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GENERALIZATION OF THE HAUSDORFF
MOMENT PROBLEM

DAVID BORWEIN AND AMNON JAKIMOVSKI

1. Introduction. Suppose throughoutthat {k,} is a sequence of
positive integers, that

0

IIA

h<h<l< <ln,l—>OOEZ—— ,

that By =1 if /, = 1, and that {u,”} (»=0,1,...,k, — 1, n =0,
..) is a sequence of real numbers. We shall be concerned with the

problem of establishing necessary and sufficient conditions for there to

be a function « satisfying

1
1) (—1)u," =f t" log"t da(t)
0

forr=0,1,...,k,—1, n=0,1,...

and certain additional conditions. The case /o = 0, k, = 1 for n = 0,
1, ... of the problem is the version of the classical moment problem
considered originally by Hausdorff [5], [6], [7]; the above formulation
will emerge as a natural generalization thereof. An alternative formula-
tion of the problem is to express it as the ‘‘infinite Hermite interpolation
problem’’ of establishing necessary and sufficient conditions for a function
F to be a Laplace transform of the form

F(z) =f e dvy (u)
0
and to satisfy
FOWU) = (=1)u,” forr =0,1,...,k,— 1, 2=0,1,....

Considerable simplification is obtained by adoption of the following
notation. Construct a monotonic sequence {\,} from {l,} by repeating
each I, k, times. Then

O=EM=EMENRE..EMM>0 Moo, 2'5\1__
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HAUSDORFF MOMENT PROBLEM 947

For each s there is an integer n(s) such that A\, = l,). Let m, = b,y
and construct a sequence {u,"} (»r =0,1,...,m;—1,5s=20,1,...)
from {u,”} by setting u,” = u,»‘”. Then m, is the multiplicity of A,
i.e., it is the number of indices j for which \; = A\;; and p;(” = u(” when-
ever \; = A,. Formula (1) can be written in the equivalent form

1
@ (0w = [ P logtaat)
0

forr=0,1,...,m¢—1, s=0,1,....

Mey Met1y - - -5 Npe By a standard result on Hermite interpolation (see
[3, p. 29]) there is a unique polynomial P,(z) of degree at most n such
that

For 0 £ k < s £ n, let m,(k, n) be the multiplicity of A\, among

@3) PO = (=)@ forr=0,1,...,m(0,n) — 1,
=0,1,...,n
It is known (see [11, p. 45]) that

n

Po@) =25 ulh -y Ml = 2) - (= 2)
where the divided difference u[)\, . . ., \,] is given by
1 f P,(2)dz
e e DG WIS w e
Ci, being a positively sensed Jordan contour enclosing Ag, Agi1, - - -y Ay
ForO0<k=n0<t<1,let
Ak = )\k+1 o >\nu[>\k7 L) )‘n]y
1 t'dz

e R Y D G W s s o

with the convention that products such as M\y1... N, = 1 when & = n.
If f(z) is analytic inside and on Cj, then, by the theory of residues,

f f(z)dz
Cn e —2) ... (A — 2)

is a linear combination, with coefficients depending only on X,

Net1, « « + 5 A, Of the values fO(\,), r =0,1,...,m,(k,n) — 1, s =
k,k+1,...,n It follows that \;(¢) is a linear combination of the
functions Pelog”t, r=0,1,...,myk,n) — 1, s=kk+1,...,n

and that \,; is the same linear combination with (—1)7u,(" substituted
for £+ log™ t. Consequently, if @ € BV, where BV is the space of norma-
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lized functions of bounded variation on [0, 1], i.e., (0) = 0, 2a(t) =
a(t+) + a(t—) for 0 < ¢t < 1, and if

1
(—1) " =f P log’tda(t) for0 =r < my(k,n), k<s<n,
0
then
1
v = [ o).
0

An explicit formula for u{\;, . .., \,] can be obtained by evaluating

1 f t’dz
2 J ey, A\ —2) ... (A — 2)

and substituting (—1)7u,” for #+log" in the result.
Let

Do= (14 A\o)do = 1,D, = (1+7\1'1) ...(1+£—)

