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Abstract. We review mappings mainly devised for the study of the dynamics of comets and 
asteroids. An attempt of a typology according to the method used to devise the mapping and to 
its deterministic or stochastic character is made. 

1. Introduction 

Both the existence of kirkwood gaps and the transfer of comets into observable 

orbits have been the main motivations for building mappings since they have many 

advantages over numerical integration mainly with respect to computing time and 

to accuracy. However, even if the brutal force of super computer may in the near 

future solve these problems, building mappings will still be a challenge to researchers 

in celestial mechanics. Indeed to build mapping bring a deeper understanding of 

the general behaviour of non linear dynamical systems. 

2 . Deterministic mappings 

2 . 1 . A N A L Y T I C MAPPINGS 

2.1.1. Wisdom's mappings or Kick's mappings 

The basic idea of the method comes from plasma physics and is due to Chirikov 

( 1 9 7 9 ) . Wisdom ( 1 9 8 2 ) applied it to asteroid orbit calculations for the 3 / 1 reso-

nance. 

a. Chinkov's method. 

Let us consider the time dependent Hamiltonian 

H = Ι2/4π + Κ0/2π cos V -f ^ Kn(I) cos(V - nt) 

where I is the momentum and V its canonically conjugate coordinate. If the con-

stants Kn are small then, droping the high frequency terms Ση^ο cos(V — nt), 

the restricted pendulum Hamiltonian Ho gives a good approximation to the system 

using the averaging principle. However this averaging procedure is no longer valid 

near the separatrix which is in fact replaced by a narrow chaotic band when the 

high frequency terms are present. Therefore in order to deal more properly with 

this problem Chirikov, instead of ignoring the high frequency terms, included them 

all but in an approximated way, thus obtaining a new Hamiltonian 

Hc = Ι2/4π + Κ0/2π cos V + Κ0/2π ] Γ cos( V - nt) 

which can be considered closer to Η than Ho, since chaos generating high frequency 

terms are present. 
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Using the Fourier transform of the Dirac δ function with period 2π, He be-

comes: 

Hc =I2/4TT + K 0 c o s V δ2π(ί) 

Then by a straightforward integration, using the property that the delta function 

acts instantaneously, the standard map (see Lichtenberg and Lieberman 1983) is 

obtained: 

(l' = I + K 0 sin V 

\ V' = V + Γ 

b. Wisdom's generalization. 

Wisdom has applied this method to the restricted elliptic three body problem for 

the 3/1 resonance. From the Hamiltonian derived through a second-order expansion 

of the perturbing function : 

Η - -μ·ι/2α + H s e c u i a r (α, e, i, w, Ω, a j , e j , ij, w j , Çlj) 

~T~Hresonant( , 3Aj A, ) -|- H high frequency 

he obtains the new Hamiltonian : 

Hw — —μι/2α + Hsec + Hres <$2π(0 

from which he derives his mapping. With this, orbits can be computed over millions 

of years. He found a surprising behaviour : a test particle starting in the gap could 

remain on a low eccentricity ( < 0.05) orbit for one million years and then suddenly 

jumped to a large eccentricity ( > 0.3) trajectory, thus becoming a Mars crosser 

(Wisdom, 1982). 

Abrupt changes in orbital behaviour have been known for some time, even before 

Wisdom work. Scholl and Froeschlé (1974, 1975) thought that these were excep-

tional cases, but Wisdom has shown that such changes are to be expected for any 

orbit near the 3/1 resonance if one follows an orbit for a sufficiently long period 

of time. Wisdom's other great achievement was to demonstrate that the observed 

width of the 3/1 Kirkwood gap coincides with the size of the chaotic region (Wis-

dom, 1983). 

c. A semi analytical interpretation. 

