Can. J. Math., Vol. XXX, No. 4, 1978, pp. 1087-1091

CURVATURE BOUNDS FOR THE SPECTRUM OF CLOSED EINSTEIN SPACES

UDO SIMON

The following is our main result.

(A) THEOREM. Let (M, g) be a closed connected Einstein space, $n = \dim M \ge 2$ (with constant scalar curvature R). Let κ_0 be the lower bound of the sectional curvature. Then either (M, g) is isometrically diffeomorphic to a sphere and the first nonzero eigenvalue λ_1 of the Laplacian fulfils

 $\lambda_1 = n R = n \kappa_0$

or each eigenvalue λ of the Laplacian satisfies the inequality

 $\lambda > 2n\kappa_0$.

(B) *Remark.* As for a sphere of constant sectional curvature κ the first nonzero eigenvalue is given by $\lambda_1 = n\kappa$, the second by $\lambda_2 = (2n + 1)\kappa$. The second eigenvalue λ_2 of the Laplacian on closed Einstein spaces of dimension $n \geq 3$ generally satisfies

 $\lambda_2 > 2n\kappa_0$.

So on closed Einstein spaces, $n \ge 3$, there is no eigenvalue λ such that

 $n\kappa_0 < \lambda \leq 2n\kappa_0.$

Examples in [1] (cf. pp. 43 and 47; choose s = 2 for $\Psi_{n,s}$) and the value of λ_2 on spheres lead to the following.

CONJECTURE. On closed Einstein spaces, $n \ge 3$, there is no eigenvalue λ such that

 $n\kappa_0 < \lambda < 2(n+1)\kappa_0.$

Both bounds are the best possible.

A result related to Theorem A was proved by S. Tanno [8]. The author thanks S. Tanno and the referee for valuable hints.

1. Notations and auxiliary results. Let (M, g) be a connected Riemannian manifold of class C^{∞} , $n = \dim M \ge 2$, denote by ∇ the corresponding covariant differentiation and by g_{ij} (respectively g^{ij}) the components of the metric tensor g (respectively g^{-1}) in local coordinates (u^i) ; denote by do the

Received June 16, 1977 and in revised form, September 19, 1977.

UDO SIMON

volume element on M and by R^{h}_{ijk} (respectively R_{ij}) the components of the curvature tensor (respectively the Ricci tensor) (with the sign of [3, I, p. 201]); let R denote the scalar curvature (such that R = 1 on the unit sphere). As usual, raising and lowering of indices are defined.

Let $f: M \to \mathbf{R}$ be a C^{∞} -function, let $f_{ij} := \nabla_j \nabla_i f$ be the Hessian and (1.1) $\Delta f := g^{ij} f_{ij}$ the Laplacian and

(1.2) $\nabla(f, f) := g^{ij} \nabla_i f \nabla_j f$ the first Beltrami operator.

1.3. LEMMA ([6, (7*a*-*b*]). Let $f: M \to \mathbf{R}$ be a C^{∞} -function. Then f fulfils the equation

$$\begin{split} \frac{1}{2} \triangle \left(f_{ij} f^{ij} \right) &= 2 \sum_{i < j} \kappa_{ij} \left(\sigma_i - \sigma_j \right)^2 + f^{ij} \nabla_j \nabla_i (\triangle f) \\ &+ \nabla_k f_{ij} \nabla^k f^{ij} + f^{ij} f^k [2 \nabla_i R_{jk} - \nabla_k R_{ij}], \end{split}$$

where $\sigma_1, \ldots, \sigma_n$ are the eigenvalues of the Hessian, E_1, \ldots, E_n are corresponding orthonormal eigenvectors and κ_{ij} is the sectional curvature of the plane $\{E_i, E_j\}_{i \neq j}$.

1.4. LEMMA. Let M be a closed Einstein manifold, dim M = n > 2. There exists a nontrivial function $f: M \to \mathbf{R}, f \in C^{\infty}$, which fulfils

 $(1.4.1) \quad n \cdot f_{ij} = \Delta f \cdot g_{ij}$

if and only if M is isometrically diffeomorphic to a sphere.

Proof. Cf. [9].

