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p-adic L-functions via local–global
interpolation: the case of GL2 ×GU(1)
Daniel Disegni
Abstract. Let F be a totally real field, and let E/F be a CM quadratic extension. We construct a
p-adic L-function attached to Hida families for the group GL2/F × ResE/F GL1 . It is characterized by
an exact interpolation property for critical Rankin–Selberg L-values, at classical points correspond-
ing to representations π ⊠ χ with the weights of χ smaller than the weights of π.

Our p-adic L-function agrees with previous results of Hida when E/F splits above p or F = Q,
and it is new otherwise. Exploring a method that should bear further fruits, we build it as a ratio
of families of global and local Waldspurger zeta integrals, the latter constructed using the local
Langlands correspondence in families.

In an appendix of possibly independent recreational interest, we give a reality-TV-inspired proof
of an identity concerning double factorials.

1 Introduction

This paper is a case study in the construction of p-adic L-functions by the “soft”
method of glueing ratios of matching families of global and local zeta integrals. The
local integrals are constructed and then inserted into the global context by using the
local Langlands correspondence in families (see [Dis20] and the references therein).
The method, whose deployment seems new for non-abelian families, should be of wide
applicability; we give a brief introductory description in Section 1.2.

The specific context and arithmetic interest of our work is the following. Let F be
a totally real field, let E/F be a totally imaginary quadratic extension, and let p be a
rational prime. We construct a meromorphic function Lp(V ) on Hida families for
GL2/F × ResE/F GL1 that interpolates critical values

L(1/2, πE ⊗ χ)
L(1, π, ad) ,

for p-ordinary automorphic representations π ⊠ χ such that χ has lower weights than
π. (The precise statement is Theorem A; note that in our normalization, the above
numerators are not necessarily central values.) The function Lp(V ) is new (if not
surprising) at least when E/F does not split above p; for a discussion of previous related
works, see Section 1.1.6.
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966 D. Disegni

The interpolation property of Lp(V ) holds at all classical points satisfying the
weight condition and lying outside the polar locus (on which we have partial
control), and it provides an entirely explicit and complete characterization of the
function, in the spirit of [Hid96]. Its generality and precision are key to some
arithmetic applications in [Dis/b], which motivated our choice of case. In that paper,
we prove, first, the p-adic Beilinson–Bloch–Kato conjecture in analytic rank 1 for
(conjugate-)self-dual motives attached to representations πE ⊗ χ as above; and sec-
ond, one divisibility in an Iwasawa Main Conjecture for the cyclotomic deriva-
tive d♯Lp(V ) of Lp(V ) along a self-dual locus. Both results, new or partly new
even when F = Q and E/F splits at p, rely on a p-adic Gross–Zagier formula for
d♯Lp(V ). In turn, that formula is proved by analytically continuing formulas from
[Dis17, Disa] for the central derivatives of certain cyclotomic p-adic L-functions
Lp(V(π , χ) , s) attached to those representations π ⊠ χ as above that have minimal
weights. The continuation argument thus requires to exactly identify the collection
{(Lp(V(π , χ) , s)(π , χ)} of single-variable functions as a set of specializations of a
multivariable analytic function, which is indeed our Lp(V ).

It would be interesting to extend our results to the nonordinary case by the method
of [AI21, Urb14]. As for further arithmetic directions in the ordinary case,1 the main
remaining goal is perhaps the full Iwasawa Main Conjecture for Lp(V ). This was
proved by Skinner and Urban [SU14] and Wan [Wan15] in the split case; in the nonsplit
case, results toward it (when F = Q) were recently obtained by Büyükboduk and
Lei [BL]. A second goal is the remaining divisibility in the Main Conjecture for the
cyclotomic derivative of Lp(V ) (cf. [Dis/b, Theorem E]); in view of the p-adic Gross–
Zagier formula of [Dis/b], this is equivalent to a suitable generalization of Perrin-
Riou’s main conjecture for Heegner points, which in its original form was recently
proved by Burungale, Castella, and Kim [BCK21].

1.1 Statement of the main result

We move toward stating our main theorem, leaving a few of the detailed definitions
of the objects involved to the body of the paper.

1.1.1 p-adic automorphic representations

Consider the algebraic groups over F

G = GL2/F , H ∶= ResE/F GL1/F .(1.1.1)

If v0 is a place of Q, we denote

Σv0 = Hom (F , Qv0).

A (numerical) v0-adic weight for G is a tuple w ∶= (w0 , w = (wτ)τ∈Σv0
) of integers, all

of the same parity, such that wτ ≥ 0 for all τ. It is said cohomological if wτ ≥ 2 for all τ.

1This discussion has no ambition of being either a comprehensive research program or a compre-
hensive survey of the growing literature on the subject. Moreover, it entirely leaves out not only the case
of nonordinary families, but also the p-adic L-function with complementary (to (1.1.7)) interpolation
range introduced in [BDP13].
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p-adic L-functions for GL2 × GU(1) 967

A weight for H is a tuple l = (l0 , l = (lτ)τ∈Σv0
) of integers of the same parity. Finally,

if w and l are weights for G and H, the associated contracted weight for G × H is2

(w0 + l0 , w , l).

If w is a p-adic weight (say, for G) and ι∶Qp ↪ C is an embedding, we denote
w ι ∶= (w0 , (wτ)ι○τ∶F↪C). (In fact, w ι only depends on ι∣L if w is rational over the finite
extension L of Qp in the sense that Gal(Qp/L) fixes w.) Let A be the ring of adèles of F.
An automorphic representation of archimedean weight w is a complex automorphic
representation π of G(A) such that π∞ = πw ∶= ⊗τ∶F↪Rπ(w0 ,wτ), where π(w0 ,wτ) is the
discrete series of GL2(Fτ) of weight wτ and central character z ↦ zw0 . If L is p-adic, we
define an automorphic representation of G(A) of weight w over L to be a representation
π of G(A∞) on an L-vector space, such that for every ι∶ L ↪ C, the representation

π ι ∶= π ⊗L , ι π∞,w ι

of G(A) is automorphic.3
To the representation π over L is attached a two-dimensional representation Vπ of

GF ∶= Gal(F/F); denoting by Vπ ,v its restriction to a decomposition group at a place v
of F, the representation Vπ is characterized by L(Vπ ,v , s) = L(s + 1/2, πv) for all v (this
is the “Hecke” normalization of the Langlands correspondence, cf. [Del73, Section
3.2]). We say that π is ordinary4 if, for each place v∣p of F, there is a nontrivial GFv -
stable filtration

0 → V+
π ,v → Vπ ,v → V−

π ,v → 0(1.1.2)

such that the character α○
π ,v ∶ F×

v → L× corresponding to V+
π ,v(−1) has values in O×

L .
Let L be a p-adic field splitting E, suppose chosen for each τ∶ F ↪ L an extension τ′

to E,5 and let τ′c = τ′ ○ c for the complex conjugation c of E/F. A Hecke character of
H of weight l over the p-adic field L is a locally algebraic character χ∶E×/A∞,×

E → L×

such that

χ(tp) = ∏
τ∶F↪L

τ′(tp)(lτ+l0)/2τ′c(tp)(−lτ+l0)/2

for all tp in some neighborhood of 1 ∈ E×
p . We let Vχ be the one-dimensional

GE -representation corresponding to χ.

1.1.2 L-values

Let π (respectively, χ) be a complex automorphic representation of G(A) (respectively,
H(A)), and let πE denote the base change of π to E. Let us also introduce the

2A contracted weight is the same as a weight for (G ×H)1 ∶= {(g , h) ∶ det(g) = NE/F(h)} ⊂ G ×H.
This is in fact the true group governing our constructions.

3This definition is slightly different from, but equivalent to, the one adopted in [Dis/b], whose
flexibility will not be needed here.

4The literature often adds to the definition the extra restriction that α○π ,v should be unramified, and
calls “nearly ordinary” what we call “ordinary.”

5This will only intervene in the numerical labeling of the weights.
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968 D. Disegni

convenient notation

“V(π , χ),v ∶= (Vπ ,v ⊗ IndEv
Fv

χv) ⊖ ad(Vπ ,v)(1)′′(1.1.3)

(to be thought of as referring to a “virtual motive”).
Let η∶ F×/A× → {±1} be the character associated with E/F, and let

L (V(π , χ),v , 0) ∶= ζF ,v(2)L(1/2, πE ,v ⊗ χv)
L(1, ηv)L(1, πv , ad) ⋅

⎧⎪⎪⎨⎪⎪⎩

1, if v ∤ ∞
π−1 , if v∣∞

∈ C,

L (V(π , χ) , 0) ∶= ∏
v

L (V(π , χ),v , 0),

where the product (in the sense of analytic continuation) is over all places. These are
the L-values we will interpolate.

1.1.3 Interpolation factors

Let L be a finite extension of Qp , let π be an ordinary automorphic representa-
tion of G(A) over L, with a locally algebraic central character ωπ ∶A∞,× → L×, let
χ∶H(F)/H(A) → L× be a locally algebraic character, and set ωχ ∶= χ∣A∞,× . Let ι∶ L ↪ C
be an embedding, and let ψ = ∏v ψv ∶ F/A → C× be the standard additive character
such that ψ∞(x) = e2πiTrF∞/R(x).

If v∣p, let ad(Vπ ,v)(1)++ ∶= Hom (V−
π ,v , V+

π ,v), and define

ev(V(π ι , χι)) =
∏w∣v γ(ιWD[V+

π ,v∣GE ,w
⊗ Vχ,w], ψE ,w)−1

γ(ιWD[ad(Vπ ,v)(1)++], ψv)−1 ⋅L (V(π ι , χι),v)−1 ,

(1.1.4)

where ιWD is the functor from potentially semistable Galois representations to
complex Weil–Deligne representations of [Fon94], the inverse Deligne–Langlands γ-
factor is γ(W , ψv)−1 = L(W)/ε(W , ψv)L(W∗(1)),6 and ψE ,w = ψv ○ TrEw/Fv .

Let k0 ∈ Z be such that the archimedean component of ω = ωπ ωχ is ω∞(x) = xk0 .
We define

e∞(V(π ι , χι)) = ik0[F∶Q]

and

ep∞(V(π ι , χι)) ∶= e∞(V(π ι , χι)) ⋅∏
v∣p

ev(V(π ι , χι)).(1.1.5)

1.1.4 Hida families

Let U p
G ⊂ G(Ap∞) be any open compact subgroup, and for R = Zp , Qp , let Tsph, ord

U p
G ,R be

the p-(nearly) ordinary spherical Hecke R-algebra acting on ordinary p-adic modular
cuspforms for G of tame level U p

G.

6The normalizations of L- and ε-factors are as in [Tat79].
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A cuspidal Hida family XG is an irreducible component of the
space YG,U p

G
∶= Spec Tsph, ord

U p
G ,Qp

for some U p
G. It is a scheme finite flat over

Spec Zp�T1 , . . . , T[F∶Q]+1+δF , p �⊗Zp Qp (where δF , p is the p-Leopoldt defect of
F), coming with a dense ind-finite subscheme

X cl
G ⊂ XG

of classical points, and a locally free sheaf VG of rank 2 endowed with an OXG -linear
action of GF . To each x ∈ X cl

G is associated an automorphic representation πx of
G(A∞) over Qp(x), and the fiber VG∣x ≅ Vπx . The (numerical) weight of x is defined
to be the weight of πx .

Let U p
H ⊂ H(Ap∞) be an open compact subgroup. We define

YH = YH,U p
H
∶= Spec Zp�H(F)/H(Ap∞)/U p

H�⊗Zp Qp ,(1.1.6)

where the topology on H(F)/H(Ap∞)/U p
H is profinite; it comes with a universal

character χuniv ∶H(F)/H(A∞) → O(YH)×, identified with a GE -representation VH
of rank 1, and a dense ind-finite subscheme Y cl

H ⊂ YH, whose points y correspond
to U p

H-invariant locally algebraic Hecke characters χy of H over Qp(y). The weight of
y is defined to be the weight of χy .

Finally, the ordinary eigenvariety for G × H of level U p
G × U p

H is

YG×H = YG×H,U p
G×U p

H
∶= YG×̂YH ∶= Spec Tsph, ord

U p
G ,Zp

⊗̂Zp Zp�H(F)/H(Ap∞)/U p
H�⊗Zp Qp .

Its subset of classical points is Y cl
G×H ∶= Y cl

G ×Y cl
H . A Hida family for G × H is an

irreducible component of YG×H,U p
G×U p

H
for some U p

G, U p
H.