In order to interpret these challenging numerical results Wisdom (1985) devel-

oped a semi-analytic perturbation theory for motion near the 3/1 commensurability 

in the planar restricted three body problem. Three natural time scales are consid-

ered : (i) the orbital period (a few years); (ii) the period of libration of the resonant 

argument (a few hundred years); (iii) the period of motion of the longitude of the 

perihelion (several thousands years), i.e. the time scale for the slow evolution of the 

"guiding center" of σ and e. Taking advantage of these well separated time scales 

Wisdom approximated analytically the fastest oscillations, i.e. only terms which 

contain σ in the disturbing function were considered. Also terms beyond second 
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order in the eccentricity were ignored. Then the very-long-period behaviour was 

computed numerically under the assumption that the action of the motion on the 

intermediate time scale is adiabatically conserved during the slow evolution. 

The predictions of the theory are in good agreement with the features found 

on surfaces of section as shown on Figure 1 for orbits generated with his mapping. 

This figure shows clearly two large chaotic zones. A trajectory in the chaotic zone 

surrounding the origin enters the narrow part of the chaotic zone which extends 

to high eccentricity at irregular intervals thus explaining the intermittent bursts 

of eccentricity. A new criterion for the existence of a large scale chaotic zone is 

presented and shows that the eccentricity of Jupiter's orbit is at the source of 

chaos, which confirms the results obtained by Froeschlé and Scholl (1977) using the 

Schubart averaging procedure. 

- o t i ι ι 1— ; 

- 0 1 0 0 0 1 0 2 0 3 

I 

F i g . l : Numerically generated surface of section computed with the Wis-

dom's mapping. Large chaotic zones appear. The narrow region generates 

high eccentricities at irregular intervals. From Wisdom (1985). 

Of course these results have been checked using different numerical methods. 

Murray and Fox (1984) have computed the motion of asteroids near the 3/1 res-

onance using three numerical methods : (a) integration of the full equations of 

motion, (b ) integration of the analytically averaged equation of motion, (c) Wis-

dom's algebraic mapping. The agreement has been found to be good in the regular 

regions of phase space. However we have to remark that the higher the eccentricity 

becomes the less reliable the mapping becomes and therefore after the first in-

crease of eccentricity the dynamical features of the real system may be significantly 
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different from the dynamical feature of the mapping. 

d. Other Kick's mappings. 

What about the other gaps ? The same mapping-methods have been applied by 

Murray (1986) for the 2/1 and 3/2 Jovian resonances. He determined the chaotic 

region within these resonances by computing the largest Lyapunov exponent with 

the rescaling method. He found that both resonances have extensive chaotic regions. 

Sidlichovsky and Melendo (1986) obtained similar mappings for the 5/2 res-

onance. They extended Scholl and Froeschle (1975) orbits to much longer time 

intervals (millions of years instead of 38 000) for 96 orbits, and found 53 orbits 

instead of 33 (Scholl and Froeschle 1975) for which the eccentricities go beyond 0.3. 

They thus reproduced the V - shaped nature of the gap. Sidlichovsky (1991) has 

recently obtained mappings for the third and fourth order asteroidal resonances 

Let us come back to Murray's results. The map he derived for the 2/1 and 

3/2 resonances includes terms through second order following the earlier derivation 

of the 3/1 map. The large chaotic zones obtained in both cases are questionable. 

Indeed the very large eccentricity increases at the 2/1 and 3/2 chaotic zones are 

artifacts of the truncation of the disturbing function to terms of second order. 

Henrard and Lemaître (1987) have shown that a good representation of the motion 

is only obtained when terms of very high order are included. Actually the miracle 

of the 3/1 map arises primarily from the fact that as a second order resonance 

the largest terms in the disturbing function are proportional to two powers of the 

eccentricities and the next terms are fourth order. An other fortunate and purely 

combinatorial coincidence is also that the 3/1 resonance is far from other resonances 

which complicate the dynamics. Anyway it must be emphasized that the failures of 

the 2/1 and 3/2 mappings were not due to the mapping method itself but to the 

level of truncation which should not change too much the topology of phase space. 

Of course an other constraint is that the equations obtained through truncation 

have to be solvable analytically. 

Let us emphasize also that all the dynamics is included in the averaged truncated 

Hamiltonian and the Kick's mappings can be consider as a first order symplectic 

integrator of such an Hamiltonian. 

