular pair $(f, g)$ is reducible. Unimodularity implies the existence of a $\delta>0$ such that $|f(z)|+|g(z)| \geq \delta(z \in K)$. Hence
the real symmetric function $f$ restricted to the set $L=Z_{g}$ is zero-free. By Theorem 3.6 for the compact real symmetric set $Z_{g}$, there exists a real symmetric rational function $p$ with poles and zeros off $Z_{g}$, and a sign-function $\chi \in C_{\mathbb{R}}\left(Z_{g}\right)$ such that

$$
f(z)=p(z) \cdot \chi(z) \cdot \exp (h(z)) \quad\left(z \in Z_{g}\right)
$$

We think of $h$ as extended continuously to all of $K$ by Tietze's Theorem, i.e., $h \in$ $C_{\mathbb{R}}(K)$. Using Lemma 3.2 , every component of $\mathbb{C} \backslash Z_{g}$ contains a component of $\mathbb{C} \backslash K$. From Lemma 3.7, we can shift the poles and zeros of $p$ from $\mathbb{C} \backslash Z_{g}$ to $\mathbb{C} \backslash K$ while respecting symmetry, that is,

$$
f(z)=p(z) \cdot \chi(z) \cdot \exp (h(z)) \quad\left(z \in Z_{g}\right)
$$

where $p$ denotes a real symmetric rational function with poles and zeros off $K, \chi \in$ $C_{\mathbb{R}}\left(Z_{g}\right)$ is a sign-function on $Z_{g}$ and $h \in C_{\mathbb{R}}(K)$. Since $K \cap \mathbb{R}$ is totally disconnected, Lemma 6.3 now shows the existence of a zero-free extension $\chi_{\mathrm{e}} \in C_{\mathbb{R}}(K)$ of $\chi$. By Theorem 3.6the real symmetric unit $\chi_{\mathrm{e}} \in C_{\mathbb{R}}(K)$ can be factored as

$$
\chi_{\mathrm{e}}(z)=q(z) \cdot \psi(z) \cdot \exp (k(z)) \quad(z \in K)
$$

where $q$ denotes a real symmetric rational function with poles and zeros off $K, \psi$ denotes a sign-function on $K$, and $k \in C_{\mathbb{R}}(K)$. Consequently,

$$
\frac{f(z) \cdot \psi(z)}{p(z) \cdot q(z)}=\exp (h(z)+k(z)) \quad\left(z \in Z_{g}\right)
$$

We note that $\exp (l(z)+k(z))>0$ for all $z \in Z_{g} \cap \mathbb{R}$ since $h+k \in C_{\mathbb{R}}(K)$. In each open component $G$ of $K, \psi$ is either identically +1 or identically -1 , and hence analytic there. Thus in fact $\psi \in A_{\mathbb{R}}(K)$. Theorem 4.1 now implies that the unimodular pair $(f, g)$ is reducible. So the stable rank of $A_{\mathbb{R}}(K)$ is 1 .

### 6.4 When Is $\operatorname{bsr} C_{\mathbb{R}}(K)=1$ ?

Now we are in a position to calculate the Bass stable rank for $C_{\mathbb{R}}(K)$ for certain compact sets K. Surprisingly, the characterisation is not the same as for the complex Banach algebra $C(K)$. Indeed, a result of Vaserstein [15, Theorem 7, p. 104] gives

$$
\operatorname{bsr} C(K)=1 \text { if and only if } K^{\circ}=\varnothing
$$

In the case of the real algebra $C_{\mathbb{R}}(K)$ we have the following.
Theorem 6.5 Let $K$ denote a real symmetric compact set in $(\mathbb{C}$. The following assertions are equivalent:
(i) The Bass stable rank of $C_{\mathbb{R}}(K)$ is 1 .
(ii) The interior $K^{\circ}$ of $K$ is empty and $K \cap \mathbb{R}$ is totally disconnected.