We now isolate an interesting subspace of YG×H. Let ωG∶ F×/A∞,× → O(YG)× be
the character giving the action of the center of G(A) on p-adic modular forms, let
ωH ∶= χuniv∣A∞,× , and let

ω ∶= ωGωH∶ F×/A∞,× → O(YG×H)×.

The self-dual locus

Y sd
G×H ⊂ YG×H

is the closed subspace defined by ω = 1. If X is a Hida family for G × H, we denote
X cl ∶= X ∩Y cl

G×H, X sd ∶= X ∩Y sd
G×H, and X cl,sd ∶= X cl ∩X sd.

1.1.5 Main theorem

Throughout this paper, if X is a scheme over a characteristic-zero field L, we identify
a geometric point x ∈ X (C) with a pair (x0 , ι), where x0 ∈ X is the scheme point
image of (as a synonym, underlying) x and ι∶ L(x0) ↪ C is an embedding. If X is
integral, we denote by K (X ) the local ring of the generic point, which we call the
field of meromorphic functions on X .

https://doi.org/10.4153/S0008414X22000256 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X22000256


970 D. Disegni

If X is a Hida family for G × H, we define X cl,wt ⊂ X cl to be the subset of points
(x0 , y0) whose contracted weight (k0 , w , l) satisfies

∣lv ∣ ≤ wv − 2, ∣k0∣ ≤ wv − ∣lv ∣ − 2 for all v ∈ Σp .(1.1.7)

We denote X cl,sd,wt ∶= X cl,sd ∩X cl,wt.

Theorem A Let X be a Hida family for G × H whose self-dual locus X sd is nonempty.
There exists a unique meromorphic function

Lp(V ) ∈ K (X ),

whose polar locus D does not intersect X cl,sd,wt such that for each (x , y) ∈ X cl,wt(C) −
D(C), we have

Lp(V )(x , y) = ep∞(V(πx , χy)) ⋅L (V(πx , χy) , 0).(1.1.8)

Here, if (x0 , y0) ∈ X cl is the point underlying (x , y) and ι∶Qp(x0 , y0) ↪ C is the
corresponding embedding, we have denoted πx = π ι

x0
, χy = χι

y0
, and the interpolation

factor is as in (1.1.5).

The value of the interpolation factor agrees with the general conjectures of Coates
and Perrin-Riou (see [Coa91]). (The notation V is meant to evoke some “universal
virtual Galois representation interpolating (1.1.3).”)

1.1.6 Previous related work

When E/F splits above p, Theorem A may be essentially deduced from the main
result of [Hid91] (see also [Hid09]). Hida’s method uses the Rankin–Selberg integral,
whereas ours uses Waldspurger’s variant [Wal85] based on the Weil representation (as
discussed below).

The numerator of our L-value is a special case of the standard L-function for
GL2 × GL1 over E, and when so considered, our p-adic L-function is a multiple of the
restriction to some base-change locus of one constructed by Januszewski [Jan] using
the method of modular symbols; however, that function is not uniquely characterized
by its interpolation property, which involves unspecified periods.

Finally, when F = Q, variants of Lp(V ) were constructed by Hida [Hid88,
Theorem 5.1a] and, more recently, by Loeffler and Büyükboduk and Lei (see [BL,
Section B.4]) under various local restrictions.

1.2 Idea of proof, organization of the paper, and discussion of the method

The proof combines the strategy of Hida [Hid91] with an enhanced version of that of
[Dis17, Proof of Theorem A], where we had constructed the “slices” Lp(V )(x ,−) for
x ∈ X cl

G of weight 2.
We start from Waldspurger’s [Wal85] integral representation of Rankin–Selberg

type

( f , I(ϕ, χ)) = L (V(π , χ) , 0) ⋅∏
v

Rv(Wv , ϕv , χv),(1.2.1)
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where ( , ) is a normalized Petersson product, f is a form in π with Whittaker function
⊗v Wv , the form I(ϕ, χ) is a mixed theta-Eisenstein series depending on a certain
Schwartz function ϕ, and the Rv are normalized local integrals.

In Section 2, we discuss the general setup. In Section 3, we make a judicious choice
of ϕv at the places v∣p∞ and interpolate the ordinary projection of I(ϕ, χ) into a
YG×H-adic modular form. In Section 4, we interpolate Rv for v ∤ p∞ using sheaves
of local Whittaker functions over X provided by the local Langlands correspondence
in families (Section 4.4); we compute Rv for v∣p∞ (Section 4.3), which yield the
interpolation factors in (1.1.8); and finally (Section 4.5), we use (1.2.1) to define Lp(V )
as a glued quotient of the global and local (away from p∞) families of zeta integrals.

In Appendix A, we give a TV-inspired bijective proof of a combinatorial lemma
occurring in Section 3.3.

The method of constructing p-adic L-functions as ratios of arbitrary matching
families of global and local zeta integrals should be applicable whenever an integral
representation for the corresponding complex L-function is available, at least if the
groups involved are products of general linear groups: for example, for Rankin–
Selberg L-functions. It can be compared to the “hard” constructions from much of
the existing literature on p-adic L-functions, which rely on fine choices of local data
at all places, computation of the associated integrals, and bounds on the ramification
of the data (see [Hsi21] for an excellent example of the state of the art). To be sure, the
two approaches should be viewed as complementary rather than alternative: while
the “soft” construction provides a flexibility useful for some applications (such as in
[Dis17]), explicit choices and computations can still be plugged into it, and are likely
still indispensable to address finer issues such as integrality.

For another brief general discussion of our method focused on the role of the
local Langlands correspondence in families (LLCF), as well as some results on local
interpolation, we refer to [Dis20, Sections 1.2 and 5];7 see also the very recent work
of Cai and Fan [CF] for a related study in the context of periods attached to spherical
varieties. Abelian antecedents of the construction, for which the LLCF is not needed,
can be found in [Dis17, LZZ18].

The local–global approach may in principle introduce poles coming from zeros of
the families of local integrals. In our specific setup, the Waldspurger local integrals are
not easy to control (at least for this author) away from the self-dual locus. This is why
Theorem A, while sufficient for the arithmetic applications in [Dis/b], is not as strong
as it could be: one may at least expect that the condition that X sd be nonempty is
superfluous, and that the polar locus of Lp(V ) should not intersect X cl,wt. As noted
by a referee, approaching Lp(V ) via the well-understood Rankin–Selberg integrals
for GL2 × GL2 would likely yield such a strengthening.

2 p-adic modular forms and Hida families

The material of this section is largely due to Hida (see [Hid91, Sections 1–3 and 7] and
the references therein).

7In Appendix B, we correct a couple of blundered statements from [Dis20].
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2.1 Notation and preliminaries

The notation introduced in the present subsection (or in the introduction) will be
used throughout the paper unless otherwise noted, in particular, the groups G and H
defined in (1.1.1).

2.1.1 General notation

The following notational choices are largely standard.

• The fields F and E are as fixed in the introduction unless specified otherwise; if ∗
denotes a place of Q or a finite set thereof, we denote by S∗ the set of places of F
above ∗.

• We denote by DF , DE , and DE/F , respectively, the absolute discriminants of F and
E and relative discriminant of E/F; for a finite place v of F, we denote by dv ∈ Fv
a generator of the different ideal of F and by Dv ∈ Fv a generator of the relative
discriminant ideal.

• We denote by < the partial order on F given by x < y if and only if τ(x) < τ(y) for
all τ ∈ Σ∞; we denote R+ ∶= {x ∈ R ∣ x > 0} and F+ ∶= {x ∈ F ∣ x > 0} ⊂ F×.

• A is the ring of adèles of F; if S is a finite set of places of a number field F, we denote
AS = ∏′

v∉S Fv , and FS ∶= ∏v∈S Fv ; when S consists of the set of places of F above
some finite set of places of Q (for instance, the place p), we use the same notation
with those places of Q instead of S (for instance, Fp = FSp ). We denote F+

∞ = {x ∈
F∞ ∣ xτ > 0 for all τ ∈ Σ∞} and A+ ∶= A∞ × F+

∞.
• We denote by ψ∶ F/A → C× the standard additive character as in Section 1.1.3.
• If R/R0 is a ring extension, A is an R0-algebra, and X is an R0-scheme, we denote

AR ∶= A⊗R0 R, XR ∶= X ×Spec R0 R.

• We denote by GK the absolute Galois group of a field K.
• If K is a finite extension of F, its class number is denoted by

hK ∶= ∣K×/A∞,×
K /Ô×

K ∣.

• For a place v of F, we denote by �v a fixed uniformizer at v, and by qF ,v the
cardinality of the residue field; we denote qF , p ∶= (qF ,v)v∈Sp .

• The class field theory isomorphism is normalized by sending uniformizers to
geometric Frobenii; for K a number field (respectively, a local field), we will then
identify characters of GK with characters of K×/A×

K (respectively, K×) without
further comment.

• If I is a finite index set and x = (x i)i , y = (y i) are real vectors, we define (x y)i =
x i y i and x y ∶= ∏i x y i

i whenever that makes sense. Moreover, we often identify an
integer w0 with the constant vector (w0)i∈I ∈ ZI .

• We denote by 1[⋅] the {0, 1}-valued function on logical propositions such that
1[ϕ] = 1 if and only if ϕ is true.
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2.1.2 Subgroups of GL2 and special elements

We denote by Z, A, and N, respectively the center, diagonal torus, and upper unipo-
tent subgroup of G = GL2/F ; we let P = AN and P1 ∶= P ∩ SL2/F . We define a map
a∶GL1/F → G by

a(y) ∶= ( y
1 ) .

We denote

w ∶= ( 1
−1 ) ∈ GL2(F)

or its image in GL2(R) for any F-algebra R. (The context will prevent any confusion
with the notation for the weights of G.) For r ∈ ZSp

≥1 , we define

wrv ,v ∶= ( 1
−�rv

v
) ∈ GL2(Fv), wr , p ∶= ∏

v∣p
wrv ,v ∈ GL2(Fp),

as well as a sequence of compact subgroups

Uv ,rv ∶= U 1
1(�rv

v ) ∶= {( a b
c d ) ∈ GL2(OF ,v) ∶ a − 1 ≡ d − 1 ≡ c ≡ 0(mod �rv

v )} ⊂ GL2(Fv),

Up,r ∶= ∏
v∈Sp

Uv ,rv .

For θ ∈ (R/2πZ)S∞ , we denote rθ ∶= (( cos θv sin θv
− sin θv cos θv

))
v
∈ SO(2, F∞).

2.1.3 Hecke algebras

Let S be a finite set of non-archimedean places of F, and let U S = ∏v∉S Uv ⊂
GL2(AS∞) be an open compact subgroup. For each finite set of finite places S, we
define the Hecke algebra

HU S ∶= Cc(U S/G(AS∞)/U S , Z).

It carries an involution

T ↦ T⋎(2.1.1)

arising from the map g ↦ g−1 on the group G.
Let Ap ∶= A(Fp) ⊂ G(Fp) be the diagonal torus, and let A+

p be the set of t = ( t1
t2
)

such that v(t1) ≥ v(t2) for all v∣p. The involution

t ↦ t⋎ ∶= det(t)−1 t(2.1.2)

preserves A+
p . For S a finite set of places of F disjoint from Sp ∪ S∞, we define the

ordinary Hecke algebra

H ord
U S p ∶= HU S p ,Zp ⊗ Zp[Ap]
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over Zp , which will act on spaces of ordinary modular forms (here and in the rest of
the text, a subscript Sp is shorthand for S ∪ Sp). It is endowed with the involution ⋎
deduced from (2.1.1) and (2.1.2).

If U = ∏v Uv ⊂ G(A∞) (respectively, U p = ∏v∤p Uv ⊂ G(Ap∞)) are open com-
pact subgroups, and S (respectively, S p) is the set of places such that Uv is not maximal,
we define

H sph
U ∶= HU S , H sph, ord

U p ∶= H ord
U S p .

(These depend on S, but their images in endomorphisms rings of spaces of modular
forms do not.)

2.1.4 Measures

We use the same notation and conventions for Haar measures and integration as in
[YZZ12, Section 1.6] and [Dis17, Section 1.9]. In particular, we have a regularized
integration functional

∫
∗

E×/A×E /A×
f (t) dt,

which satisfies the following.

Lemma 2.1 Let f be a smooth function on A×
E that is invariant under E×

∞. Let μ ⊂ O×
E

be a finite index subgroup fixing f (under the scaling action). Then

∫
∗

E×/A×E /A×
∑

x∈E×
f (xt) dt = 2L(1, η)

hE
[O×

E ∶ μ]∫
A∞,×

E

∑
α∈μ

f (αt) d●t,

where d●t is the Haar measure giving volume 1 to Ô×
E .