2.1.2. D Q T's mapping or HilVs method. 

Again in the framework of the restricted circular three-body problem (Sun - planet -

test particle) a mapping has been derived by Duncan, Quinn and Tremaine (1989) 

in order to study the long-term evolution of the planetesimal-like orbits in the 

solar system. As usual the aim is to replace the Hamiltonian dynamical system 

by an area-preserving mapping that captures much of the relevant physics of the 

dynamical system. The approximation they use is based on the fact that planets 

have small eccentricities and the fractional difference in semi-major axes between 

a near circular orbit of a test particle and the nearest planet is small. Then the 

perturbations to the motion of a test particle on a near circular orbit are localized 

near conjunction with the planet then the first-order perturbations to the orbital 
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element can be computed analytically using Hill's equations ( Hénon and Petit 

1986) or equivalently Gauss' or Lagrange's equations. Away from conjunction the 

perturbating effect of the planet is assumed to be negligible and hence the orbital 

elements after conjunction remain unchanged until the next conjunction. 

Finally they get a map 

< ε - ε , / l ι 4 ( | z n + 1 p q ^ F ) 

, λ η + ι = λ η -f- 2 π / ( ε η + ι ) 

where Ζ — e βχρ(ιώ) and / ( ε ) = | (1 + ε ) - 3 / 2 — 1 e being the eccentricity, λ η 

the longitude of the n t h conjunction and ώ the longitude of periastre and ε = \ a ~ ^ p \ 

with a and ap the semi major axes of the particle and of the nearest planet. 

Mapping Integration 

Fig.2: (a) Trajectories of the one-planet map in the complex y planes, 

for mass ratio m / M Q = 5 . 1 7 8 χ 10~ 5 (Neptune's mass) and dimen-

sionless Jacobi constant 7 = 8.0694 χ 1 0 ~ 5 . (b) Surface of section for 

the restricted three-body problem with the same mass ratio and Jacobi 

constant chosen so that the longitude change of the periodic orbit is the 

same as in part (a) . From Duncan et al. (1989). 

Let us introduce the variable yn = Zn exp(—i9n) where Θη = λ — π f(en) + π, 

i.e. the mean longitude of the test particle at the opposition preceding the n t h 

conjunction. Then Fig.2 shows orbits of the mapping in the complex y plane and 

the corresponding surface of section through direct integration. 

As the authors state the map correctly reproduces the approximate location, 

shape and size of the zone of regular orbits near zero eccentricity as well as the 

https://doi.org/10.1017/S0074180900091415 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900091415


380 

existence of a larger, second zone of regular orbits centered near ζ — 0.03. The 

map underestimates the size of the second zone but this is not surprising since the 

approximation | ζ | <C ε is no longer accurate once | ζ | i> 0.03. The qualitative 

similarity of the two parts of Figure 2 suggests that the map provides a useful 

representation of the restricted three-body problem in this parameter regime. They 

both suggest that there may still be stable bands in the outer solar system contain-

ing surviving planetesimals. Let us emphasize that such a model does not take into 

account secular resonances which certainly play a crucial role for such a problem. 

2.1.3. The Keplerian map or mapping close to a separatrix 

We know that in a neighborhood of any separatrix (i.e. the trajectory with zero 

frequency of the unperturbed motion) some chaotic motion has to be expected. 

Actually, the simplest example of separatrix is the parabolic trajectory of the two 

body problem which separates bounded and unbounded motions. These systems 

have very long characteristic time scale which allow Petrosky and Broucke (1988) to 

attack the usual difficulty of small denominators by a new method through Fourier 

analysis. The system with long time scale can be characterized by "continuous" 

Fourier spectrum and in this case such a "non integrable system" may become 

integrable by embedding the small denominator in an analytic function through 

a suitable analytic continuation. They apply this idea to construct a solution of 

the restricted three body problem in the case of nearly parabolic motion of the 

third body and then derive a two-dimensional canonical map which describes the 

dynamics of long period cometary motion. 

