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CURVATURE BOUNDS FOR THE SPECTRUM 
OF CLOSED EINSTEIN SPACES 

UDO SIMON 

The following is our main result. 

(A) T H E O R E M . Let (M, g) be a closed connected Einstein space, n = dim 
M ^ 2 (with constant scalar curvature R). Let K0 be the lower bound of the sec
tional curvature. Then either (M, g) is isometrically diffeomorphic to a sphere and 
the first nonzero eigenvalue Xi of the Laplacian fulfils 

Xi = n R = nK0 

or each eigenvalue X of the Laplacian satisfies the inequality 

X > 2nK0. 

(B) Remark. As for a sphere of constant sectional curvature K the first 
nonzero eigenvalue is given by Xi = nK, the second by X2 = (2n + 1)K. The 
second eigenvalue X2 of the Laplacian on closed Einstein spaces of dimension 
n ^ 3 generally satisfies 

X2 > 2nK0. 

So on closed Einstein spaces, n ^ 3, there is no eigenvalue X such tha t 

nno < X ^ 2nK0. 

Examples in [1] (cf. pp. 43 and 47; choose s — 2 for ^n,s) and the value of X2 

on spheres lead to the following. 

C O N J E C T U R E . On closed Einstein spaces, n ^ 3, there is no eigenvalue X 
such that 

nK0 < X < 2{n + 1)K0 . 

Both bounds are the best possible. 

A result related to Theorem A was proved by S. Tanno [8]. The author 
thanks S. Tanno and the referee for valuable hints. 

1. N o t a t i o n s a n d auxi l iary resu l t s . Let (M, g) be a connected Rieman-
nian manifold of class C°°, n = dim M ^ 2, denote by V the corresponding 
covariant differentiation and by g7 ;(respectively g ° ) the components of the 
metric tensor g (respectively g"1) in local coordinates (u1); denote by do the 
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volume element on M and by Rh
ijk (respectively R^) the components of the 

curvature tensor (respectively the Ricci tensor) (with the sign of [3, I, p. 201]) ; 
let R denote the scalar curvature (such that R = 1 on the unit sphere). As 
usual, raising and lowering of indices are defined. 

Let / : M —> R be a C°°-function, let ftj: = V^V</ be the Hessian and 

(1.1) A / : = gijfij the Laplacian and 

(1.2) V ( / , / ) : = gijVifVjf the first Beltrami operator. 

1.3. LEMMA ([6, (la-b]). Let f: M —» R be a Cœ-function. Then f fulfils the 
equation 

§ A (/„/") = 2 £ *„(,, - aj)2 + / ' V , V , ( A / ) 

+ V ^ v y + ftsf[2VtR* - VM, 

where a\, . . . , an are the eigenvalues of the Hessian, E\, . . . , En are corresponding 
orthonormal eigenvectors and Ktj is the sectional curvature of the plane {Eu Ej\ w . 

1.4. LEMMA. Let M be a closed Einstein manifold, dim M = n > 2. There 
exists a nontrivial function f: M —> R , / Ç C°°, which fulfils 

(1.4.1) n-ft, = Af-gij 

if and only if M is isometrically diffeomorphic to a sphere. 

Proof. Cf. [9]. 

For the following two lemmata cf. [5, Lemma 2.6 and Lemma 2.8]. 

1.5. LEMMA. Let (M, g) be closed (compact without boundary), dim M ^ 2. 
Letf, h : M —> Kbe C°°-functions. Then 

J ftjh
ijdo - J AfAhdo + J Rijfthjdo = 0. 

1.6. LEMMA. If M is closed andf : M -^ K is a Cœ-function, then 

J Z (?i - *i)2do = (n - 1) J (Affdo - n J Rijfifjdo. 

2. Proof of the main theorem. Let (M, g) be a closed connected Einstein 
space, n = dim M > 2. Then R is a constant. We assume (M, g) not to be 
isometrically diffeomorphic to a sphere. Then each eigenvalue fulfils X > nR 
[4]. We make the following calculations. 

