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ABSTRACT. Recently, Israel and Kandrup (1984; Kandrup 1984 a,b,c,d) have 
formulated a new, manifestly covariant approach to non-equilibrium 
statistical mechanics in classical general relativity. The object here 
is to indicate how that formalism may be used to construct a theory of 
'collisional' stellar dynamics, valid for a collection of point mass 
stars in the limit that incoherent radiative effects may be neglected. 

The idealisation of point masses is of course a gross oversimplifi
cation which, however, at least in principle, should not be that difficult 
to overcome. The neglect of radiative effects is more important, since 
it implies ultimately that deviations from some Average1 mean field 
conditions may be modeled by a comparatively simple direct interaction. 
This means that one need not consider explicitly the degrees of freedom 
of the gravitational 'field1. It should, therefore, be stressed that 
this neglect really is legitimate: the time scale for energy loss via 
radiation reaction will exceed the evaporation time scale and all other 
relevant scales provided that the central redshift z < 1, a condition 
believed necessary to ensure dynamical stability. 

Whether there exist realistic situations in which relativistic effects 
actually are important is at present an unanswered question. The object here 
is simply to understand how one might describe such relativistic systems 
if they do in fact exist. In this sense, the problem may, as suggested by 
Zel'dovich and Podurets (1966) , be termed one of 'methodological interest. ' 

In order to see what is required, it is useful to recall the Newtonian 
theory. In its most rigorous form, the starting point for the description of 
a collection of N identical, point mass stars is an N-particle distribution 
function u, the probability density for finding each star i at a given point 
x. with momentum p. at time t. The one-particle f, which is of more direct 
physical relevance, is constructed as a reduced distribution. Given this f, 
one may generate an average mass density p and other quantities of interest. 
The evolution of y is of course governed by the N-particle Liouville equa
tion. What one really wants, however, is an equation for the evolution of f. 

Physically, one anticipates that any such equation will allow for two 
sorts of effects, namely (i) the'average1 gravitational force - V$ 
associated with p , and (ii) ' fluctuating' forces that arise because the' true' 
and 'average' potentials do not coincide. The important point is that such 
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a decomposition of the total force can be implemented rigorously, so that 
one can derive an exact, closed, non-linear, non-local equation for the 
evolution of f (Kandrup 1981) . In the limit that the fluctuating components 
are neglected, one recovers the standard ! collisionless ' theory. In the 
limit that their effects may be evaluated as if the stars were following 
linear trajectories through the center of an infinite, homogeneous system, 
one recovers the Fokker-Planck equation of f collisional1 stellar dynamics . 

The question is of course: Could one formulate analogous relativistic 
theories of Collisionless1 and 'collisional1 stellar dynamics? An 
heuristic 'collisionless1 theory is easy enough to obtain (see, e.g., 
Ipser and Thome 1968). One again considers a one-particle f, now 
defined covariantly, and, given this f, one may construct an average stress-
energy T which in turn serves as a source for an average spacetime 
metric g . To the extent that 'fluctuations1 may be neglected, one 
might suppose that the stars may be approximated as following geodesies 
in this average spacetime, and, in this limit, one recovers a simple 
relativistic generalisation of the 'collisionless1 Vlasov equation. 

Transcending a 'collisionless' description is more difficult. One 
obvious complication is the fact that one really ought to incorporate 
explicitly the degrees of freedom of the gravitational field. Thus, in 
analogy with relativistic plasma physics, one ought to start from a more 
complicated distribution function involving both particle and field 
variables (Kandrup 1984d). This complication can, however, be circumvented 
if one is concerned only with formulating an approximate kinetic theory. 
The important point is that, to the extent that incoherent radiative effects 
may be neglected, one can model the gravitational 'forces' by a direct 
interaction involving only the coordinates and momenta of the stars 
(Israel and Kandrup 1984, Kandrup 1984a,b). 

Another complication arises when one tries to specify what is really 
meant by a gravitational 'force'. After all, the guiding principle of 
general relativity is that, in the absence of non-gravitational effects, 
the stars follow geodesies in the spacetime which they generate. To isolate 
upon a sensible gravitational 'force' one must re-express the 'true' 
physics — stars following geodesies in the irregular, rapidly fluctuating 
spacetime— in terms of another, smoothed background spacetime chosen 
to satisfy some appropriate field equations, e.g., the equations of the 
collisionless theory. The tensor 6T , the difference between the Christ-
offel symbols for the true and background spacetimes, serves to generate a 
'fluctuating force', the existence of which is manifest by the fact that 
the stars no longer appear to follow geodesies (Israel and Kandrup 1984). 
The form of this 6T must in general be determined by solving non-linear 
field equations whicn are virtually intractable analytically. To the extent, 
however, that the difference between the two spacetimes is small, so that 
the 'fluctuating forces' are weak, it will suffice to linearise the field 
equations about the background solution. A similar argument then suggests 
that, when solving these equations, one may proceed in a first approximation 
as if the stars were following geodesies in the background spacetime: this 
is the relativistic analogue of the standard ' impulse' approximation. 
What this means is that the gravitational forces will be generated from 
simple retarded potentials involving only the coordinates and momenta of 
the stars: one has achieved the desired direct interaction approximation. 
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Given these sorts of expressions for the inter-stellar forces, it is 
straightforward to proceed in comparatively close analogy with the Newtonian 
description to introduce an N-particle distribution function p and a 
reduced one-particle f; and, starting from this 'complete' description, it 
is possible to derive an exact, closed equation for the evolution of f. 
What remains then is to approximate that exact equation by a tractable 
kinetic equation. This entails four general assumptions, the justification 
of which has been discussed elsewhere (Israel and Kandrup 1984, Kandrup 
1984a,b,f). (i) It is assumed that any initial correlations have a negligible 
influence upon the evolution of f. (ii) It is assumed that there exists 
a 'collision' time scale short compared with the dynamical and relaxation 
time scales (in the context of an impulse approximation, this only makes 
sense if one introduces a cut off in the potential at large impact para
meter to avoid the standard logarithmic divergences). (iii) It is assumed 
that the stars may be approximated as following geodesies in the average 
spacetime. (iv) It is assumed that ,•in evaluating the effects of the 
fluctuating forces at some point x , one may introduce a local Lorentz 
frame and then proceed as if the spacetime were really homogeneous and 
flat ('localised fluctuations'). This final assumption enables one to 
express the forces in terms of their Fourier transforms, and one obtains 
thereby the kinetic equation (7) of Kandrup (1984c). 

Various properties of this kinetic equation have been discussed else
where (Israel and Kandrup 1984, Kandrup 1984a,c,f) but certain implications 
should be reiterated here, (i) In the obvious Newtonian limit, one recovers 
the well-known Landau equation for a 1/r potential, and, if one performs 
the k-space integrations by introducing suitable cut offs, one obtains 
the standard Fokker-Planck equation, (ii) Provided that one introduces a 
cut off appropriate for large impact parameter, one can conclude that the 
relativistic isothermal distribution constitutes an exact stationary solu
tion. If, however, one does not introduce a cut off, this is no longer 
true. Just as in the Newtonian limit (Kandrup 1984e), one anticipates 
deviations from an isothermal! (iii) The kinetic equation guarantees 
energy-momentum conservation, i.e., it implies that the mean field T is 
intrinsically divergence-free: V TfJ ̂  = 0. (iv) The kinetic equation^1 
implies an H-theorem inequality,Hi.e., the divergence of the Boltzmann 
entropy flow S associated with f is non-negative: V S >_ 0, with equa
lity holding only for a locally Maxwellian distribution of velocities. 
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