Their map called "Keplerian map" reads 

P n + i = Ρ η + 2 σ μ * ι sin gn 

9n+i = < 7 η - 2 τ τ σ / ( - Ρ η + 1 ) 3 / 2 

where gn is the phase angle of Jupiter when the comet passes its perihelion and 

Pn the energy, μ is the mass of the small primary, σ — ± 1 the parity of the 

direction of revolution of the particle and s χ some scaling energy. Iterations of the 

Keplerian map show clearly chaotic region confined by K A M torus. Let us remark 

that the motion near the separatrix of a nonlinear pendulum is much less chaotic 

(the whisker map) . A physical implication of such chaotic motion of comets concerns 

the structure of a cometary cloud surrounding the solar system: to each parabolic 

orbit is associated a cloud of comets revolving on elliptic orbits around the Sun 

with holes and (islands)in the corresponding surface of section. The actual cloud 

being a superposition of these planar clouds. 

A similar mapping related to Keplerian problem has also been proposed by 

Sagdeev and Zaslavsky (1987) 

2.2 . A SEMI-ANALYTICAL APPROACH 

This approach has been pionnered by J. Hadjidemetriou (1991). He develops a new 

method for the construction of an algebraic mapping that approximates a dynamical 
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system which is close to an integrable one. Instead of using the usual method of 

solving approximately the actual system of differential equations to obtain a discrete 

system, he starts directly from the integrable system and obtains analytically the 

corresponding mapping on a suitable surface of section. Then he perturbs this 

mapping in such a way that it includes all the main features of the non-integrable 

systems, which are known by analytic and numerical studies. 

More precisely starting from an original Hamiltonian H — Ho + eH\ the re-

quirement is to build a mapping with the following properties: 

a) It is symplectic. 

b) It has the same fixed points as the actual system. 

c) The fixed points have the correct stability index. 

Actually such a mapping is obtained by a generating function build from the 

corresponding a v e r a g e d Hamiltonian and we are back to the problematic of the 

Kick's mapping and all the method depends on the validity of the averaging pro-

cedure, i.e., are the fixed points and their stability index the same for the original 

Hamiltonian and the truncated averaged one? Therefore, it is not surprising that 

in the case of the elliptic restricted model starting with the s a m e truncated av-

eraged Hamiltonian Hadjidemetriou has found surfaces of section very similar to 

Fig. l obtained by Wisdom. 

2.3. A SYNTHETIC APPROACH. 

All the mappings described above are ad hoc mappings valid only in some regions 

of the phase space and for specific purposes. C. Froeschle and J.M. Petit (1990) 

have built a mapping valid everywhere in phase space following an idea already 

used by Varosi et al. (1987) but in the framework of non hamiltonian systems, i.e. 

systems where attractors do exist. 

The basic idea of the synthetic mapping is to interpolate the image of a point, 

given the images of a set of points, located at the vertices of a grid. The simplest way 

to achieve this, is to use a linear interpolation (Varosi et al., 1987). Unfortunately, 

when attractors do not exist, this requires a rather fine graining of the phase space, 

i.e. we have to compute a lot of points on the grid. 

Taylor interpolations appear to be very precise. There exist in any case two 

key parameters: the number of divisions in each direction TV = (total number of 

œMs)(llD\ where D (D = 2 in their paper) is the dimension of the surface of section 

and the order M of the Taylor expansion. In order to explore the validity of the 

synthetic approach they applied their method for two cases: 

1) An algebric area preserving mapping for which the computation of orbits is 

very fast. This allows to calculate a lot of orbits and to perform enough iterations 

for a meaningful comparison. 

2) A special case of the restricted three body problem studied by Duncan et al. 

(1989) (see 2 supra) 
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Figs. 3a, b , c: (a) Standard mapping picture for a — — 1.3 (b) and (c) 

are enlargements of the small boxes shown in Figs. 3a and 3b respectively. 

Figs. 3d, e, f: Same as Figs. 3a, b, c for the synthetic mapping T5 and 

Ν = 20. 