Proof Let U ⊂ A∞,×
E be any compact open subgroup fixing f. Since both sides are

independent of μ, we may assume that μ = O×
E ∩ U . By [YZZ12, equation (1.6.1) and

the following paragraphs], we have

∫
∗

E×/A×E /A×
f (t) dt = vol(E×/A×

E/A×) −∫
E×/A×E /A×

f (t) dt

= vol(E×/A×
E/A×)

∣E×/A∞,×
E /U ∣ ∑

t∈E×/A∞,×
E /U

f (t).(2.1.3)

Now, by a coset identity,

∣E×/A∞,×
E /U ∣ = hE

∣Ô×
E /U ∣

[O×
E ∶ μ] ,

and by [YZZ12, Section 1.6.3], vol(E×/A×
E/A×) = 2L(1, η). Hence, (2.1.3) equals

2L(1, η)
hE

[O×
E ∶ μ]

∣Ô×
E /U ∣

∑
t∈E×/A∞,×

E /U
f (t).
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If we compose with the operator f (⋅) ↦ ∑x∈E× f (x⋅) = ∑x∈μ/E× ∑α∈μ f (αx⋅), we
obtain

2L(1, η)
hE

[O×
E ∶ μ]

∣Ô×
E /U ∣

∑
t∈A∞,×

E /U
∑
α∈μ

f (αt) = 2L(1, η)
hE

[O×
E ∶ μ]∫

A∞,×
E

∑
α∈μ

f (αt) d●t.

∎

2.2 Modular forms and their q-expansions

Let h ⊂ C be the upper half-plane. We view G(F∞) as acting on hΣ∞ by Möbius
transformations, and identify

C+
∞ ∶= (R+SO(2, R))Σ∞ ⊂ G(F∞)

with the neutral connected component of the stabilizer of i ∶= (
√
−1, . . . ,

√
−1) ∈ hΣ∞ .

2.2.1 Nearly holomorphic modular forms

Let w be an (∞-adic Section 1.1.1) weight for G, let U ⊂ G(A∞) be a compact open
subgroup, and let m = (mτ) ∈ ZΣ∞

≥0 . A complex nearly holomorphic (Hilbert) modular
form of weight w, level U, and degree ≤ m is a function

f ∶G(A) → C

satisfying the following two conditions:
(1) For all g ∈ G(A), γ ∈ G(F), and k ∈ UC+

∞,

f (γgk) = jw(k∞, i)−1 f (g),

where for z ∈ hΣ∞ ,

jw(( a b
c d ), z) ∶= (ad − bc)(w0−w)/2(cz + d)w .

(2) There is a Whittaker–Fourier expansion

f (( y x
1 )) = ∣y∣ ∑

a∈F
WC

f ,a(y)(Y)qa(2.2.1)

for all y ∈ A+, x ∈ A, where:
• we have

WC
f ,0(y) = y(w0+w−2)/2

∞ W f ,0(y), WC
f ,a(y) = (ay∞)(w0+w−2)/2W f ,a(y) (a ≠ 0)

for polynomials

W f ,a(y) ∈ C[(Tτ)τ∈Σ∞]

of degree ≤ mτ in the variables Tτ , evaluated at Y ∶= (Yτ)τ∈Σ∞ with Yτ =
(4πyτ)−1;

• we denote

qa ∶= ψ(ax)ψ∞(iay∞).
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The polynomial W f ,a(y) only depends on the class of ay modulo a−1(U), so that
defining

W f (a) ∶= Wf ,1(a)(2.2.2)

for a ∈ A+, for all a ∈ F+, and for y ∈ A+, we have Wf ,a(y) = Wf (ay). We say that f is
cuspidal if W0(y) = 0 for all y.

If f is nearly holomorphic of degree 0 (that is, ≤ (0, . . . , 0)), we simply say that f is
a (holomorphic) modular form. If R ⊂ C is any subring, we denote by

Sw(U , R) ⊂ Mw(U , R) ⊂ N≤m
w (U , R),

respectively, the spaces of cuspidal forms and holomorphic forms of level U and weight
w, and of nearly holomorphic forms of level U, weight w, and degree ≤ m = (mτ),
such that for all a ∈ A+, the polynomials Wf (a) have coefficients in R. We write
Nw(U , R) ∶= lim,→m

N≤m
w (U , R), and◻(R) ∶= lim,→U

◻(U , R) if◻ stands for the notation
for any of the spaces of forms defined above (or below).

Finally, we define the space Sa
w(U , C) of antiholomorphic cuspforms to be the

C-vector space image of Sw(U , C) under complex conjugation. The formula

f ↦ f a ∶= ( −1
1 ) f(2.2.3)

(where ( −1
1 ) ∈ G(F) ⊂ G(A) acts, as usual, by right translation) defines C-linear

bijections from Sw(U , C) to Sa
w(U , C) and vice versa.

2.2.2 Twisted modular forms

A twisted nearly holomorphic (Hilbert) modular form of weight w, level U, and degree
≤ m = (mτ) is a function

f ∶G(A) × A× → C

satisfying the following two conditions:

(1) For all g ∈ G(A), γ ∈ G(F), and k ∈ UC+
∞,

f (γgk, det(γ)−1u) = jw(k∞, i)−1 f (g , u).

(2) There is a Whittaker–Fourier expansion

f (( y x
1 ) , u) = ∣y∣ ∑

a∈F
WC

f ,a(y, u)(Y)qa(2.2.4)

for all x ∈ A and y, u ∈ A× such that (uy)∞ > 0, where:

WC
f ,0(y, u) = y(w0+w−2)/2

∞ W f ,0(y, u),

WC
f ,a(y, u) = (ay∞)(w0+w−2)/2W f ,a(y, u) (a ≠ 0)
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for polynomials

W f ,a(y, u) ∈ C[(Tτ)τ∶F↪R]

of degree ≤ mτ in the variables Tτ , evaluated at Y ∶= (Yτ)τ∶F↪R with Yτ =
(4πyτ)−1.

If R ⊂ C is any subring, we denote by M tw
w (U , R) ⊂ N tw,≤m

w (U , R) the spaces of
holomorphic and nearly holomorphic forms of level U, weight w, and degree ≤ m =
(mτ), such that all the polynomials W f ,a(y, u) have coefficients in R.

2.2.3 Contracted product

For any open compact subgroup UF ⊂ Ô×
F , let

μUF ∶= F× ∩ UF , νUF ∶= ∣{±1} ∩ μUF ∣, cUF = νUF ⋅ 2[F∶Q]hF

[O×
F ∶ μ2

UF
] .

(2.2.5)

Let φ∶A× → C be a Schwartz function, invariant under a subgroup of the form μ2
U ′F

⊂
F× as above. Then the sum

⋆
∑

u∈F×
φ(u) ∶= cUF ∑

u∈μ2
UF

/F×
φ(u)(2.2.6)

is well defined independently of UF ⊂ U ′
F , and for any such choice, the support of the

sum is finite.
If f1, f2 are twisted nearly holomorphic forms, we may thus define a (plain) nearly

holomorphic form f1 ⋆ f2 by

f1 ⋆ f2(g) ∶=
⋆
∑

u∈F×
f1(g , u) f2(g , u).(2.2.7)

2.2.4 Differential operators

We attach to a nearly holomorphic (genuine or twisted) form f the function

f h∶G(A∞) × h
Σ∞ → C

(g∞, z = g∞i) ↦ jw(g∞, i) f (g∞);

the map f ↦ f h is injective.
The Maass–Shimura differential operators on functions on hΣ∞ are defined as

follows. For τ∶ F ↪ R and w ∈ Z, let

δτ ,h
w ∶= 1

2πi
( w

2iyτ
+ ∂

∂zτ
) , dτ ∶= 1

2πi
∂

∂zτ
,

a differential operator on the upper half-plane h. For w , k ∈ ZΣ∞
≥0 , let

δk ,h
w ∶= ∏

τ
δτ ,h

wτ+2kτ
○ ⋯ ○ δτ ,h

wτ+2 ○ δτ ,h
wτ

, dk ∶= ∏
τ
(dτ)kτ .
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Then, for any ring Q ⊂ R ⊂ C, this operator defines a map

δk
w ∶ N(tw),≤m

w (U , R) → N(tw),≤m+k
w+(0;2k) (U , R)

such that δk
w( f )h = δk ,h

w ( f h). (For a proof of the intuitive fact that the archimedean
operator δk

w indeed preserves the rationality properties of finite Whittaker–Fourier
coefficients, see [Hid91, Proposition 1.2], whose calculations also apply to the twisted
case.) The subscript w will be omitted if it is clear from the context.

By [Shi81, equation (1.16)], for all k ∈ ZΣ∞
≥0 , we have

δk
w = ∑

0≤ j≤k
∏

τ∈Σ∞
(kτ

jτ
)Γ(wτ + kτ)

Γ(wτ + jτ)
(−4πyτ) jτ−kτ d j .(2.2.8)

If w ≥ 2m + 1, any f ∈ N(tw),≤m
w (U , R) can be written uniquely as

f = ∑
0≤r≤m

δr
w−2r fr

with fr ∈ M(tw)
w+(0;−2r)(U , R). (The proof in [Shi76, Lemma 7] carries over to our

context.) Thus, the linear map

ehol∶ N(tw),≤m
w (U , R) → M(tw)

w (U , R)
f ↦ f0

(2.2.9)

is well defined.

2.3 p-adic modular forms

We study the completions of spaces of modular forms for certain p-adic norms.

2.3.1 Arithmetic q-expansion

Let w be a weight for G, and let U ⊂ G(A∞) be a compact open subgroup. The q-
expansion map

f ↦ (a ↦ W f (a) = (2.2.2))

sends Sw(U , C) to CA+/UF F+∞ , where UF = a−1(U). By the q-expansion principle (see
[Dis17, Proposition 2.1.1] for a version in our setting), the map is injective. We denote
its image by Sw(U , C) and view the map Sw(U , C) → Sw(U , C) as an identification.

If R is any ring admitting embeddings into C, we denote by

S●(U , R) ⊂ RA+/UF F+∞

the set of those sequences

f = (Wf(a))a(2.3.1)
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such that for any ι∶R ↪ C, the sequence f ι ∶= (ιWf(a))a is the q-expansion of a
cuspform

f ι ∈ S●(U , C) = ⊕
w

Sw(U , C).

(In (2.3.1), the notation Wf can be thought of as simply synonymous to f ; it is
introduced in order to match the identification of the previous paragraph.) By [Hid91,
Theorem 2.2(i)] (together with a consideration of Galois actions mixing the weights),
for any such ring R, we have S●(U , R) = S●(U , Z) ⊗ R. For more general rings, the
previous equality is taken to be the definition of S●(U , R).

2.3.2 p-adic modular forms

Let L be a finite extension of Qp splitting F. A p-adic L-valued (cohomological) weight
w = (w0 , (wτ)τ∶F↪L) is a tuple of integers, all having the same parity, such that wτ ≥
1 for all τ∶ F ↪ L. As in Section 1.1.1, if w is an L-valued weight and ι∶ L ↪ C is an
embedding, we define the complex weight w ι = (w0 , (wτ)ι○τ).

Let U ⊂ G(A∞) be a compact open subgroup, and let w be an L-valued weight.
We define Sw(U , L) to be the set of q-expansions f such that for every ι∶ L ↪ C,
the expansion f ι belongs to Sw ι(U , C). The p-adic q-expansion of f = (Wf(a))a ∈
Sw(U , L) is the sequence

f = (Wf (a)) ∶= (Wf(a)), Wf(a) ∶= a(w0+w−2)/2
p Wf(a),

so that

WC
f ι ,a(y) ∶= (ay)(w0+w ι−2)/2

∞ ι ((ayp)(−w0−w+2)/2Wf (a))(2.3.2)

is the Whittaker–Fourier coefficient of f ι as in (2.2.1). (In other words, we have two
embeddings Sw(U , L) ↪ LA+/UF F+∞ : the q-expansion f ↦ (Wf(a))a , and the p-adic
q-expansion f ↦ (Wf(a))a .)

Let U p ⊂ G(Ap∞) be a compact open subgroups, let U p
F ∶= a−1(U p), and for any

L-valued weight w, we denote

Sw(U p , L) ∶= lim,→
n

Sw(U pUp,n , L).