= (14 \)d, forn = 1.
Then, for n = 0,

A n
Dn = )\n+1dn+1 = 1 +0—>:; +;)dky

and, forn > k = 0,

] " d; g f"f dx D,
5 ——= 3y ¥ = log ="
®) j;kH L+ .i=Z:Jc+1 D;~ j;kﬂ D,y X o8 Dy

n d i n 1

A

A Dir SN
Further, it is known that if all the A\,’s are different, then

6) 0= Ms(t) S M) £1 for0<t <1, 0=5s=m,
k=0

by [10, Lemma 1] and

1
) f M (B)dE = L for0<k=n
0 -Dn

by [6, p. 294]. A simple continuity argument applied to (4) shows that
(6) and (7) remain valid when different A\,’s are allowed to coalesce.
Let 6 be an even continuous convex function such that 6(x)/u — 0 as
u— 0 and 0(u)/u — 0 as u — oo. Associated with this function is the
Orlicz class Lg of all functions x Lebesgue integrable over [0, 1] for which

f: 6(x(t))dt < 0.
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Let L, be the space of measurable functions x on [0, 1] with finite
norm

[lx]l. = ess. supoc i<t [£(2)].
Let

My(n) = Z L3 0(—— xnk),

=0

Mi(n) = ;0 |>\nk|’

M) = maxosesn Ml 22
k
and let

Moy = sup,zo Mo(n), M1 = supyzo M1(n), M., = sup,zo M (n).

The following two theorems are the main results established in the
present paper.

THEOREM 1. A necessary and sufficient condition for there to be a func-
tion
(1) @ € BV satisfying (1) is that M; < © ;
(ii) B € L, satisfying

1
®) (—D)u,” = f t™ log’t B(t)dt
0

forr=0,1,...,k,—1,n=0,1,...

is that M, < o ;

(iii) B € Ly satisfying (8) is that My < .
Furthermore

(iv) of (1) s satisfied by a function a € BV, then
M,y = [}|da(t)|—8la(0+)|where § = O when Iy = 0,6 = 1 when Iy > 0;
moreover o is unique when ly = 0, and when ly > 0 1t differs by a constant,
over the interval 0 < t < 1, from any other function in BV satisfying (1);

(v) 1f (8) is satisfied by a function 8 € L, then B is essentially unique
and My, = ||Blles

(vi) if (8) is satisfied by a function B € Lg, then B is essentially unique
and

1
My =f0 0(B(2))dt.
THEOREM 2. For n = 0,1, . ..

Mi(n) £ Mi(n+1), M, (n) Mo(n+ 1), Mo(n) = Mo(n +1);
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and
lim, o Mi(n) = My, lim, o M (n) = M, lim,_ , Ms(n) = M,.

The case lp = 0, k, = 1 forn = 0,1, ... of Theorem 1(i) was estab-
lished by Hausdorff [5], [6] and Schoenberg [13] subsequently gave a
different proof; the case Io > 0, k, = 1 for n = 0,1, ... was proved by
Leviatan [9]. (See also [4].)

The case I, = n, k, = 1 for n = 0,1, ... of Theorem 1(ii) is due to
Hausdorff (7].
Thecasel, = n,k, = 1forn =0,1,...,0(u) = |[u",1 < p < 0, of

Theorem 1(iii) is due to Hausdorff [7] and the case k, = 1 for n =
0,1,...to Leviatan [9], [10]. (See also [1] and [2].)

See [2] and the references there given for known special cases of
Theorem 2.

2. Preliminary results.

LeEmMmA 1. Let 7, a be non-negative integers, let 0 < N < Ay41, and let

A A “ 1 7
() () (2 )
g Aey1 An ]:Z:Hlx,-—)\

Then (i) 6. ts uniformly bounded for n > k = a,
(ii) lim,_ o 6, = O for B = a,

D\? D .
(iii) 6 — (f) log” Fn — 0 uniformly when n > k — 0.
n k

Proof. Let0 < e < M,a=\X—¢8 =N+ ¢ let
1
Y = Yok = Z ;\_,
=k+1 A
and, for n > a, let
— A _ —an/An — ( __1__,) - _ =Ban
u”—l )\n—e yUn = 1+>\n = e .