Figs. 3g, h, i: Same as Figs. 3d, e, { for Ν = 40. 

https://doi.org/10.1017/S0074180900091415 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900091415


383 

Flg. 4α Rg. 4b 

• coe(t) e coe(() 

Fig. 4a: Trajectories of the Poincaré map of the restricted three body 

problem, in the plane (eccentricity, mean longitude) at conjunction with 

the planet, for the Neptune-Sun mass ratio m / M o = 5.178 10"5 and 

Jacobi constant 3.0080694. 

Figs. 4b , c , d: Same as Fig. 4a for the synthetic maps Τ Ι , T3 and T5 . 

Figs. 4e, f: Same as Figs. 4b, c for a grid with Ν = 400 obtained with 

T 5 . 
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First the well-known standard mapping has been used. (Froeschlé, 1970; Chirikov, 

1979; Lichtenberg and Lieberman, 1983) 

ζ ( η + 1 ) = χ(Ό + a sin(xW + (mod 2Π) 

y(n+l) = x ( n ) + y ( n ) (mod 2U) 

Fig.3a shows orbits of the standard mapping for a — —1.3, indeed such a map-

ping exhibits all the characteristics and well-known features of problems with two 

degrees of freedom such as invariant curves, islands and stochastic zones where 

the points wander in a chaotic way. Figs.3b and 3c are magnifications of the small 

boxes indicated in Figs. 3a and 3b respectively. At this magnification details like 

second order islands become evident and the approximation qualities of the syn-

thetics maps are easily visualized. Figs. 3g, 3h and 3i correspond respectively to the 

same orbits and same magnifications as 3a, 3b and 3c for the Taylor interpolation 

mapping in order M — 5 (T5) where the grid is characterized by Ν — 40. We ob-

tain results which look the same as for the original map. When the grid is such as 

Ν = 20 (Figs. 3d, 3e and 3f), it is interesting to notice the agreement of the details 

in magnifications e and f. This agreement is remarkable since the dimension of the 

cell (0.31) is much bigger than the dimension of the smallest islands seen in Fig. 3f 

(0.005). Of course the invariant curve shows some thickness which disappears for 

Ν = 40 but would reappear with a further magnification. This phenomenon is due 

to the fact that synthetic mapping like T5 does conserve areas only to order 6. 

W e have also tested the method on a special case of the restricted three body 

problem for which Duncan et al. have developed a special mapping. Fig. 4a exhibits 

orbits of the Poincaré map taking as surface of section the plane defined by the 

eccentricity and the mean longitude as polar coordinates, when the particle is in 

conjunction with the planet (i.e. in the rotating frame, when y — 0 and y' > 0) . 

On Figs. 4b, c, d are plotted the corresponding orbits for synthetic mapping T l , 

T3 , T5 for a grid with Ν = 100. If linear mapping T l shows only poor qualitative 

similarities with the Poincaré map, the map T3 correctly reproduces the locations, 

shapes and sizes of zones of regular orbits. Of course the map T5 is even better. 

Let us point out that to obtain the same accuracy we needed a smallest grid size 

(i.e. more points) than for the standard map since the functions which have to 

be interpolated are less regular. In this case, about 80 minutes were needed to 

compute the Poincaré map by integrating the equations of motion (Fig.4a) and 

only 2 seconds for T5 . However this should be tempered by the time needed to 

compute the grid. 

Let us remark that the same accuracy than the one obtained by the map T5 

can be obtained even for the map T l by decreasing drastically the grid cell size 

(i.e. increasing N). Actually for such an increase of the number of vertices, the 

price to pay is very low since the additional Poincaré return map values at the 

vertices can be computed using the more precise mapping T5. Figs. 4e, 4f, show 

the mapping T l and T3 for a grid with Ν = 400 where the 15/16 of the N2 map 

values at the vertices have been computed using T5 through the already computed 
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grid with Ν = 100. Indeed the accuracy of T l is drastically improved. Of course 

the same holds for T 3 . This combination of the order of interpolation and of dif-

ferent coarse graining, i.e. of different mappings appears very promising for four 

dimensional mappings, where the computational time of T5 is far to be negligible. 