The space of cuspidal p-adic modular forms

S(U p , L) ⊂ LA∞,×/U p
F ⊂ LA∞,×

= LA+/F+∞

is the completion of Sw(U p , L) for the norm ∣∣f ∣∣ ∶= supa ∣Wf(a)∣, for any w. By a
fundamental result of Hida (see [Hid91, paragraph after Theorem 3.1]), the space
S(U p , L) is independent of the choice of w. In particular, if L is Galois over Qp , this
space is stable by the action of Gal(L/Qp) and so it is of the form S(U p , Qp) ⊗Qp L
for a space S(U p , Qp).
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2.3.3 Nearly holomorphic forms as p-adic modular forms

We may attach a p-adic q-expansion to a nearly holomorphic form with coefficients
in a p-adic subfield of C.

Let L be a finite extension of Qp , and let w be a p-adic L-valued weight. We say that

f = (Wf (a)) ∈ LA+/F+∞

is a p-adic nearly holomorphic cuspform of weight w and level U p ⊂ G(Ap∞) if the fol-
lowing condition holds. For each ι∶ L ↪ C, there exists a cuspidal nearly holomorphic
form

f ι ∈ N≤⌊(w+1)/2⌋
w ι (U pUp,n , C)

for some n ∈ ZSp
≥1 , whose Whittaker–Fourier polynomials have constant terms

satisfying

W f ι ,1(a)(0) = ι (a(−w0−w+2)/2
p Wf (a)) .(2.3.3)

The notion of a p-adic twisted nearly holomorphic cuspform is defined similarly by
the identity W f ι ,a(y, u)(0) = ι ((ay)(−w0−w+2)/2

p Wf (a)(y, u)).

Proposition 2.2 If f is a p-adic nearly holomorphic cuspform over L of level U p, then
it belongs to the space S(U p , L) of p-adic modular cuspforms of level U p.

Proof This is the first assertion of [Hid91, Proposition 7.3]. ∎

2.3.4 Hecke operators and ordinary projection

The space Nw(U , C) is endowed with the usual action of HU . By writing down the
effect of this action on Whittaker–Fourier coefficients of cuspforms, we may descend
it to a bounded action of HU p ,L on Sw(U p , L), and hence on S(U p , L), for any p-adic
field L.

For t ∈ A+
p or y ∈ ∏v∣p OF ,v − {0}, and any n ∈ ZSp

≥1 , define the double coset
operators

Ut ∶= [Up,n t Up,n], U○,w
t ∶= t2−w

1 det(t)(−w0+w−2)/2Ut ,

Uy ∶= U( y
1 )

, U○,w
y ∶= y(−w0−w+2)/2Uy .

(2.3.4)

If L is a finite extension of Qp , then for all y ∈ ∏v∣p OF ,v − {0}, we also define the
operator

U○
y ∶S(U p , L) → S(U p , L)

WU○y f (c) ∶= Wf (c y).

This is compatible with the previous definition in the following sense (see [Hid91,
equation (2.2b)], where Uy is denoted by T(y)): if f is a p-adic nearly holomorphic
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form of weight w over L, then for all ι∶ L ↪ C, we have

(U○
y f )ι = U○,w ι

y f ι .

The superscript w will be omitted when understood from the context. The ordinary
projector is

eord ∶= lim
n→∞

(U○
p)n! ∈ End L(S(U p , L))(2.3.5)

for any tame level U p and p-adic field L. Its image is denoted by

Sord(U p , L) ∶= eordS(U p , L).

The operator eord preserves Sw(U p , L), and we denote Sord
w (U p , L) ∶= eordS(U p , L)

and Sord(U p , L) ∶= ⊕w Sord
w (U p , L).

If f C is a complex modular form arising as f C = f ι for a form f ∈ S(L) for some
finite extension L of Qp and some ι∶ L ↪ C, we define

eord, ι( f C) ∶= (eord f )ι .

2.3.5 Differential operators after ordinary and holomorphic projections

Let L be a finite extension of Qp , and let f1, f2 be p-adic twisted nearly holomorphic
forms over L. For any ι∶ L ↪ C and k ∈ ZΣ∞

≥0 , we have

[eord( f1 ⋆ dk f2)]ι = eord, ι[ehol( f ι
1 ⋆ δk f ι

2)];(2.3.6)

the proof of [Hid91, Proposition 7.3] carries over to the twisted case.

2.4 Hida families

We gather the fundamental notions concerning Hida families and the associated
sheaves of modular forms.

2.4.1 Weight space

Let U○
F , p = ∏v∣p U○

F ,v ⊂ O×
F , p be a compact open subgroup (which will be fixed once

and for all in Section 2.4.5). Let U p
F ⊂ Ap∞,× be a compact open subgroup, and

consider the topological groups (with the profinite topology)

[Z]U p
F
∶= Z(F)U p

F /Z(A∞), [Z]U p
F
× U○

F , p ;

the latter is isomorphic to Δ × Z1+[F∶Q]+δF , p
p , where Δ is a finite group and δF , p is the

p-Leopoldt defect of F. It is embedded into A(A∞) by

(z, yp) ↦ ( zyp
z ) .
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The weight space (of tame level U p
F ) is

W = WU p
F
∶= Spec Zp�[Z]U p

F
× U○

F , p�Qp .(2.4.1)

A point κ ∈ W is identified with the pair of characters

(κ0 ∶= κ∣[Z]
U p

F

, κ = κ∣U○F , p
) .(2.4.2)

We have an involution defined as

κ⋎(t) ∶= κ0(det t)−1κ(t).

If k is a p-adic weight for G, we say that κ is classical of weight k if for all v∣p,

κsm
0 (zp) ∶= κ0(zp)z−k0

p , κsm
v (y) ∶= κv(y)∏

τ∣v
τ(y)(−k0−kτ+2)/2

are smooth characters of F×
p (respectively, U○

F ,v); in the second equation, κv ∶= κ∣U○F ,v
,

and the product runs over the τ ∈ Σp inducing the place v ∈ Sp . For a classical weight
κ, we define κsm ∶= ⊗v∣pκ

sm
v and

κ′ ∶= κsmκsm,−1
0 = κ⋎,sm ,(2.4.3)

a smooth character of U○
F , p .

We denote by

W
cl ⊂ W

the set of points of classical weight, which has the structure of an ind-étale ind-finite
scheme over Qp . If κ is classical of weight k = (k0 , k), then κ⋎ is classical of weight
k∨ = (−k0 , k). We let Wcl,≥2 be the set of classical points satisfying k ≥ 2.

2.4.2 Hida schemes

In light of the examples of the previous and following paragraphs, it will be convenient
to introduce a suitable category of spaces.8 Define the category of Hida rings to consist
of finite flat Zp�X1 , . . . , Xn�-algebras A○ (for some n) and Zp-algebra morphisms, and
the category of Hida algebras to be the image of Hida rings under the functor ⊗Zp Qp .
Define the category of affine Hida schemes to be dual to the category of Hida algebras.
A Hida scheme is an open subset of an affine Hida scheme. If A○

i are Hida rings (for
i = 1, 2) and Xi = Spec (A○

i ⊗Zp Qp) (for i = 1, 2), we define

X1×̂X2 ∶= Spec (A○
1 ⊗̂A○

2)Qp ,

where ⊗̂ is the completed tensor product.

8The treatment proposed here is minimal and somewhat ad hoc, but it will be sufficient for our
purposes. We believe that a more systematic treatment of the geometry of Hida theory should be based
on the theory of uniformly rigid spaces developed in [Kap12].
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2.4.3 Hida families

Let

Tsph, ord
U p ,Qp

⊂ Tord
U p ,Qp

⊂ End (Sord(Up , Qp))

be the images of the Hecke algebras H sph, ord
U p ,Qp

, H ord
U p ,Qp

from Section 2.1.3. We let

YG = YG,U p ∶= Spec Tsph, ord
U p ,Qp

be the ordinary eigenvariety for G of tame level U p . (The subscript U p will be omitted
when unimportant or understood from the context.) The space YG,U p is a union of
finitely many irreducible components, called Hida families of tame level (dividing)
U p . It carries an involution ⋎ deduced from the one on H sph, ord

U p ,Qp
.

Letting U p
F ∶= U p ∩ Z(Ap∞), we have a weight-character map

κG∶YG,U p → WU p
F

that, when identified with a pair (κG,0 ,κG) of O(YG)×-valued characters as in (2.4.2),
is κG,0(z) = the Hecke operator acting by right translation by z on modular forms,
κG(yp) = U○

yp
. The weight map is finite and flat, and it intertwines the involutions ⋎.

The set of classical points of YG is

Y cl
G ∶= YG ×W W

cl,≥2 ⊂ YG .

If x0 ∈ Y cl
G , we denote by πx0 the automorphic representation of G(A) over Qp(x0)

on which H sph
U p acts by the Qp(x0)-character corresponding to x0. If x ∈ Y cl

G (C)
corresponds to (x0 ∈ Y cl

G , ι∶Qp(x0) ↪ C), we denote πx ∶= π ι
x0

.

2.4.4 Families of ordinary forms

By construction, for each U p′ ⊂ U p , the ordinary eigenvariety YG,U p (respectively, the
weight space WU p

F
) carries a (coherent) sheaf

S U p ′

(respectively, S U p ′

W
∶= κG,∗S

U p ′
), whose modules of global sections are

Sord(U p′ , Qp). We set S(W) ∶= lim,→U p ′
S U p

(W) . By Hida’s Control Theorem (see
[Hid91, Corollary 3.3]), the restriction of S U p

W
to Wcl is the sheaf attached to

Sord(U p , Qp).
For each x ∈ Y cl

G,U p of weight w, there exists a unique (up to isomorphism) ordinary
automorphic representation πx of G(A) over L ∶= Qp(x) of weight w such that there
is an H ord

U p ,L-isomorphism

S∣x ≅ πord
x ∶= eordπx ∶= [lim

n
(U○,w

p )n!] πx ;
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the isomorphism is unique up to scalars. This defines a bijection between Y cl
G,U p(Qp)

and the set of isomorphism classes of ordinary automorphic representation π of G(A)
over Qp with πU p ≠ 0.

Lemma 2.3 Let U p ⊂ G(Ap∞) be a compact open subgroup, and let U p
F ∶= U p ∩

Z(Ap∞). Let Z be a Hida scheme endowed with a map φ∶Z → W = WU p
F
. Then we

have an OZ -linear injective q-expansion map

S U p

Z ∶= S U p

W ⊗OW
OZ ,→ O

A∞,×/U p
F

Z ⊂ OA∞,×

Z
(2.4.4)

characterized by the property that for every κ ∈ Wcl, every closed point z ∈ φ−1(κ), and
every a ∈ A∞,×, we have

Wf(a)(z) = Wf(z)(a),

where the right-hand side is the p-adic q-expansion coefficient of the classical modular
form f(z) ∈ (φ∗SW)∣z ⊂ Sord(U p , Qp(z)).

Moreover, the image of (2.4.4) equals the space of those sequences (W(a))a for which
there exists a set of closed points Σ ⊂ φ−1(Wcl) that is dense in Z such that for all z ∈ Σ,
the sequence (W(a)(z))a is the p-adic q-expansion of a modular form fz ∈ (φ∗SW)∣z .

Note that the sheaf S U p
on YG is identified with (S U p

W ⊗OW
YG)OYG , the sub-

sheaf of invariants for the diagonal OW-linear action of OYG . In particular, we deduce
from (2.4.4) a q-expansion map

S U p
→ O

A∞,×/U p
F

YG
.(2.4.5)

Proof It suffices to construct (2.4.4) for Z = W as the general case follows by base
change. Let A○ ∶= Zp�[Z]U p

F
× U○

F , p�, and let Sord(U p , Zp) be the space of ordinary
forms with Zp-coefficients; this is an A○-module and a Zp-lattice in S U p

W
(W) =

Sord(U p , Qp). For κ ∈ Wcl, let pκ ⊂ A○ be the corresponding prime ideal. Let n ∈ N,
and let M range among finite subsets of W; the filtered system of ideals

In ,M ∶= (pn) + ⋂
κ∈M

pκ

forms a fundamental system of neighborhoods of 0 ∈ A○, i.e., A○ = lim←,n ,M
A○/In ,M .

The p-adic q-expansion maps Sord(U p , Zp) ⊗A○ A○/pκ → Zp(κ)A∞,×
yield a compat-

ible family of maps

Sord(U p , Zp) ⊗A○ A○/In ,M → (A○/In ,M)A∞,×

and after taking projective limits, the desired map Sord(U p , Zp) → (A○)A∞,×
. It is

injective by the q-expansion principle and the preservation of injectivity under inverse
limits.