For the following two lemmata cf. [5, Lemma 2.6 and Lemma 2.8].

1.5. LEMMA. Let (M, g) be closed (compact without boundary), dim $M \ge 2$. Let $f, h : M \to \mathbf{R}$ be C^{∞} -functions. Then

$$\int f_{ij}h^{ij}do - \int \Delta f \Delta h do + \int R^{ij}f_ih_j do = 0.$$

1.6. LEMMA. If M is closed and $f: M \to \mathbf{R}$ is a C^{∞} -function, then

$$\int \sum_{i < j} (\sigma_i - \sigma_j)^2 do = (n-1) \int (\Delta f)^2 do - n \int R^{ij} f_i f_j do.$$

2. Proof of the main theorem. Let (M, g) be a closed connected Einstein space, $n = \dim M > 2$. Then R is a constant. We assume (M, g) not to be isometrically diffeomorphic to a sphere. Then each eigenvalue fulfils $\lambda > nR$ [4]. We make the following calculations.

(a) From (1.5) we get for $h = \Delta f = -\lambda f$

$$(2.1) \quad \int f^{ij} \nabla_j \nabla_i (\Delta f) do = -\lambda \int (\Delta f)^2 do + (n-1)R \cdot \lambda \int \nabla (f,f) do$$
$$= \lambda [(n-1) \cdot R - \lambda] \int \nabla (f,f) do$$

1088

by Green's theorem. $\Delta f + \lambda f = 0$ and (1.6) imply

(2.2)
$$\int \sum_{i < j} (\sigma_i - \sigma_j)^2 do = (n-1)(\lambda - nR) \int \nabla(f, f) do;$$

therefore from (2.1) we get

(2.3)
$$\int f^{ij} \nabla_j \nabla_i (\Delta f) do = \frac{\lambda[(n-1)R - \lambda]}{(n-1)(\lambda - nR)} \int \sum_{i < j} (\sigma_i - \sigma_j)^2 do.$$

(b) As

$$0 \leq \nabla_{k} \left(f_{ij} - \frac{1}{n} \bigtriangleup f \cdot g_{ij} \right) \nabla^{k} \left(f^{ij} - \frac{1}{n} \bigtriangleup f \cdot g^{ij} \right) = \nabla_{k} f_{ij} \nabla^{k} f^{ij} - \frac{1}{n} \nabla (\bigtriangleup f, \bigtriangleup f)$$

we get from
$$\Delta f + \lambda f = 0$$
 and (2.1)
(2.4) $0 \leq \int \nabla_k f_{ij} \nabla^k f^{ij} do - \frac{1}{n} \int \nabla (\Delta f, \Delta f) do$
 $= \int \nabla_k f_{ij} \nabla^k f^{ij} do - \frac{1}{n} \lambda^2 \int \nabla (f, f) do$
 $= \int \nabla_k f_{ij} \nabla^k f^{ij} do - \frac{\lambda^2}{n(n-1)(\lambda - nR)} \int \sum_{i < j} (\sigma_i - \sigma_j)^2 do.$

(c) Applying (1.3) to a closed Einstein space, using (2.1)-(2.4), we get

$$\begin{split} 0 \, = \, \frac{1}{2} \, \int \, \bigtriangleup(f_{ij} f^{ij}) do \, = \, \int \, \left\{ \bigtriangledown_k f_{ij} \bigtriangledown^k f^{ij} - \frac{1}{n} \bigtriangledown (\bigtriangleup f, \, \bigtriangleup f) \right\} do \\ & + \, \int \, \sum_{i < j} \, \left(\sigma_i - \sigma_j \right)^2 \left[2 \kappa_{ij} - \frac{\lambda}{n} \right] do. \end{split}$$

Assume $\lambda \leq 2n\kappa_0$; then $\nabla_k f_{ij} \nabla^k f^{ij} - (1/n) \nabla (\Delta f, \Delta f) = 0$. *M* is irreducible (as the sectional curvature is positive from $0 < \lambda \leq 2n\kappa_0$), therefore

 $\nabla_k (f_{ij} - (1/n) (\Delta f) \cdot g_{ij}) = 0$

implies $f_{ij} - (1/n) (\Delta f) g_{ij} = \mu \cdot g_{ij}, \mu \in \mathbf{R}$, which again together with $\Delta f + \lambda f = 0$ implies $\mu = 0$. But then (M, g) is isometrically diffeomorphic to a sphere [9] which contradicts our assumption at the beginning of the proof. Therefore $\lambda > 2n\kappa_0$.