However Taylor expansion of order 3 and 5 have provided very good results as long 

we used symmetrical interpolation formulae for which it is necessary to use an ex-

tended grid, i.e., a grid extended over the region of the phase space one wants to 

explore. Since there are cases where one cannot cross a given limit asymmetrical 

interpolation formulae have been tested and appeared less precise, where the infor-

mation, within the same accuracy, is concentrated only at the nearest neighbours 

taking into account gradient information, i.e., not only images of vertices are com-

puted but also the tangential mappings at each vertices. Hence an other type of 

interpolation has been succesfully used (see Petit J.M. and Froeschle C ) . 

3. Stochastic mappings 

3.1 . EXOGENEOUS STOCHASTIC MAPPING MONTE CARLO SIMULATION OF STEL-

LAR PERTURBATIONS (LONG-PERIOD COMETS) 

While it has recently been realized that an important partt of the dynamics of 

Oort cloud comets arises from regular motion in the Galactic tidal field (Heisler 

and Tremaine 1986), a decisive role is nonetheless played by individual stellar en-

counters. Given the physical parameters of such an encounter, its effect on the 

cometary motion is fully determined. However, the parameters of individual stel-

lar encounters are unpredictable so the stellar perturbations impose a stochastic 

variation on the cometary orbits. 

In Monte Carlo simulations of stellar perturbations (see, e.g., Weissman 1982; 

Remy and Mignard 1985) the dynamical evolution of a cloud of comets is studied as 

follows. At a given starting epoch each comet is initialized by choosing a set of or-

bital elements. These are perturbed by the gravitational effect of passing stars. The 

geometrical parameters of the stellar encounters are chosen at random, during the 

passage of a star a comet receives a heliocentric impulse through the interaction of 

the star with the comet and the Sun. This induces a change in the cometary orbital 

elements, so these are updated and the comet moves along a new Keplerian ellipse 

until the next encounter with a random star. In Weissman's procedure the impulse 

are taken in an even more simplified way from a pre-determined distribution. In 

other words a stochastic mapping is iterated where the perturbations caused by 

random stars impose a stochastic process on the cometary orbital elements, which 

therefore undergo a random walk. It is obvious that all orbits are chaotic and cor-

respondingly the largest LCE is strictly positive. The stochasticity is exogeneous 

since the stellar encounters occur at random. 

https://doi.org/10.1017/S0074180900091415 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900091415


386 

3.2. E N D O G E N E O U S STOCHASTIC MAPPINGS (SHORT-PERIOD COMETS AND K U I P E R 

BELT D Y N A M I C S ) 

3.2.1. Monte Carlo mapping of short-period comet dynamics 

As comets are captured into short-period orbits, i.e. with orbital period of the same 

order as those of the perturbing planets, the situation changes in a fundamental 

way. We now have to deal with only the intrinsic stochasticity of a dynamical 

system which can usually be approximated by a three-body problem: Sun-planet-

comet (Rickman and Froeschlé 1988). This stochasticity derives mainly from close 

encounters with the planet, and during the intervals between such encounters the 

cometary motion is quasi-regular and predictable. In more precise terms this means 

that the motion is stochastic only over time scales longer than the typical interval 

between encounters with the perturbing planet. Thus the phase space domain of 

short-period comets presents chaotic and ordered regions in an intricate mixture. 

Stochastic modelling of this motion is justified by the shadowing principle only if 

the time step is chosen long enough. Thus we may consider the following procedure 