We now consider the second statement. It is clear that, for any fixed Σ as in the
lemma, the space S̃ U p ,Σ

Z ⊂ OA∞,×

Z described contains the image of (2.4.4); we show
the opposite containment. We may assume that Z = Spec B○

Qp
for a Hida ring B○, and
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consider (2.4.4) as a map

Sord(U p , Zp) ⊗A○ B○ → S̃ord
B○ (U p)Σ ∶= (B○)A∞,×

∩ S̃ U p

Z (Z ).(2.4.6)

For z ∈ Σ, let pz ⊂ B○ be the corresponding prime ideal. Let n ∈ N, and let N range
among finite subsets of Σ; then the filtered system of ideals Jn ,N ∶= (pn) + ⋂z∈N pz
forms a fundamental system of neighborhoods of 0 ∈ B○. By assumption, for each z ∈
Σ, the map (2.4.6) is an isomorphism modulo pz ; hence, it is an isomorphism modulo
Jn ,N for all (n, N), hence an isomorphism. ∎

We call elements of S U p

Z (respectively, S U p

Z ⊗OZ
K (Z )) Z -adic ordinary mod-

ular cuspforms (respectively, meromorphic Z -adic ordinary modular cuspforms) of
weight φ∶Z → W.

2.4.5 Weight-character map for H

Let U p
H ⊂ H(Ap∞) be an open compact subgroup, and let

YH = YH,U p
H
∶= Spec Zp�H(F)/H(Ap∞)/U p

H�⊗Zp Qp

as in (1.1.6). A (Hida) family for H is a connected component of YH.
Fix a sufficiently small open compact subgroup U○,√

F , p = ∏v∣p U○,√

F ,v ⊂ O×
F , p and an

injective group homomorphism

j′′∶ (U○,√

F , p ) → O×,1
E , p ∶= {t ∈ O×

E , p ∣ NEp/Fp(t) = 1},

and let

U○
F , p ∶= (U○,√

F , p )2 ⊂ O×
F , p ,

which is now fixed as promised in Section 2.4.1. Let √ ∶U○
F , p → U○,√

F , p be the (uniquely
determined, up to shrinking U○,√

F , p ) square root, and let j, j′∶U○
F , p → O×

E , p be the maps9

j′(a) ∶= j′′(
√

a)/
√

a, j(a) = j′(a)a.(2.4.7)

For any open compact U p
E ⊂ Ap∞,×

E and U p
F ∶= U p

E ∩ Ap∞,×, define a map

κH∶ YH,U p
E
→ WU p

F

y ↦ κH(y) = (κ0 = χy∣[Z]
U p

F
,κ ∶= χy ○ j) .

(2.4.8)

The set of classical points is

Y cl
H ∶= YH ×W W

cl .

Note that if y ∈ YH is a classical point such that κH(y) has weight (l0 , l), then χy has
weight (l0 , l) as defined in the introduction.

9If v∣p splits in E, then for a ∈ U○F ,v , we have j(a) = (a, 1) under some isomorphism E×v ≅ F×v × F×v .
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2.4.6 Hida families for G × H

These are defined as in Section 1.1.4.

2.4.7 Universal automorphic sheaf on a Hida family

Let XG be a Hida family for G, and let X cl
G ∶= XG ∩Y cl

G . For each sufficiently small
U p , we may view X ⊂ YG,U p and we define

ΠU p
= ΠU p

XG
∶= S U p

∣XG
.

For each x ∈ X cl
G , by Hida’s Control Theorem (see, for instance, [Hid91, Corollary 3.3])

and the theory of newforms, we have an isomorphism of HU p -modules,

ΠU p

∣x ≅ πU p ,ord
x ∶= eordπU p

x .(2.4.9)

Let U p
XG

be minimal such that XG is a component of YG,U p
XG

. By [Hid91,
Section 3], there is a unique

f0 = f0,XG ∈ ΠU p
XG (XG)(2.4.10)

(the normalised primitive form over XG) such that Wf0(1) = 1 ∈ O(XG) for the
q-expansion map deduced from (2.4.5). Any f ∈ ΠU p

can be written as f = Tf0 for
some Hecke operator T supported at the places v ∤ p∞ such that U p is not maximal.

2.4.8 Universal Galois sheaf on a Hida family and local–global compatibility

Let XG be a Hida family for G. By results of Hida and Wiles (see [Dis/b, Proposition
3.2.4]), there exist an open subset X ′

G ⊂ XG containing X cl
G and a locally free sheaf

VG of rank 2, endowed with a Galois action

GF → End OX ′
G
(VG)

such that for all x ∈ X cl
G , the fiber VG∣x is the Galois representation attached to πx by

the global Langlands correspondence.
Let S be a finite set of finite places of F, disjoint from Sp , such that for all v ∉ S, the

tame level U p = U S pUS of XG is maximal at v. We define

ΠU S p

XG
∶= lim,→

U ′S

ΠU S p U ′S
XG

,(2.4.11)

which is a finitely generated OXG[G(FS)]-module. On the other hand, [Dis20,
Theorem 4.4.1] attaches to the restriction VG,v ∶= VG∣GFv

an OX ′
G
[G(FS)]-module

Π(VG,v),

which is torsion-free and co-Whittaker in the sense of [Dis20, Definition 4.2.2].
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Proposition 2.4 After possibly replacing X ′
G ⊂ XG with a smaller open subset still

containing X cl
G , there exists a line bundle Π○

X ′
G

over X ′
G with trivial G(FS)-action,

such that

ΠU S p

∣X ′
G
≅ Π○

X ′
G
⊗⊗

v∈S
Π(VG,v)

as OX ′
G
[G(FS)]-modules.

Proof By the local–global compatibility of the Langlands correspondence for Hilbert
modular forms (see [Car86] or [Dis/b, Theorem 2.5.1]), for all x ∈ X cl

G and all places
v, the G(Fv)-representation πx ,v corresponds, under local Langlands, to the Weil–
Deligne representation Vx ,v attached to VG∣x ∣GFv

. Then the result follows from [Dis20,
Theorem 4.4.3]. ∎

3 Theta-Eisenstein family

In this section, we define the kernel of the Rankin–Selberg convolution giving the
p-adic L-function.

3.1 Weil representation

We recall the definition of the Weil representation for groups of similitudes; this
subsection is largely identical to [Dis17, Section 3.1].

3.1.1 Local case

Let V = (V , q) be a quadratic space of even dimension over a local field F of
characteristic not 2. Fix a nontrivial additive character ψ of F. For u ∈ F×, we denote
by Vu the quadratic space (V , uq). We let GL2(F) × GO(V) act on the usual space
of Schwartz functions S ′(V × F×) as follows (here, ν∶GO(V) → Gm denotes the
similitude character):

• r(h)ϕ(x , u) = ϕ(h−1x , ν(h)u) for h ∈ GO(V);
• r(n(b))ϕ(x , u) = ψ(buq(x))ϕ(x , u) for n(b) ∈ N(F) ⊂ GL2(F);

• r ((a
d))ϕ(x , u) = χVu(a)∣ a

d ∣
dim V

4 ϕ(at, d−1a−1u);

• r(w)ϕ(x , u) = γ(Vu)ϕ̂(x , u) for w = ( 1
−1 ) .

Here, χV = χ(V ,q) is the quadratic character attached to V, γ(V , q) is a fourth root of
unity, and ϕ̂ denotes Fourier transform in the first variable with respect to the self-
dual measure for the character ψu(x) = ψ(ux). We will need to note the following
facts (see, for instance, [JL70]): χV is trivial if V is a quaternion algebra over F or
V = F ⊕ F, and χV = η if V is a separable quadratic extension E of F with associated
character η.
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3.1.2 Fock model and reduced Fock model

Assume that F = R and V is positive definite. Then we will prefer to consider a
modified version of the previous setting. Let the Fock modelS(V × R×, C) be the space
of functions spanned by those of the form

H(u)P(x)e−2π∣u∣q(x) ,

where H is a compactly supported smooth function on R× and P is a complex
polynomial function on V. This space is not stable under the action of GL2(R), but it
is so under the restriction of the induced (gl2,R , O2(R))-action on the usual Schwartz
space (see [YZZ12, Section 2.1.2]).

We will also need to consider the reduced Fock space S(V × R×) spanned by
functions of the form

ϕ(x , u) = (P1(uq(x)) + sgn(u)P2(uq(x)))e−2π∣u∣q(x),

where P1, P2 are polynomial functions with rational coefficients.
By [YZZ12, Sections 3.4.1 and 4.4.1], there is a surjective quotient map

S(V × R× , C) → S(V × R×) ⊗Q C

Φ ↦ ϕ(x , u) = Φ(x , u) = ∫
R×

−∫
O(V)

r(ch)Φ(x , u) dh dc.
(3.1.1)

We let S(V × R×) ⊂ S(V × R× , C) be the preimage of S(V × R×). For the sake
of uniformity, when F is non-archimedean, we set S(V × F×) = S(V × F×) ∶=
S ′(V × F×).

3.1.3 Global case

Let (V, q) be an even-dimensional quadratic space over the adèles A of a totally real
number field F, and suppose that V∞ is positive definite; we say that V is coherent
if it has a model over F and incoherent otherwise. Given an ÔF -lattice V○ ⊂ V, we
define the spaceS(V × A×) as the restricted tensor product of the corresponding local
spaces, with respect to the spherical elements

ϕv(x , u) = 1V○v (x)1�nv
v
(u),

if ψv has level nv . We call such ϕv the standard Schwartz function at a non-archimedean
place v. We define similarly the reduced space S(V × A×), which admits a quotient
map

S(V × A×) → S(V × A×)(3.1.2)

defined by the product of the maps (3.1.1) at the infinite places and of the identity at
the finite places. The Weil representation of GO(V) × G(A∞) × (gl2,F∞ , O(V∞)) is
the restricted tensor product of the local representations.

For a quadratic space V = (V, q) over A, we define ε(V) = +1 (respectively, −1) if
and only if there exists (respectively, does not exist) a quadratic space V over F such
that V ⊗F A = V.
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3.1.4 The quadratic spaces of interest

Let us go back to our usual notation: thus, F is our chosen totally real field and E its
chosen CM quadratic extension. In this paper, we will consider the quadratic spaces
V = (B, q), where B is a quaternion algebra over A, definite at all the archimedean
places and split at p, and endowed with an A-embedding AE ↪ B, and q∶B = V → A
is its reduced norm. It has a decomposition

V = V1 ⊕ V2 ,

where V1 = AE (on which the restriction of q coincides with NE/F ) and V2 is the q-
orthogonal complement. Thus, ε(V) = ε(V2). We denote by r1 the restriction of r to
a representation of A×

E = GO(V1) on S(V1 × A×).
For each place v, we have

ε(Bv) = ε(Vv) =
⎧⎪⎪⎨⎪⎪⎩

+1, if Bv ≅ M2(Fv),
−1, if Bv is a division algebra.

(3.1.3)

We have ε(V) ∶= ∏v ε(Vv) = (−1)[F∶Q]∏v∤p ε(Vv).

3.2 Theta series

Let ϕ1 ∈ S(V1 × A×). We define a function on G(A) × A× by

θ(g , u, ϕ1) ∶= ∑
x∈E

r(g)ϕ1(x , u).(3.2.1)

It satisfies

θ(zg , u, ϕ1) = η(z)θ(g , u, r(z−1 , 1)ϕ1)(3.2.2)

for all z ∈ A× (here, we view (z, 1) ∈ G(A) × A×
E).

For a complex weight l for H, let

ϕ1, l ,∞ ∶= ⊗v∣∞ϕ1, l ,v ,

ϕ1, l ,v(t, u) ∶= 1R+(u)
⎧⎪⎪⎨⎪⎪⎩

t lv ∣u∣(−l0+lv)/2e−2πuq(t) , if lv ≥ 0,
(t)−lv ∣u∣(−l0−lv)/2e−2πuq(t) , if lv ≤ 0,

(3.2.3)

and let

θ(g , u, ϕ∞
1 ; l) ∶= θ(g , u, ϕ∞

1 ϕ1, l ,∞).

Define ∣l ∣ ∶= (l0 , (∣lv ∣)v).

Lemma 3.1 The series θ(g , u, ϕ∞
1 ; l) is a twisted modular form of weight (0, 1) + ∣l ∣.

Proof The usual proof that classical theta series are automorphic shows that our θ is
twisted automorphic. The archimedean component of the central character is easy to
determine by (3.2.2). The weight is computed as in [Xue07, Section A1 on p. 350]. ∎
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The Whittaker–Fourier expansion of θ(l) is standard: for all g = ( y x
1 ) ∈ G(A)

with y ∈ A+,

θ(g , u, ϕ∞
1 ; l) = ∑

a∈F×
∑

x∈E×∶uq(x)=a
r(g)ϕ1(x , u)

= η(y)∣y∣y
l0+∣l ∣

2∞ ∑
a∈F×

∑
x∈E×

uq(x)=a

ϕ∞
1 (yx , y−1u)qa .