Proof (ii) $\Rightarrow$ (iii): Suppose that every unimodular pair is reducible. Let $L$ denote a real symmetric compact set in $K$. Let $f_{0}$ denote any real symmetric zero-free continuous function on the real symmetric compact set $L \subset K$. Since each compact set in $\mathbb{C}$ is a $G_{\delta}$-set, there exists a continuous function $g_{0} \in C(K)$ such that $Z_{g_{0}}=L$; see [8, p. 15]. But then $g(z):=g_{0}(z) \cdot\left(g_{0}\left(z^{*}\right)\right)^{*}$ defines a real symmetric function $g \in C_{\mathbb{R}}(K)$ such that $Z_{g}=L=L^{*}$. By Tietze's theorem, we can extend $f_{0}$ to a real symmetric continuous $f \in C_{\mathbb{R}}(K)$. Now the unimodular pair $(f, g)$ must be reducible, hence $f+h g=u$ for certain $h, u \in C_{\mathbb{R}}(K), u$ zero-free in $K$. But $u$ is a real symmetric zerofree continuous extension of $f_{0}$ from $L$ to $K$. Theorem 6.2 now implies that every component of $\mathbb{C} \backslash L$ contains a component of $\mathbb{C} \backslash K$.

Next we will show that $K^{\circ}$ is empty. Assuming the contrary let $\Delta$ be an open disc such that $\bar{\Delta} \subset K$, and let $C$ be the boundary of $\Delta$. It is easy to see that we can arrange that $\Delta$ is contained in the upper half-plane $\{z \mid \operatorname{Im}(z)>0\}$. Then $L:=C \cup C^{*}$ is real symmetric, compact, and $L \subset K$. Hence from the above, it follows that every component of $\mathbb{C} \backslash L$ contains a component of $\mathbb{C} \backslash K$. But one of the components of $\mathbb{C} \backslash L$ is $\Delta$, which would now contain a component of $\mathbb{C} \backslash K$, and hence a point outside $K$, a contradiction. This proves that $K^{\circ}$ is empty.

That $K \cap \mathbb{R}$ is totally disconnected follows from Lemma 2.3
(iii) $\Rightarrow$ (ii): By assumption, the interior $K^{\circ}$ is void, i.e., $A_{\mathbb{R}}(K)=C_{\mathbb{R}}(K)$, and $K \cap \mathbb{R}$ is totally disconnected. By Theorem 6.4, the Bass stable rank of $A_{\mathbb{R}}(K)$, and hence that of $C_{\mathbb{R}}(K)$, is 1 .

## 7 Open Questions

We end this paper with some open questions. Corollary 2.8 says that if $K$ is a real symmetric compact subset of $\mathbb{C}$ such that $\mathbb{C} \backslash K$ has finitely many connected components, then bsr $A_{\mathbb{R}}(K)$ is at most 2 . We suspect that this might always be the case, and so we have the following questions:

- If $K$ is a real symmetric compact subset of $\left(\mathbb{C}\right.$, then is $\operatorname{bsr} A_{\mathbb{R}}(K) \leq 2$ ?
- If $K$ is a real symmetric compact subset of $\mathbb{C}$, then what is tsr $A_{\mathbb{R}}(K)$ ?
- Find necessary and sufficient conditions for $\operatorname{tsr} A_{\mathbb{R}}(K)=1$.

In light of the results in this article, analogous questions for $C_{\mathbb{R}}(K)$ can also be posed:

- If $K$ is a real symmetric compact subset of $\mathbb{C}$, then is $\operatorname{bsr} C_{\mathbb{R}}(K) \leq 2$ ?
- If $K$ is a real symmetric compact subset of $\mathbb{C}$, then what is $\operatorname{tsr} C_{\mathbb{R}}(K)$ ?