(Rickman and Vaghi 1976; Froeschlé and Rickman 1980): we pick a large number of 

initial cometary orbits at random and integrate these with Jupiter as the perturbing 

planet over a time interval At, which can be different for different comets. From the 

resulting set of perturbation we construct stochastic orbital evolutions by picking 

independently a random perturbation for each successive interval At. For these 

evolution to simulate real ones we would have a constraint on the choice of Δ / so that 

a minimum time step for the random walk could in principle be defined. However, 

there are practical problems of such a procedure which are not easy to solve, These 

are connected with the question of the definition of the perturbation samples: how 

should one choose the "boxes" of phase space where the initial conditions are to 

be picked? As already mentioned, the dimension of the boxes can be reduced by 

symmetry arguments and in the present case a critical point is that short-period 

comet orbits are known to be generally of low inclinations. One is therefore close 

to a planar problem with a four-dimensional phase space, and within the limits 

chosen for the inclination the choice of inclination and orientation of the nodal 

line is statistically immaterial. Furthermore, since we are dealing with Jupiter-

crossing or Jupiter-tangent orbits and Jupiter's eccentricity is quite small, there is 

an approximately circular symmetry such that encounters with the planet can occur 

with equal probability independent of the orientation of the apsidal line. The choice 

of the latter is hence also immaterial, and obviously the time-related parameter 

expressing Jupiter's position at the time of the cometary perihelion passage is the 

real stochastic variable of the problem which should be taken at random with its 

true probability distribution. We are left with two orbital parameters which can be 

taken as, e.g., semi-major axis and eccentricity (a, e) , or aphelion and perihelion 

distances (Q, q). 

Boxes in the (Q, <j)-plane were considered in the Monte Carlo simulations cited 

above. Let us note that a further reduction of the dimensions appears unfeasible. 
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The Tisserand criterion for a co-planar cometary orbit : 

2aJ I 2qq 
Τ = h 2 4 / — — - = constant 

Q + q ]JaJ(Q + q) 

might be used to restrict the random walk (AQ,Aq) to one-dimensional curves, 

and the Monte Carlo simulation would then consist of a set of independent, parallel 

simulations for the différents values of T . In each of these one would consider a suit-

able orbital parameter varying along the curve, such as the inverse semi-major axis 

ζ — Ι / α , and there would be a random walk with step size distribution fi(Az) com-

puted for intervals [ζ,·_ι, Z{] along the ζ axis. However, although small (Froeschle and 

Rickman 1981), the perturbations AT in the elliptic restricted problem are indeed 

important for the out-come of the low-velocity encounters with Jupiter occuring 

in low-eccentricity planet-tangent orbits, and those encounters appear essential for 

the dynamical transfer of comets. 

Quite obviously the number of (Q , g)-boxes is limited in practice by the re-

quirement to compute a sample of perturbations large enough to give a fair repre-

sentation of the dynamics of the region in question. E.g., pronounced non-Gaussian 

tails are known to exist in the perturbation distributions and the sample must ex-

tend far enough into these tails to cover their significant parts. This means that 

the number of orbits to be integrated in each box may be very large [for a possible 

way to reduce this problem, see Rickman and Froeschle (1983)]. At present it thus 

appears difficult to go much beyond the dynamical resolution of the 30 boxes. On 

the other hand, this already guarantees a certain "dynamical homogeneity" in the 

sense that the perturbation distribution over a short interval of time (one orbital 

period) should not vary too much from one side of a box to the opposite one. 

However, within all the boxes we can expect to find smaller regions correspond-

ing to "resonant strips" with a « a r e s , where the comets are close to a simple mean 

motion resonance with Jupiter. Within such a region there may be slow circulation 

of the critical argument, in which case it is extremely difficult to define a mean 

interval between encounters and to find an integration interval At which is every-

where sufficient. But actually the situation is even worse, because there also exist 

integrable regions of phase space corresponding to stable librations of the critical 

argument, where encounters with Jupiter never occur. 