(3.2.4)

The following expansion result will be used in Section 3.4.

Lemma 3.2 Let χ∶E×/A×
E → C× be a locally algebraic character of weight l , and let

E(g , u) be any twisted modular form such that E(g , u∞u) = E(g , u) for all u∞ ∈ F+
∞.

Suppose that ϕ∞
1 (0, u) = 0 for all u. Then, for all g = ( y x

1 ) ∈ G(A), we have

∫
∗

E×/A×E /A×
χ(t)θ(g , u, r(t)ϕ∞

1 ; l) ⋆ E(g , q(t)u) dt

= 4∣DE/F ∣1/2 ∑
a∈F×

1F+∞(y−1
∞a)η(y)∣y∣1/2 y

∣l ∣+l0
2∞ ∫

A∞,×
E

χ∞(t)r1(t)ϕ∞
1 (y, y−1a)

× E(g , q(t)a) d●t qa .

Proof We may assume that UF is so small that E(u) is invariant under u ∈ UF and
νUF = 1. Taking fundamental domains for μ2

UF
/F×, the expression of interest is

cUF η(y)∣y∣1/2 ∫
∗

E×/A×E /A×
χ(t) ∑

u∈μ2
UF

/F×
∑

a∈μ2
UF

/F×
∑

x∈E×
ϕ1(t−1x y, y−1q(t)u)1[uq(x) = a]

E(q(t)u, g) dt.

Since the integrand is invariant under E×
∞, by Lemma 2.1 with μ = μUF and a change

of variables a = uq(x), this equals

2L(1, η)cUF

hE[O×
E ∶ μUF ]

η(y)∣y∣1/2 ∫
A∞,×

E

∑
a∈μ2

UF
/F×

∑
α∈μUF

χ∞(tα)ϕ∞
1 (t−1α−1 y, y−1aq(t)α2))1F+∞(y−1

∞a)y
∣l ∣+l0

2∞ E(g , q(tα)a)qα2 a d●t.

By the invariance properties under UF , this can be brought into the desired expression
by a change of variables a′ = α2a and the calculation

2L(1, η)cUF

hE[O×
E ∶ μUF ]

= L(1, η)[O×
E ∶ O×

F ]
hE/hF

= 4∣DE/F ∣1/2 ,

which follows from the definition of cUF = (2.2.5) and the class number formula. ∎

3.3 Eisenstein series

Let V2 be a two-dimensional quadratic space over A, totally definite at the
archimedean places. Let ϕ2 ∈ S(V2 × A×) be a Schwartz function, and let ξ∶ F×/A× →
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C× be a locally algebraic character such that ξ∞(x) = xk0 for some integer k0 and for
all x ∈ F+

∞. Define the automorphic Eisenstein series10

Er(g , u, ϕ2; ξ) = L(p∞)(1, ηξ)
L(p∞)(1, η) ∑

γ∈P1(F)/SL2(F)
δξ,r(γgwr , p)r(γg)ϕ2(0, u),

where (with s ∈ C)

δξ,r(g) ∶= δξ,r ,0(g),

δξ,r ,s(g) ∶=
⎧⎪⎪⎨⎪⎪⎩

ξ(d)−1∣a/d∣s/2ψ(k0θ), if g = ( a b
d ) h with h = h∞rθ ∈ Up,r SO(2, F∞),

0, if g ∉ P(A)Up,r SO(2, F∞).

(3.3.1)

(The defining sum is absolutely convergent for R(s) sufficiently large, and otherwise
it is interpreted by analytic continuation.) It satisfies

Er(zg , u, ϕ2; ξ) = ηξ−1(z)Er(g , u, r(x , 1)ϕ2 , ξ).

3.3.1 Schwartz function at ∞

Let Pk0 ,k ∈ R[X] be the (rescaled) Laguerre polynomial

Pk0 ,k(X) ∶= (2πi)−k0(4π)−k(k + k0)!
k
∑
j=0

(k
j
)(−X) j

j!
.(3.3.2)

For k = (k0 , (kv)) ∈ Z × ZΣ∞
≥0 such that kv + k0 ≥ 0 for all v, define

Er(g , u, ϕ∞
2 ; ξ, k) = Er(g , u, ϕ∞

2 ϕ2,∞,k ; ξ),

where ϕ2,∞,k = ⊗v∣∞ϕ2,v ,kv
with

ϕ2,v ,kv
(x , u) = 1R+(u)Pk0 ,kv (4πuq(x))e−2πuq(x) .(3.3.3)

The series Er(ϕ∞
2 ; ξ, k) belongs to N≤k

tw,(−k0 ,k+k0)(C).

3.3.2 Whittaker–Fourier expansion

The following standard result is essentially [Dis17, Proposition 3.2.1].

Proposition 3.3 We have

Er(( yx1 ,
u , )ϕ2; ξ) = ∑

a∈F
Wa ,r(( y1 ,

u ), ϕ2; ξ)ψ(ax),

where

Wa ,r(g , u, ϕ2; ξ) = ∏
v

Wa ,r ,v(g , u, ϕ2,v ; ξv)

10For k0 = 0, this is L(p∞)(1, ηξ)/L(p∞)(1, η) times the series defined in [Dis17].
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with, for each v and a ∈ Fv ,

Wa ,r ,v(g , u, ϕ2,v ; ξv)

= L(p∞)(1, ηv ξv)
L(p∞)(1, ηv) ∫

Fv

δξ,r ,v(wn(b)gwr ,v)r(wn(b)g)ϕ2,v(0, u)ψv(−ab) db.

Here, L(p∞)(s, ξ′v) ∶= L(s, ξ′v) if v ∤ p∞ and L(p∞)(s, ξ′v) ∶= 1 if v∣p∞, and we use the
convention that rv = 0 if v ∤ p.

(Note that the functions Wa ,r(ϕ2 , ξ) correspond to the WC
Er(ϕ2 ,ξ),a of Section 2.2.2.

We prefer to use lighter notation in this section.)
We choose convenient normalizations for the local Whittaker functions: let γu ,v =

γ(V2,v , uq) be the Weil index, and for a ∈ F×
v , set

W○
a ,r ,v(g , u, ϕ2,v ; ξv) ∶= γ−1

u ,v L(p)(1, ηv)Wa ,r ,v(g , u, ϕ2,v ; ξv).

Then, for the global Whittaker functions, we have

Wa ,r(g , u, ϕ2; ξ) = −ε(V2)
L(p)(1, η) ∏

v
W○

a ,r ,v(g , u, ϕ2,v ; ξv)(3.3.4)

if a ∈ F×, where ε(V2) = ∏v γu ,v equals −1 if V2 is coherent or +1 if V2 is incoherent.
We similarly define W○

0,r(g , u, ϕ2 , ξ) by the identity

W0,r(g , u, ϕ2; ξ) = −ε(V2)
L(p)(1, η)W○

0,r(g , u, ϕ2; ξ).(3.3.5)

A simple calculation shows that for all v and a ≠ 0,

W○
a ,r ,(( y

1 ) , u, ϕ2,v ; ξv) = ηξ−1(y)∣y∣1/2W○
ay ,r ,(1, y−1u, ϕ2,v ; ξv).(3.3.6)

We will sometimes drop ϕ2,v from the notation.
The following sufficient condition for cuspidality will simplify matters a little

later on.

Lemma 3.4 Assume that there is a place v ∤ p∞, at which ξv is unramified, such that

ϕ2,v(0, u) = 0(3.3.7)

for all u. Then, for all g = ( y x
1 ) with y ∈ A+, x ∈ A, we have

W0,r(g , u, ϕ2; ξ) = 0.

Proof This is a special case of [YZZ12, Proposition 6.10]. ∎

3.3.3 Archimedean Whittaker functions

We compute them explicitly based on our explicit choice of Schwartz function.
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Lemma 3.5 Let v∣∞, let ξv(x) = xk0 for some k0 ∈ Z, and let ϕ2,v(x , u) ∶=
1R+(u)(uq(x))k e−2πuq(x) for some k ∈ Z≥0 with k ≥ −k0. Let a ∈ R×. Then

W○
a ,v(1, u, ϕ2,v ,kv ; ξv) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

2(2πi)k0 k!
(k + k0)!

ak+k0 e−2πa , if a, u > 0,

0, if a < 0 or u < 0.

Proof We drop the subscript v and write δξ,s for δξ,r ,s . We have

wn(b) = ((1 + b2)−1/2 −b(1 + b2)−1/2

(1 + b2)1/2rθb

)

with e iθb = (i − b)/(1 + b2)1/2. Then δξ,s(wn(b)) = ik0(1 + b2)−s/2(1 − ib)−k0 . Since
L(1, η) = π−1 and γv = i, we have

i−k0 W○
a (s, 1, u, ϕ2,k)

∶= i−1π−1 ∫
R

δξ,s(wn(b))r(wn(b))ϕ2,k(0, u)ψ(−ab) db

= π−1 ∫
R
(1 + b2)−s/2(1 − ib)−k0 ∫

C
ϕ2,k(x , u)ψ(ubq(x))du x ψ(−ab)db

= π−1 ∫
R
(1 + b2)−s/2(1 − ib)−k0 ∫

C
uk+1q(x)k e−2πuq(x)ψ(ubq(x))d1x ψ(−ab)db,

(3.3.8)

where we recall that du x = ∣u∣d1x and d1x is twice the usual Lebesgue measure.
The integral over C is

2uk+1
k
∑
j=0

∫
R
∫

R
(k

j
)x2 j

1 xk− j
2 e−2πu(1−ib)(x2

1 +x2
2)dx1dx2 .

Since ∫R x2 j e−Ax2
dx = A− j−1/2Γ( j + 1/2), this equals

2uk
k
∑
j=0

(k
j
)Γ( j + 1/2)Γ(k − j + 1/2) ⋅ (2πu)−k−1(1 − ib)−k−1 = 2−k π−k k! (1 − ib)−k−1

by the combinatorial identity (see Appendix A)

k
∑
j=0

(k
j
)Γ( j + 1/2)Γ(k − j + 1/2) = πk!.(3.3.9)

Therefore, when u > 0,

W○
a (s, 1, u, ϕ2,k) = i2−k π−k k!∫

R
(1 + ib)−s/2(1 − ib)−(s+2k+2k0+2)/2e−2πiabdb.

The integral is the same one appearing in [YZZ12, bottom of p. 55] with d = 2 +
2k + 2k0. By [YZZ12, Proposition 2.11] (whose normalization differs from ours by
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L(1, ηv ξv) = πi), we find

W○
a (0, 1, u, ϕ2,k) = ik0 2−k π−k−1k! (2π)1+k+k0

Γ(1 + k + k0)
ak+k0 e−2πa

= 2(2πi)k0 k!
(k + k0)!

ak+k0 e−2πa

if a, u > 0, as well as simpler formulas implying the desired ones in the other cases.
∎

We deduce the following. Let

Qk0 ,k(X) =
k
∑
j=0

(k
j
)(k + k0)!
( j + k0)!

(−X)k− j ,(3.3.10)

which satisfies Qk0 ,k(0) = 1.

Proposition 3.6 Let v∣∞, let a ∈ R, and let k0 ∈ Z and k ∈ Z≥0 with k ≥ −k0. Then, for
a ≠ 0, we have

Wa ,v(( y
1 ) , u, ϕ2,v ,kv ; ξv) = (−1)k ηv ξ−1

v (y)∣y∣1/2 ⋅ 2(ay)k+k0 Qk0 ,k((4πay)−1)e−2πay

if ay > 0, uy > 0, and Wa ,v(0, ( y
1 ) , u, ϕ2,v ,kv ; ξv) = 0 otherwise.

Proof After recalling the definition of Pk0 ,k in (3.3.2), by Lemma 3.5 and (3.3.6), we
find the asserted vanishing and that for ay, uy > 0 we have (dropping subscripts v):

Wa ,v(( y
1 ) , u, ϕ2,k ; ξ)

= ηξ−1(y)∣y∣1/2 ⋅ 2(4π)−k(−4π)−k0(k + k0)!
k
∑
j=0

(k
j
)(k + k0)!
( j + k0)!

(−4πay) j+k0 e−2πay ,

which is equal to the asserted formula. ∎

Corollary 3.7 Let ξ∶ F×/A× → C× with ξ(x∞) = xk0
∞ for some k0 ∈ Z. For each

k ∈ ZΣ∞
≥0 with k ≥ −k0, we have

Er(g , u, ϕ∞
2 ; ξ, k) = (−1)k

∞δk Er(g , u, ϕ∞
2 ; ξ, 0).