Then a, — N\, 8, — X\ and so we can choose a positive integer N = a so
large that

o, — A < ¢ |B. — N < e forn > N.
First, for n > & = N, we have that
n 1 )r N ( Aext
0< 6y =u u"( < ey +
" e j=zk:+1)\' Sl VAR Aeyr — A

Since v,; — © as n — o0, it follows that (i) and (ii) hold for 2 = N. The
extension of these conclus1ons to the range N > k = a is simple.
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Next, let

n T
Apx = luk+1 P — Ug41 - - ‘Unl( Z >\)

- 1
b = .. n{( ) 1oy 22},
k Uk+1 4 j=zk;1 N — A g D,

Then, for n > k = N, we have that

©9) 0=Saus (- e‘ﬂ’)v'(ﬂ—)
Nerl — A

v(8 — a)e““‘r'(—'——)‘k+1 )T

<

- )\k+l - )\

- 2757’(7-1-1)!( Aes1 ) _ 20+ 1)! ( Aes1 )'e,
= (OZ’Y)H—I Aet1 — A \ = G)H—l Aey1 — A

and, by (5), that

n 1 7—1( n 1 Dn)
< < _ Ln
(10) 0 =< by =< vpy41.. .vnr( Z X, — )\) 72;+1 N, — X log D,

( n 1 )r—l( n 1 1 )

< —

= D Tl j=zk+1 Aj— A A A — N T4
n |

<

= Uggl e U,J’( ; )\) )\k+1

e_wmr( i1 ) A1 o ( A1 )’x+ 1
Aep1 — A A1 (>\ - 6) >\k+1 —A Apt1

It follows from (9) that a,; — 0 uniformly when z > k& — o0, and from
(10) that b,; — 0 uniformly when n > k — o0. Since

e Bt
nk Dn og Dk

conclusion (iii) follows.

LeEMMA 2. Let y(t) = M\eg1 — 1) ... A\, — t) where 0 < k < n and
0 <t < M1, and let v be a positive integer. Then
o 1 )r M\b(t) ( n 1 )r—l
¢ 1 ¢ ( = F—
\up ® — (=17 Zx_ =S Wl PV vy

J=k+1

IIA

S aup + b forn >k = N,

where M 1s a number independent of t, k and n.

Proof. The result is evidently true with M = 0 when » = 1. Suppose
therefore that » = 2 and let

1
’Y]—>\j’_t.
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As easy inductive argument shows that
o ( 3 )
sy OV

is equal to a linear combination with constant coefficients of terms of
the form

n bl n I)2 n bm
a am
( 2 w“‘) 2 vﬂ) B B
j=k1 j=k+1 j=k+1

where the a,'s and b;'s are positive integers, a; > 1 and
albl + (lgbz + [P + (lmbm =17.
Each of the terms is no greater than

v ) () () (S0)”

j=k+1 j=k+1 j=k+1 j=k+
n a,—1+a, (b;—D+a,b,+...+ambm n r—1
= 'Yk+1( Z ’Yj) = ’Yk+1( Z ’Yj) .
=1 J=k+1
The desired conclusion follows.
LEMMA 3. Let ¢(t) = Ag1 — 1) ... (N, — £), ®(@) = Ny — ) ()

where a is a positive integer, 0 < s < n and Ny < Ngy1. Then O (\) =0
when 0 < v < a, and when r = a,

; n 1 T—a

[®7(\)] = M#/(M)( 2. )\—“_—A—)
j=s+1 Aj s

where M is a number independent of s and n.