The main result of a Monte Carlo simulation of cometary dynamics is a picture 

of the distribution of comets over the various orbits connected by the stochastic 

transfer process in question. If the short-period comets are viewed in their most 

general framework, the dynamics includes perturbations by all the planets as well 

as nongravitational perturbations, and it would then be interesting to estimate the 

number of comets trapped in such quasi-stable resonant regions. How this goal 

would be achieved is not yet clear: the problem is to find an appropriate definition 

of the perturbation sample boxes and corresponding integration intervals for such a 

detailed investigation. If on the other hand one considers the dynamical transfer in 

the three-body problem (Sun-Jupiter-comet), the problem is instead to reach what 

may be called "topological homogeneity" (Froeschle and Rickman 1988): Comets 
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should then follow only chaotic routes and the relevant boxes from which the initial 

conditions are to be picked are in fact the intersections of the usual (Q , g)-boxes 

with the chaotic part of phase space. If this restriction is not taken into account, 

the rate of the transfer is artificially slowed down by the inclusion of irrelevant 

trappings or an overestimated probability of small perturbations. 

3.2.2. Markov chain modelling 

a. Short-period comet dynamics 

If indeed we consider the orbital distribution of comets as the principal result 

to be attained, we can again argue that the random walks by individual sample 

comets considered in the Monte Carlo simulation contain too much information: 

the only interesting quantity is the number of comets in each (Q, g)-box either as a 

function of time or in a steady state. The same perturbation samples used for the 

Monte Carlo simulation can then be used to calculate "jump probabilities" between 

the various (Q , g)-boxes over a common time interval At. Defining the state vector 

η of the cometary population to be the set of numbers of comets in the different 

boxes, and calling Pij the jump probability from box i to box j , η evolves according 

to a Markov chain: 

n(/ + At) = n(t). Ρ 

where Ρ = (Pij) is the transformation matrix. This method was first used in 

cometary dynamics by Rickman and Froeschle (1979) for the same domain of the 

(Q ,g)-plane as in the above-mentioned Monte Carlo simulation and later on for 

Oort cloud dynamics by Lago and Cazenave (1983). 

This Markov method has the advantage of extreme efficiency, in particular for 

finding steady-state solution where we have just to solve 

n 5 5 = n s s . Ρ 

i.e., a system of linear equation. Its main disadvantage is that, just like for the Monte 

Carlo simulation, the number of (Q ,g ) -boxes is limited by the large number of 

integrated orbits required to obtain accurate estimates of the jump probabilities. If 

e.g. the 30 boxes of Rickman and Froeschle are considered, the information obtained 

on the ( Q , q) distribution is strictly limited to the 30 sample points represented in 

the state vector. 

b. The long-term dymamical behaviour of small bodies in the Kuiper belt 

Again, like Rickman and Froeschle (1979) but in different spirit, in order to 

study the slow diffusion of small bodies in the Kuiper belt, i.e. to determine the 

time scales of this process, Levinson (1991) has used Markov chain methods. Here 

we are not seeking any more steady states solutions but estimates of diffusion times 

which should be of the order of the age of the solar system. 

The ( Q , q) plane is also divided into small bins for which transition probability 

are estimated through sample of 100 particles in each bin which are integrated for 
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approximately 100 periods. In addition to the bins within the Kuiper belt which 

is a transient region two special absorbing bins act as border edges, an inner edge 

q < 30 AU where the objects become Neptune crossers and an outer edge left as a 

free parameter with corresponding probability Pa — 1 and P^ = 0 for i φ j. 

The probabilities matrix takes the form: 

gives the average number of time steps a particle spends in transient bin j before 

it is absorbed if it is started in i. Then ti = ]Γ ·̂ M,-j gives the average time a 

particle spends in all transient bins before absorption. Furthermore, the variance 

of the particle lifetime is ν = ( 2 M — I)t — s where s,- = if. Finally / = MR 

gives the probability that a particle starting in transient bin i enter absorbing bin 

j. Using these tools Levinson found that the Kuiper belt is a good candidate as a 

source of short-period comets. Hovever, in addition to the already discussed possible 

draw backs of the method (size number of bins, time steps length) the stochasticity 

underlying the Markov process is indeed very small and may only due to undetected 

long-period oscillations in the behaviour of q and Q. 

In the previous study such a low stochasticity was indeed present as an artifact 

of the method but a strong stochasticity due to strong interactions between the 

comet and Jupiter was mainly responsible for the diffusion, i.e. big-jumps occured 

within At and therefore such an artifact could not invalidate the results. 
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