Proof This follows from Proposition 3.6 and (2.2.8). ∎

3.3.4 Schwartz function at p

Let U○
F , p ⊂ O×

F , p be as fixed in Section 2.4.5, and let κ′2∶U○
F , p → C× be a smooth

character. We define

ϕ2, p,κ′2(x , u) ∶= 1V○2, p
(x) ⋅ δU○F , p

(u)κ′2(u),(3.3.11)

where V○
2, p ⊂ V2, p is a fixed OF , p-lattice and δU○F , p

(u) ∶=
vol(O×

F , p)
vol(U○

F , p)
⋅ 1U○F , p

(u). It is

invariant under N(OF , p).
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Let

Er(ϕp∞
2 ; ξ,κ′2 , k) ∶= Er(ϕp∞

2 ϕ2, p,κ′2 ϕ2,∞,k ; ξ),(3.3.12)

and denote its normalized Whittaker functions by

W○
a ,r ,v(g , u, ϕp∞

2 ; ξ,κ′2 , k);

depending on the place v, we will drop the unnecessary elements from the notation.

3.3.5 Non-archimedean Whittaker functions

We study the functions W○
a ,v and the q-expansion of Er .

Proposition 3.8 Let v be a non-archimedean place of F.

(1) If v ∤ p, then W○
a ,v ,r = W○

a ,v does not depend on r, and for all a ∈ Fv ,

W○
a ,v(1, u, ξ) = ∣dv ∣1/2L(1, ηv ξv)(1 − ξv(�v))

∞

∑
n=0

ξF ,v(�v)n qn
F ,v ∫

Dn(a)
ϕ2,v(x2 , u) du x2 ,

where du x2 is the self-dual measure on (V2,v , uq) and

Dn(a) = {x2 ∈ V2,v ∣uq(x2) ∈ a + pn
v d−1

v }.

(When the sum is infinite, it is to be understood in the sense of analytic continuation
from characters ξ∣ ⋅ ∣s with s > 0.)

(2) For all finite places v, ∣d∣−3/2
v ∣Dv ∣−1/2W○

a ,v(1, u, ξ) ∈ Q[ξ, ϕ2,v], and for almost all v,
we have

∣d∣−3/2
v ∣Dv ∣−1/2W○

a ,v(1, u, ξ) =
⎧⎪⎪⎨⎪⎪⎩

1, if v(a) ≥ −v(dv) and v(u) = −v(dv),
0, otherwise.

(3) If v∣p, then

W○
a ,r ,v(1, u; ξ,κ′2) =

⎧⎪⎪⎨⎪⎪⎩

∣dv ∣3/2∣Dv ∣1/2 ξv(−1)κ′2,v(u), if v(a) ≥ −v(d) and u ∈ U○
F ,v ,

0, otherwise.

Proof See [Dis17, Proposition 3.2.3 and Lemma 3.2.4] for parts 1 and 2. For part 3,
we drop subscripts v and compute

δξ,r(wn(b)wr) = ξ(−1)1OF (b), γ−1
u r(wn(b))ϕ2,κ′2(0, u) = ∣dv ∣∣Dv ∣1/21O×F

(u)κ′2(u)

(the latter if b ∈ OF ), so that

W○
a (1, u; ξ,κ′2) = ∣dv ∣∣Dv ∣1/2 ξ(−1)1O×F

(u)κ′2(u)∫
OF

ψ(−ab) db,

which gives the asserted value. ∎
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Corollary 3.9 For g = ( y x
1 ) with y ∈ A+ and x ∈ A, we have

Er(g , u, ϕ∞
2 ; ξ, k) = −ε(V2)

L(p)(1, η)ηξ−1(y)∣y∣1/2

⋅ (W○
0 (y, u) + ∑

a∈F+
2[F∶Q](ay∞)k+k0 W○,∞

a ,r (0, 1, y−1u, ϕ2 , ξ)Qk0 ,k((4πay∞)−1)qa) ,

where W○,∞
a ,r (0, 1, u, ϕ2; ξ) = ∏v∤∞ W○

a ,r ,v(0, 1, y−1u, ϕ2,v ; ξ).

Let ϕp∞
2 satisfy (3.3.7), so that by Lemma 3.4, the corresponding Eisenstein series

is cuspidal. For ξ a locally algebraic p-adic character of A× of weight k0, consider the
(bounded) sequence of coefficients in Qp(ξ)

Er(u, ϕ∞2 ; ξ, k) = (λ ⋅ ηξ−1(y)2[F∶Q](byp)k+k0 ∣DF ∣1/2∣DE ∣1/2W○,∞
by (1, y−1u, ϕ∞2 ; ξ))

b∈F+
,

where λ = −ε(V2)/∣DE/F ∣1/2L(p)(1, η). This is the p-adic q-expansion attached to Er .
Analogously to Corollary 3.7, we have

Er(u, ϕ2; ξ, k) = (−1)k
∞dkEr(u, ϕ2; ξ, 0).(3.3.13)

3.3.6 p-adic interpolation of Whittaker functions

For a place v ∤ p∞ of F, denote Yv ∶= Spec Qp[F×
v ] and (for a later use) YH,v ∶=

Spec Qp[E×
v ], the spaces of characters of F×

v (respectively, E×
v ). We say that a mero-

morphic function Φ on an integral scheme has poles controlled by the (nonzero)
meromorphic function Φ′ if Φ/Φ′ is regular.

Proposition 3.10 Let v ∤ p∞. For each a ∈ F×
v , y ∈ F×

v , and ϕ2,v ∈ S(Vp∞
2 ×

Ap∞,×, Qp), there is a meromorphic function

W ○
a ,v(y, u, ϕ2,v) ∈ K (Yv),

regular if ϕ2,v is standard and otherwise with poles controlled by L(1, ηv ξv), satisfying

W ○
a ,v(y, u, ϕ2,v ; ξv) = ∣dv ∣−3/2∣Dv ∣−1/2W○

a ,r ,v(( yv
1 ) , u, ϕ2,v(ξv); ξv)

for all ξv ∈ Yv(C) whose underlying scheme point is not a pole.

Proof Part 1 is proved as in [Dis17, Lemma 3.3.1], except that we write the arbitrary
ϕ2,v = cϕ○

2,v + ϕ′
2,v without the extra factor of equation (3.3.2) ibid. Then the argument

shows that (only) when ϕ′
2,v ≠ 0, there may be a pole controlled by L(1, ηv ξv). ∎

3.4 Theta-Eisenstein family

Fix a compact open subgroup U p ⊂ G(Ap∞) (which will be usually omitted from all
the notation), and let U p

F ∶= U p ∩ Ap∞,×. Let ϕp∞ ∈ S(Vp∞ × Ap∞,×) be a Schwartz
function fixed by U p . Let ξ∶ F×/A× → C× be a locally algebraic character fixed by U p

F
such that ξ(x∞) = xk0

∞ for some k0 ∈ Z, and let k ∈ ZΣ∞
≥0 satisfy kv + k0 ≥ 0 for all v.
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We fix a choice of a Schwartz function in S(V2, p × F×
p ) as follows. Let U○

F , p ⊂ O×
F , p

be as fixed in Section 2.4.5. For r ∈ ZSp
≥1 and κ′1∶U○

F , p → C× a smooth character, we
define

ϕ1,r ,κ′1 , p(x1 , u) = δ1,r , p(x)1U○F , p
κ′1(u) ∶= ∏

v∣p
ϕ1,rv ,κ′1 ,v(x1,v , uv),

ϕ1,rv ,κ′1 ,v(x1,v , uv) ∶=
vol(OE ,v , dt)

vol(1 +�rv
v OE ,v , d×t) 11+�rv

v OE ,v (x1,v)1U○F , p
(u)κ′1(u),

(3.4.1)

which is invariant under N(OF , p) = ∏v∣p N(OF ,v).
Let κ′2∶U○

F , p → C× be a smooth character. For t ∈ A×
E , r ≥ 1, and ϕp∞ = ϕp∞

1 ⊗
ϕp∞

2 ∈ S(Vp∞ × Ap∞,×), define a form in N≤k
(l0−k0 ,2+l+k0+2k)(C) by

Ir(t, ϕp∞;κ′1 , l , ξ, κ′2 , k) ∶= ∣DF ∣−1/2 ⋅ θ(u, r1(t, 1)ϕp∞
1 ϕ1,κ′1 ,r , p ; l) ⋆ Er(q(t)u, ϕp∞

2 ; ξ, κ′2 , k).

where the product ⋆ is (2.2.7), and Er(⋅) = (3.3.12).
Fix a compact open subgroup U p

H ⊂ Ap∞,×
E (which will be omitted from all the

notation). Let l be a complex weight for H, let χ∶E×/A×
E → C× be a locally algebraic

character of weight l fixed by U p
H, and assume that for all w∣v∣p, the integer rv ≥ 1 is

greater than the conductors of χw , ξv , κ′2,v . Then we define

I(ϕp∞; χ, ξ,κ′2 , k) ∶= ∫
∗

E×/A×E /A×
χ(t)Ir(t, ϕp∞;κ′1, χ, p , l , ξ,κ′2 , k) dt,(3.4.2)

which does not depend on the choice of r; here, κ′1, χ, p is as in (2.4.3), namely

κ′1, χ, p ∶= χp ○ j′(3.4.3)

for j′∶U○
F , p → O×

E , p as in (2.4.7).

Lemma 3.11 For each c ∈ A+ satisfying v(c) ≥ 1 for some v∣p, the cth Whittaker–
Fourier coefficient of I(ϕp∞; χ, ξ,κ′2 , k) is

WC
I (c) =

−ε(V2) ⋅ 2[F∶Q]

L(p)(1, η)
∣DE/F ∣1/2

∣DF ∣1/2
⋅ ∑

a/c∈F , 0<a/c<1
χ∞(a)a(∣l ∣+l0)/2

∞ ξ∞,−1(c − a)(a − c)k
∞

∏
v∤p∞

Jv(a, c, ϕv ; χv , ξv)∏
v∣p

Jv(a, c; χv , ξv , κ′2,v).

Here, taking ϕ1,v = ϕ1,rv ,κ′1, χ,v
with κ′1, χ,v ∶= χv ○ jv and ϕ2,v = ϕ2,κ′2,v

if v∣p, we define,
for all v ∤ p∞,

Jv(a, c, (ϕv); χv , ξv , (κ′2,v))

∶= ∫
E×v

χv(t)r1(t)ϕ1,v(1, a)W○
c−q(t)a ,v(1, q(t)a, (ϕ2,v); ξ, (κ′2,v)) d●tv ,

(3.4.4)

for the measure d●tv giving volume 1 to O×
E ,v .
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Proof We lighten some of the notation. The assumptions of Lemma 3.2 are satisfied;
therefore, for c ∈ F+ and g = ( y x

1 ) with y ∈ A+ and x ∈ A,

I(g; χ, ξ,κ′2 , k)

=
∣DE/F ∣1/2

∣DF ∣1/2
η(y)∣y∣1/2 y

∣l ∣+l0
2

∞ ∑
a∈F+
∫

A∞,×
E

χ∞(t)r1(t)ϕ∞1 (y, y−1 a) E(g , q(t)a) d●t qa

=
∣DE/F ∣1/2

∣DF ∣1/2
∣y∣1/2ηχ(y)y(∣l ∣−l0)/2

∞ ∑
a∈F+
∫

A∞,×
E

χ∞(t)r1(t)ϕ∞1 (1, ay) E(g , q(t)ay2) d●t qa.

Now, for λ = −ε(V2)/L(p)(1, η), by Corollary 3.9, we have

E(g , q(t)ay2) = λ ⋅ ∣y∣1/2ηξ−1(y)

× (W0(y, u) + (−1)k
∞ ∑

b∈F+
2[F∶Q](by∞)k+k0 Qk0 ,k((4πby∞)−1)W○,∞

by (1, q(t)ay, ξ)qb)

so that

I(g; χ, ξ, k) = ∣y∣ ∑
c∈F×

WC
I ,c(y)qc

for some coefficients WC
I ,c(y), which we now explicitly calculate if c satisfies v(c) ≥ 1

for some v∣p. Under this condition, we have

WC
I ,c(y) =

−ε(V2) ⋅ 2[F∶Q]
L(p)(1, η)

∣DE/F ∣1/2

∣DF ∣1/2
∑
a∈F

0<a<c

(ay)(∣l ∣−l0)/2
∞ ∫

A∞,×
E

χ(ay)χ∞(t)r1(t)ϕ∞1 (1, ay)

⋅ (−1)k
∞ξ−1((c − a)y)((c − a)y∞)k+k0 W○,∞

(c−q(t)a)y(1, q(t)ay, ξ)Qk0 ,k((4π(c − a)y∞)−1) dt,

where we have noted that, since we have assumed v(c) ≥ 1 and the choice of ϕ1, p
implies v(a) = 0, the constant term (corresponding to a = c) of the Eisenstein series
does not contribute. Finally, we rewrite the resulting formula with c in place of c y. ∎

Lemma 3.12 Let a, c ∈ A∞,×, let ϕp∞
2 ∈ S(Vp∞

2 × Ap∞,×), and let ξ∶ F×/A× → C×,
χ∶E×/A×

E → C× be locally algebraic characters.
(1) For v∣p, if v(c) ≥ 1, then

∣dv ∣−3/2∣Dv ∣−1/2 ⋅ Jv(a, c; χv , ξv ,κ′2,v) = ξv(−1)1U○F ,v
(av)κ′1, χ,vκ

′
2,v(av).