3. Two dimensional Riemannian manifolds. Let M be closed, dim M = 2, and let κ denote the curvature of (M, g). (1.5) gives

$$(3.1) \quad \lambda^2 \int f^2 do = \int (\Delta f)^2 do = \int f_{ij} f^{ij} do + \int R^{ij} f_i f_j do.$$

Now $2f_{ij} f^{ij} = (\sigma_1 - \sigma_2)^2 + (\Delta f)^2$; therefore
$$(3.2) \quad 2 \int f_{ij} f^{ij} do = \int (\sigma_1 - \sigma_2)^2 do + \lambda \int \nabla (f, f) do.$$

Furthermore

$$\int \nabla (f,f) do = - \int f \Delta f do = \lambda \int f^2 do.$$

The integral formulas above give:

3.3. LEMMA. Let (M, g) be a closed, connected Riemannian manifold, dim M = 2. Then each eigenvalue λ of the Laplacian fulfils

$$\frac{\int (\sigma_1 - \sigma_2)^2 do}{\int \nabla (f, f) do} + 2\min \kappa \leq \lambda \leq \frac{\int (\sigma_1 - \sigma_2)^2 do}{\int \nabla (f, f) do} + 2\max \kappa_f$$

where f is an eigenfunction corresponding to the eigenvalue λ and σ_1 , σ_2 are the eigenvalues of the Hessian of f.

3.4. THEOREM. Let (M, g) be a closed, connected two dimensional Riemannian manifold of genus zero. Then the first nonzero eigenvalue λ_1 of the Laplacian fulfils

 $(3.4.1) \quad 2\min \kappa \leq \lambda_1 \leq 2\max \kappa$

and the equality on the left or on the right implies (M, g) to be isometrically diffeomorphic to a sphere.

Proof. J. Hersch [2] proved

$$\lambda_1 = 8\pi \left\{ \int do \right\}^{-1}$$

where equality holds if and only if (M, g) is isometrically diffeomorphic to a sphere. Using the theorem of Gauss-Bonnet we get the assertion for the right hand side of (3.4.1). (3.3) implies $2 \min \kappa \leq \lambda_1$ and equality if and only if $\sigma_1 = \sigma_2 = :\sigma$ on M. But this gives $f_{ij} = \sigma g_{ij}$ and $-\lambda f = \Delta f = 2\sigma$; so finally we have

$$f_{ij} + \frac{\lambda}{2} fg_{ij} = 0$$

and (M, g) is isometrically diffeomorphic to a sphere [4].

References

- M. P. Do Carmo and N. R. Wallach, Minimal immersions of spheres into spheres, Ann. Math. (2) 93 (1971), 43-62.
- J. Hersch, Quatre propriétés isopérimétriques de membranes sphériques homogènes, C. R. Acad. Sci. Paris, Ser. A 270 (1970), 1645–1648.
- 3. S. Kobayashi and K. Nomizu, Foundations of differential geometry I, II (Interscience Publishers, New York, London, 1963, 1969).
- M. Obata, Certain conditions for a Riemannian manifold to be isometric with a sphere, J. Math. Soc. Japan 14 (1962), 333–340.

1090

- 5. U. Simon, Isometries with spheres, Math. Z. 153 (1977), 23-27.
- 6. ——— Submanifolds with parallel mean curvature vector and the curvature of minimal submanifolds of spheres, Archiv. Math. 29 (1977), 106-112.
- 7. T. Takahashi, Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan 18 (1966), 380-385.
- 8. S. Tanno, On a lower bound of the second eigenvalue of the Laplacian on an Einstein space, to appear, Colloq. Math.
- 9. K. Yano and T. Nagano, Einstein spaces admitting a one-parameter group of conformal transformations, Annals of Math. 69 (1959), 451-461.

Technische Universität Berlin, Berlin, West Germany