Proof. The first part is evident. For the second part we observe that,
when r = a,

[2ON)| =7(r = 1) ... (r —a+ P2 (),

and, as in the proof of Lemma 2, that =% (\,)/¢¥(\;) can be expressed
as a linear combination with constant coefficients of terms each with
absolute value no greater than

n _L_)r—-a
( 7=Zs+1 )‘i — A ’

The desired conclusion follows.

Lemma 4. If My < 0, Ay < Agprandr =0,1,...,m, — 1, then

(7) : - As )\s = 1 r
ot Eaafim ) () (5 )
# nl_rxrxl) k;s s )\k+1 )\n j=zk;_1 )\j - AS

Proof. For r = 0 the above sum is equal to p® for every n = s by
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(3). Suppose therefore that 1 < r < m, — 1. Then, by Lemmas 2 and 3
we have, for n = s, that

an | (-1P, "’(X)—Z""k( xm) (1_;—)

n 1 T
g )
j=zk+l A=A
s—1

+ Mwns E I)‘nkl

k=s—ms+1

Wak

= MZ l>‘nk|_

where M is a positive number independent of s and #, and

s A c 1\
) oS
W ( )\k+1 An j=Zk+1 )‘7_ A

Since Y r—o || £ M, for n = 0, and, by Lemma 1(i) and (ii), wy is
uniformly bounded and lim,_, w,; = 0 for & = s, the right-hand side of
(11) tends to 0 as n — . In view of (3), this establishes the desired

conclusion.
LeEmMA 5. If My < 0 andr = 0,1,...,m; — 1, then
As
(—=1)7u,"” = hmz )\nk( ) log'&.
N0 k= Dn

Proof. Suppose, without loss in generality, that A, < A4, and let

Sy = \1——)...\1—=— .
iy ( )\k+1 M ,-f;l A — N

Then, by Lemma 1(ii) and (iii),

ot -
lim 2, *"k{a"k (D,, log" 5, =0

since Y o |Au| £ M, for n = 0and D, — o0; and, by Lemma 1(ii) and
Lemma 4,

hmZ Auidpr = Mg )-

n-s00 k=0

The desired conclusion follows.

LEmMA 6. If a function x € BV s such that

1
ft“log’tdx(t)zo forr=0,1,...,my—1, s=0,1,...,
0

thenx(t) = x(04) for 0 < ¢t £ 1. If, in addition, Ao = 0, then x(0+) = 0.
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Proof. When X\, = 0 it follows from a known result (see [11, Theorem
8.2]) that

1
f 'dx(t) =0 forn=0,1,....
0

The proof can now be completed in the same way as in the proof of
Lemma 3 in [2].

3. Proofs of the main results.

Proofs of the necessity parts of Theorem 1(i), (ii) and (iii).
Part (i). Suppose the function @ € BV satisfies (1). For0 < k& < n, we
have that

1
0
and thus, by (6),

Z | M| <f lda(t)lz Ak (2) <f |dee(2)]-
Hence
(12) M, éfo da(t)].

Part (ii). Suppose the function g8 € L, satisfies (8). For 0 < k < n
we have that

1
(13) A = fo >\nk(t)ﬂ(t)dt
and thus, by (6) and (7),
el = 11811 52
Hence

(14) M, = ||l

Part (iii). Suppose the function 8 € L, satisfies (8). It follows from
(13) and (7), by Jensen’s inequality (see [15, pp. 23-24]) that

1
e(g A ) fl)f A ()0 (B(1))dE for0 <k < .
k
Hence, by (6),

Z%";e(;—l— xnk) =f019(ﬁ(t))dt

k=0
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and so

(15) Mo éfo 0 (B(1))dt.

Proofs of the sufficiency parts of Theorem 1(i), (ii) and (iii).
We first observe that

k=0 k=0 L/n

and, by Young's inequality (see [8, p. 12]), that

D, D,

where N is the convex function complementary to © (see [8, p. 11]).
Hence

Z | = N(I)Z -+ Z -~e( ) < N(1) 4+ Mo.
It follows that M, < Mm, M, £ N(1) + My and so M; < o under

each of the three hypotheses of the sufficiency parts of Theorem 1(i),
(i1) and (iii). Suppose therefore that M; < .
Forn = 0,1, ..., define the function «, on [0, 1] by setting

ﬂO for0 =t < 1/D,,

oa(t) = ) > A forl/D, £t <1,
{ DkgtDn

so that

1 n
fo [doz"(t)| = hZ—:oM"kl = M.