Acknowledgement The authors are grateful to Raymond Mortini (Université Paul Verlaine-Metz) for carefully reading parts of the article and for finding an error in the proof of Theorem 2.4

## References

[1] L. V. Ahlfors, Complex Analysis. Third edition. McGraw-Hill, New York, 1978.
[2] H. Bass, K-theory and stable algebra. Inst. Hautes Études Sci. Publ. Math. 22(1964), 5-60.
[3] R. B. Burckel, An Introduction to Classical Complex Analysis, Vol. 1. Pure and Applied Mathematics 82. Academic Press, New York, 1979.
[4] G. Corach and A. R. Larotonda, Stable range in Banach algebras. J, Pure Appl. Algebra 32(1984), 289-300. doi:10.1016/0022-4049(84)90093-8
[5] G. Corach and F. D. Suárez, Extension problems and stable rank in commutative Banach algebras. Topology Appl. 21(1985), no. 1, 1-8. doi:10.1016/0166-8641(85)90052-5
[6] $\longrightarrow$ Stable rank in holomorphic function algebras. Illinois J. Math. 29(1985), no. 4, 627-639.
[7] J. B. Garnett, Bounded Analytic Functions. Pure and Applied Mathematics 96. Academic Press, New York, 1981.
[8] L. Gillman and M. Jerison, Rings of Continuous Functions. D. van Nostrand, Princeton, NJ, 1960.
[9] R. Mortini and R. Rupp, A constructive proof of the Nullstellensatz for subalgebras of $A(K)$. In: Travaux mathématiques III. Sém. Math. Luxembourg, Centre Univ. Luxembourg, Luxembourg, 1991, pp. 45-49.
[10] J. Nagata, Modern Dimension Theory. Rev. edition. Sigma Series in Pure Mathematics 2. Heldermann Verlag, Berlin, 1983.
[11] A. Quadrat, On a general structure of the stabilizing controllers based on stable range. SIAM J. Control Optim. 42(2004), no. 6, 2264-2285. doi:10.1137/S0363012902408277
[12] M. A. Rieffel, Dimension and stable rank in the K-theory of C*-algebras. Proc. London Math. Soc. 46(1983), no.2, 301-333. doi:10.1112/plms/s3-46.2.301
[13] R. Rupp, Stable rank in Banach algebras. In: Function Spaces. Lecture Notes in Pure and Appl. Math. 136. Dekker, New York, 1992 , pp. 357-365.
[14] R. Rupp and A. J. Sasane, On the stable rank and reducibility in algebras of real symmetric functions. To appear in Math. Nachr. http://www.cdam.Ise.ac.uk/Reports/Files/cdam-2007-20.pdf
[15] L. N. Vaseršteĭn, The stable range of rings and the dimension of topological spaces. (Russian) Funkcional. Anal. i Priložen. 5(1971), no. 2, 17-27. English translation in Functional Anal. Appl. 5(1971), 102-110.
[16] M. Vidyasagar, Control System Synthesis: A Factorization Approach. MIT Press Series in Signal Processing, Optimization, and Control 7. MIT Press, Cambridge, MA, 1985.
[17] B. Wick, A note about stabilization in $A_{\text {RID }}$. Math. Nachr. 282(2009), no. 6, 912-916. doi:10.1002/mana.200610779

Fakultät Allgemeinwissenschaften, Georg-Simon-Ohm-Hochschule Nürnberg, D-90489 Nürnberg, Germany e-mail: rudolf.rupp@ohm-hochschule.de

Mathematics Department, London School of Economics, London WC2A 2AE, UK
e-mail: A.J.Sasane@lse.ac.uk


[^0]:    Received by the editors October 11, 2007; revised February 21, 2008.
    Published electronically December 4, 2009.
    The second author was supported by Nuffield Grant NAL/32420.
    AMS subject classification: 46J15, 19B10, 30H05, 93D15.
    Keywords: real Banach algebras, Bass stable rank, topological stable rank, reducibility.