(a) From (1.5) we get for h = Af = — X/ 

(2.1) J fijVjVi(Af)do = - X J ( A / ) 2 ^ + (» - 1)2? • X J V(fj)do 

= X[(n~ 1 ) . ^ - X] J V(f,f)do 
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by Green's theorem. A / + Xf = 0 and (1.6) imply 

(2.2) / ] £ ( * < - aj)2do = (w - 1)(X - ni?) I V(f,f)do\ 

therefore from (2.1) we get 

(2.3) JV'V^A/)̂  = # ^ ^ } f g <*, - *,)**>• 
(b) As 

0 g V t(/„ - I A/- «„) V*(/" - \ A/ • g") = V<f„V*/° 

- ± V ( A / , A / ) 

we get from A/ + Xf = 0 and (2.1) 

(2.4) 0 £ J V*ftiV*fudo -~J V(A/, Aj)do 

= / VkftN
kfdo - ~ X2 / V (/,/)& 

(c) Applying (1.3) to a closed Einstein space, using (2.1)-(2.4), we get 

0 = è / Mfi*fiS)do = / { v ^ V f - "} V(A/, A/)}&> 

+ I XI (°"t — °"i) 2>Kij — " \do. J i<j L nj 

Assume X S 2tiK0; then VkfcjV
kfij - ( l /w)V(A/ , A / ) = 0. ikfis-irreducible 

(as the sectional curvature is positive from 0 < X ̂  2WK0), therefore 

V * ( / « - ( l /»)(A/)-g«y) = 0 

implies/*, — (1/w) (Af)gij = M • gz-;-, M G R, which again together with A / + X/= 0 
implies JU = 0. But then (M, g) is isometrically difïeomorphic to a sphere [9] 
which contradicts our assumption at the beginning of the proof. Therefore 
X > 2nKo. 

3. Two dimensional Riemannian manifolds. Let M be closed, dim M = 
2, and let K denote the curvature of (M, g). (1.5) gives 

(3.1) X2 ffdo = j (Af)2do = fftjf
tjdo + J R^ftf/lo. 

Now 2fijf
ti = (di - <72)

2 + (A/) 2 ; therefore 

(3.2) 2 J /„/"</* = J (en - <r2)2^ + X J V(f,f)do. 
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Fur thermore 

J V(fJ)do = - J /A/do = X J fdo. 

T h e integral formulas above give: 

3.3. LEMMA. Let (M, g) be a closed, connected Riemannian manifold, dim 
M = 2. 77&ew mcft eigenvalue X 0/ /fee Laplacian fulfils 

I ((71 — (72) do I ((71 — (72) d0 

+ 2 min K ^ X ^ T5 + 2 max K, 

V (/,/)<&> JV(J,f)do 

where f is an eigenfunction corresponding to the eigenvalue X and o-\, a2 are the 
eigenvalues of the Hessian off. 

3.4. T H E O R E M . Let (M, g) be a closed, connected two dimensional Riemannian 

manifold of genus zero. Then the first nonzero eigenvalue Xi of the Laplacian fulfils 

(3.4.1) 2 min /c ^ Xi ^ 2 max K 

and the equality on the left or on the right implies (M, g) to be isometrically 
diffeomorphic to a sphere. 

Proof. J. Hersch [2] proved 

Xi = 8TT| J do\ 

where equali ty holds if and only if (M, g) is isometrically diffeomorphic to a 
sphere. Using the theorem of Gauss-Bonnet we get the assertion for the right 
hand side of (3.4.1). (3.3) implies 2 min K ^ Xi and equali ty if and only if 
(7i = (72 = :a on M. But this gives ftj = agij and — \f = A / = 2a; so finally 
we have 

fa + \fga = 0 

and (M, g) is isometrically diffeomorphic to a sphere [4]. 
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