Consequently, by Helly’s theorem (see [14, p. 29]), there is an increasing
sequence of positive integers {n;} and a function a of bounded variation
on [0, 1] such that

(16) lim i, an(t) = a(t) for0 <t =<1

and

a7) f lda(t)] < M.

Part (i). By Lemma 5, we have that

)\s
(—1)7,"” = llmz )\,,k( ) Iog’% = hmf * log”t do (t)

n-co k=0 n->00

forr=0,1,...,m;— 1, s =0,1,.... It follows, by the Helly-Bray
theorem, (see [14, p. 31]) that « satisfies (2) and hence (1).
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Part (ii). Suppose M, < . Let 0 £ x <y £ 1. Then for »n suffi-
ciently large there are integers a, b (depending on #) such that —1 =
a <b=mnand

Da Da+l Db DD+1
n=x< D, = n=y< D, (D1 =0),
since
max —& = maxP—k —0 asn— 0.
0=k=n Dn 0 <k=n Dn 1+ )\k
Now
b
An
) — )] |
b = b é Mcoy
i e
k=a+1 Dn k=a+1 Dn
and

In view of (16), it follows that

y—x T
Hence

a(t) = c—i—f Bu)du for0 <t =<1
0

where 8 € L, and ||8||, < M. Further, 8 satisfies (8) since « satisfies

(1).

Part (iii). Suppose My < 0. Let0 = x9 < %1 < ... < x,, = 1. Then,
for n sufficiently large, there exist integers ay, a1, . . . , @, (depending on
n) such that —1 = ey < a; < ... <@, = nand

Dy, Disy ;
< x, < Zite = -
D, =x; < D, forj=12,...,m —1,
so that
aj+1
ay(X41) — an(x;) = Z Mg forj=0,1,...,m — L.
k=14a;
Let
ajt1 . —_— .
= LB B
k=1+a; n Z Gk
k=1+a; Dn
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Then, by Jensen's inequality (see [15, pp. 23-24]),

W g, (D ) (
< E == = —
OCjn S k=lz+aj D, e(dk M) forj=0,1,...,m—1,
and so
m—1
E oin = M.
7=0
Also
aj+1
Iimz __k_=xj+1_xj fOrj—_'—O,l,.-.,m—‘l.
N k=14+aj Dn
In view of (16), it follows that
S o) — o)
im Y, o = 3 (1 — x,)0 (LEEL X)) < gpy
nyw j=0 j=0 Xji+1 — X

and, by a theorem of Medvedev [12], this implies that

at) = c+f0 Bu)du for0 =t =<1

where 8 € Ly and [§6(8(t))dt < M,. Further, 8 satisfies (8) since a
satisfies (1).

Proofs of Theorem 1(iv), (v) and (vi).

Part (iv). Suppose that I, = 0. By Lemma 6 the function a € BV
satisfying (1) is unique. By (12), (17) and the proof of the sufficiency
part of Theorem 1(i), we have that

1
0

Suppose that [, > 0, and let v(0) =0, v(¢) = a(t) — «(0+) for
0 <t = 1. Then v € BV and satisfies (1). Hence, by (12),

M, éfo |dv ().

Further, by (17) and the proof of the sufficiency part of Theorem 1(i),
there is a function @ € BV satisfying (1) and

fol |da(t)| £ M.

By Lemma 6, v(t) = a(t) — a(0+) for 0 <t = 1. Since v(0+) =
v(0), we have that

1 1
M, §f0 |dy (£)] §fo |da(t)| £ M.
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Hence

i = [ ey = a0 41

Part (v). By Lemma 6, the function 8 € L, satisfying (8) is essentially
unique. By (14) and the proof of the sufficiency part of Theorem 1(ii),
we have that M, £ |8l = M.

Part (vi). This part can be established by the proof of Part (v) with
certain obvious modifications.

Proof of Theorem 2. Let 0 < k < n. Then

Ak ) )\k-}-l
1 — 5 e + 25 N
( A 1 +1,k xn+l +1,k+1

N \ (1 3 __)\k_) _1_f Poi1(2)dz
= E+L - - - Angl a1/ 2mid e Ok — 2) o0 (N1 — 2)

>\k+1 1 Pn+1(Z)dZ
w1 270 ¢y g1 — 2) -0 (N — 2)

1 Poi1(2)dz
"2t ey, e —2) ... (A — 2)

= _)\k+1--~)\

= >\nkv

and hence

(18) )\nkg (1 _ l‘lL) Ant 1k + (1 + )\k) n+1 k+1 D

Ant1 Ant1 dir”
It follows that

) Dr 0+ 1),

M(n)_M(n-i—l)(l—i—- Do

n+1
Since

(1——)"‘) RNy g S

M1/ Dpyr An+1Dpp1
applying Jensen's inequality to (18) yields

_‘!i (_D__ )
(S] d, A
dk {( )\k ) Dn ( Dn+l)
< = -— & pun o
= Dn 1 )‘n+l Dn+1 0 )\n+1,k+1 dk
(1 )\k) )\n+ Dn+ e(>\n+l,k+1 dk+1

Ax ) dy ( Dn+1) Aeg1 diga ( Dn+l)
= (1= 2 ) B g, ontt) 4 Rt Gt gy L S
( Mgt/ Dot HE 4, + M1 Dar L e
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Summing this inequality for £ = 0,1, ..., n, we get that

 odo
At 1Dnp1
Since the above argument is valid when 6 is any even continuous convex
function, we can take 6(u) = |u| to obtain, in addition, that

e(x,,ﬂ,oD(;:‘) < My(n + 1).

My(n) = Mo(n + 1) —

Mi(n) £ Mi(n + 1).
This completes the proof of Theorem 2.

Note. In all but Theorem 2 the condition that the sequences {/,} and
{\.} be monotonic is redundant and was imposed only to avoid non-
essential and tedious complication in the proofs. Without the mono-
tonicity condition, but with {l,} distinct, Ao = [y 2 0, kg = 1 if [, = 0,
l,>0forn=1,2,...,identities and inequalities such as (5), (6) (using
(10) and (11) on p. 46 of [11] and the proof of Lemma 1 in [10]) and (7)
can readily be shown to hold, and Lemmas 5 and 6 and Theorem 1
remain valid. Removal of the monotonicity condition involves changes in
statements and proofs of lemmas as indicated below.

Statements.
LeEMMA 1. Replace 0 < A < A41 by 0 < N < mings, Ay
LeEMMA 2. Replace 0 < ¢ < M1 by 0 < ¢ % \; for j > k, and
0] ( S ) R20) l( N1 )
— — by max .
Aeyr — ¢ i=Zk+1 A —t Y N — ¢t j=zk+1 N — ¢
LEMMA 3. Replace Ny < Ngp1 by Ny # N formw > j > 5, and

n

xb(xs)( —1———)7_“ by [ms)i( > !—)\;%—M—‘)H.

j=s+1 )‘j — A Jj=s+1
LEMMA 4. Replace Ny < Ag41 by N # X\, for j > s.
Proofs.

Lemma 1. Replace My1/ (Ary1 — N) by max;s; N;/(N; — N),and 1/ 41
by max;s; 1/\;.

Lemma 2. In the inequalities replace v; by |v;| and vi1 by max;>i|v;l.
Lemma 3. Replace \; — A\ by |A; — Ay
Lemma 4. Replace 1/(A\r41 — As) by max;s, 1/|\; — A, and take

A A n 1 r—1
T A ([
W l ( Ait1 An j=z:k+l I)‘j - AS[

Lemma 5. Replace A\; < Agp1 by A, # \; for j > s.
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