(2) For all but finitely many v ∤ p,

∣dv ∣−3/2∣Dv ∣−1/2 Jv(a, c, ϕv ; χv , ξv) = 1.

(3) For all v ∤ p∞, there is a function Jv(a, c, , ϕv) ∈ O(YH,v ×Yv) such that for all
(χv , ξv) ∈ YH,v ×Yv(C),

Jv(a, c, ϕv)(χv , ξv) = ∣dv ∣−3/2∣Dv ∣−1/2 Jv(a, c, ϕv ; χv , ξv).

Proof Part 1 follows from the definitions and Proposition 3.8.3. Part 2 follows from
Proposition 3.8.2 and a simple calculation. Finally, since the integrand in (3.4.4) is
compactly supported, part 3 follows from Proposition 3.10. ∎
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Let

λ ∶= −ε(V2) ⋅ 2[F∶Q]

∣DE/F ∣1/2L(p)(1, η) ∈ Q×.(3.4.5)

For the sake of simplicity, we momentarily introduce the assumption that the
weight l of χ satisfies l ≥ 0. We will see in Corollary 3.15 that this does not affect our
main construction.

Proposition 3.13 Let χ ∈ Y cl
H have weight κ1 = κH(χ), and let κ2 = (κ2,0 ,κ2) ∈ Wcl.

Let U○
F ∶= U p

F U○
F , p. Write ξ = κ−1

2,0 and

κ1,0, p = κsm
1,0, p(⋅)l0 , κ2,0, p = κsm

2,0, p(⋅)−k0 ,

κ1 = κsm
1 (⋅)(l+l0)/2 , κ2 = κsm

2 (⋅)k .
(3.4.6)

Assume that lτ , kτ , kτ + k0 ≥ 0 for all τ ∈ Σp. Let

κ′1 ,κ′2∶U○
F , p → C×

be as in (2.4.3). Let n ∈ N be sufficiently large (depending on ξ, χ). The coefficients

W(U○)n!
p I(ϕp∞)(c)(χ,κ2) ∶= λ ⋅ ∑

a/c∈F
0<a/c<pn!

1U○F , p
(ap)κ1(ap)κ2((a − pn!c)p)

⋅ κp∞
1,0 (a)κp∞

2,0 (−a)∏
v∤p

Jv(a, c, ϕv ; ξv , χv),(3.4.7)

for c ∈ A+ with v(c) ≥ 0 for all v∣p, define a p-adic modular form

(U○
p)n! I(ϕp∞; χ,κ2) ∈ S(Qp(χ,κ2))

such that for every ι∶Qp(χ,κ2) ↪ C, we have

(U○
p)n!I(ϕp∞; χ,κ2)ι = ∣DE ∣1/2∣DF ∣(U○

p)n!I(ϕp∞; χι , ξ ι , ικ′2 , k).

Moreover, if ϕp∞
2 satisfies (3.3.7), then

eordI(ϕp∞; χ,κ2) = eord, ι[ehol(∣DE ∣1/2∣DF ∣(U○
p)n!I(ϕp∞; χι , ξ ι , ικ′2 , k)].

(3.4.8)

Proof From Lemmas 3.11 and 3.12, we find an expression which can be brought into
the above form, after replacing pn!c with c whenever it occurs as the argument of a
smooth function.

The second assertion follows from (2.3.6), Corollary 3.7, and (3.3.13). ∎
With notation as in Proposition 3.13, let

Jp(a, c, ϕp∞; χ,κ−1
2,0) ∶= ∏

v∤p
κ−1

2,0,v(a)χv(−a)Jv(a, c, ϕv ; χv ,κ−1
2,0,v).

It is easy to verify, using only that Jp(⋅) is a Schwartz function of a ∈ Ap∞,×, that the
Riemann sums

μn(Jp , c, ϕp∞)(φ) ∶= ∑
a/c∈F×

φ(a) ⋅ 1[0 < a/c < pn!]1[a ∈ U○
F , p] ⋅ Jp(a, c, ϕp∞; χ,κ−1

2,0),
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for φ∶U○
F , p → Qp(κ2 , ξ) locally constant, converge to a measure (bounded distribu-

tion)

μ(Jp , c, ϕp∞; χp∞ ,κp∞
2 )

on U○
F , p valued in Qp(χ,κ2). Then, by the same argument of the standard result in

[Kob77, Theorem 6 on p. 39], any continuous Qp(χ,κ2)-valued function is integrable
for this measure. The same holds with Qp(χ,κ2) replaced by O(YH×̂W) and χ,κ2 by
the universal characters, Jp by the universal function; for this universal situation, we
will use the same notation without χ,κ2.

Corollary 3.14 Let Sbad be the set of places of F at which ϕp∞ is not the standard
Schwartz function. Denote κ1 = κH(χuniv). Assume that ϕp∞

2 satisfies (3.3.7). The
sequence of coefficients

WIord(ϕp∞)(c)(χ,κ2)

∶= λ ⋅ 1ØF , p [cp] ⋅ ∫
U○F , p

κ1κ2(a) dμ(Jp , c, ϕp∞)(a) ∈ K (YH×̂W), c ∈ A∞,+,

has poles controlled by ∏v∈Sbad L(1, ηvκ
−1
2,0,v). It defines an ordinary meromorphic

YH×̂W-adic modular form (Section 2.4.4)

Iord(ϕp∞; χ,κ2)

of weight κ1κ2, which satisfies the following property.
For all χ ∈ Y cl

H (C), κ2 ∈ Wcl(C) with underlying numerical weights l , k such that
lτ , kτ , kτ + k0 ≥ 0 for all τ, we have

Iord(ϕp∞; χ,κ2) = eord, ι ∣DE ∣1/2∣DF ∣eholI(ϕp∞; χι ,κ−1, ι
2,0 , ικ′2 , k),(3.4.9)

where ι∶Qp(χ,κ2) ↪ C is the embedding attached to the complex geometric point
(χ,κ2).

Proof The interpolation property (3.4.9) at the level of q-expansions follows from
Proposition 3.13 and the previous discussion. The simplification in the argument of
κ2 in the interpolated coefficient (3.4.7) is justified by the fact that κ2(a − pn!c) −
κ2(a) → 0 uniformly in a, and that the expression of interest is a bounded function
of κ2(⋅). Lemma 2.4.4 then shows the existence of the YH×̂W-adic modular form
Iord(ϕp∞; χ,κ2). ∎

Consider the weight map

φ∶ (YG×̂YH) → W

(x , y) ↦ κx .

Recycling notation (in a way that should cause no confusion), define an ordinary
meromorphic (YG×̂YH)-adic modular cuspform of weight φ by

Iord(ϕp∞; x , y) ∶= Iord(ϕp∞, χy ,κxκ
−1
y ),(3.4.10)
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where the right-hand side is the form of Corollary 3.14. We denote by

Iord,⋎(ϕp∞, x , y)

the pullback of Iord(ϕp∞, x , y) under the involution YG ×YH
⋎×id,→ YG ×YH.

Corollary 3.15 Assume that ϕp∞
2 satisfies (3.3.7). For all x ∈ Y cl

G (C) and y ∈ Y cl
H (C),

of weights w, l such that for all τ ∈ Σ∞,

∣lτ ∣ ≤ wτ − 2, ∣w0 + l0∣ ≤ wτ − 2 − ∣lτ ∣,

we have

Iord,⋎(ϕp∞; x , y) = eord, ι ∣DE ∣1/2∣DF ∣eholI(ϕp∞; χι , ξ ι
x , y , ικ′2,x , y , kx , y),

(3.4.11)

where:
• ξ = ξx , y = ωx ωy , whose weight we denote by k0;
• kx , y = (w − 2 − ∣l ∣ − k0)/2;
• κ′2,x , y = κ⋎x

′ ⋅ κ′−1
y (with notation as in (2.4.3));

• ι∶Qp(x , y) ↪ C is the embedding attached to the complex geometric point (x , y).

Proof The interpolation property at characters satisfying l ≥ 0 follows from Propo-
sition 3.13 via Corollary 3.14; the same argument also goes through without the
assumption l ≥ 0, since the weight of the chosen theta-Eisenstein series does not
depend on l (or y) but only on x. The inequalities on the weights come from the
conditions k, k + k0 ≥ 0. ∎

4 Zeta integrals

In this final section, we interpolate global and local (away from p∞) zeta integrals,
compute the archimedean and p-adic integrals, and construct the p-adic L-function.

As preliminary, we recall gamma factors introduced in the introduction. Let Fv
and L be p-adic fields. The (inverse) Deligne–Langlands gamma factor of a potentially
semistable representation ρ of Gal(Fv/Fv) over L, with respect to a nontrivial charac-
ter ψv ∶ Fv → C× and an embedding ι∶ L ↪ C, is defined as

γ(ιρ, ψv)−1 ∶= L(ιWD(ρ))
ε(ιWD(ρ), ψv)L(ιWD(ρ∗(1))) ,

where ιWD is Fontaine’s functor [Fon94] to complex Weil–Deligne representations.
We also define γ(s, W , ψv) ∶= γ(W ⊗ ∣ ⋅ ∣s , ψv).

Let Qab
p be the abelian closure of Qp . If Wχ is the Weil–Deligne representation cor-

responding to a smooth character χ∶ Fv → Qab,×
p , then for any σ ∈ Gab

Qp
corresponding

to a ∈ Q×
p under the reciprocity map, we have

γ(Wχ , ψv)σ = χ(a)γ(Wχσ , ψv).(4.0.1)

For now until the final Section 4.5.3, we fix an embedding

ιab∶Qab
p ↪ C,(4.0.2)
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by which we identify the fixed standard character ψ∞∶A∞ → C with one valued in
Qab

p (still denoted by ψ∞).

4.1 Petersson product

Let π be an ordinary automorphic representation of G(A) over a finite extension L
of Qab

p . For v∣p, let ωπ ,v , απ ,v ∶ F×
v → L× be the central character and, respectively, Uv-

eigencharacter of πv .
Define γ(ad(Vπ , p)(1)++, ψp) ∶= ∏v∣p γ(ad(Vπ ,v)(1)++, ψv), where ad(Vπ , p)(1)++

is the character ω−1
π ,v α2

π ,v ∣ ⋅ ∣2 of F×
v . For ι∶ L ↪ C, let

ep(ad(Vπ ι)(1)) ∶=
γ(ιad(Vπ , p)(1)++, ψp)−1ζF , p(2)

L(1, π ι
p , ad) .

Let (, ) denote the Petersson pairing

( f , f ′) ∶= ∫
A×/G(A)

f (g) f ′(g) dg

of automorphic forms on G(A).

Lemma 4.1 Let π be an ordinary cuspidal automorphic representation of G(A) of
weight w over a finite extension L of Qab

p . There exists a bilinear pairing

⟨ , ⟩∶ πord ⊗L Nw∨(L) → L

such that for all ι∶ L ↪ C extending ιab = (4.0.2) and all sufficiently large r ∈ NSp ,

ι⟨ f , g⟩ = ∣DF ∣1/2ζF(2)
ωπ ι , p(−1)ep(ad(Vπ ι)(1)) ⋅ 2∑σ −1−wσ ⋅ L(1, π ι , ad)qr

F , p(wr , pU−r
p f ι ,a , g ι).

(4.1.1)

The pairing ⟨ , ⟩ satisfies the following properties.
(1) For all f ∈ πord and g ∈ Nw∨(L), we have ⟨ f , g⟩ = ⟨ f , eordehol g⟩.
(2) If f0 ∈ π∞ and f ∨0 ∈ π∨,∞ are ordinary forms, new at places away from p, holomor-

phic at the infinite places, and with first Fourier coefficients equal to 1, then

⟨ f0 , f ∨0 ⟩ = cπ∞(4.1.2)

for some constant cπ∞ ∈ L× depending only on the Bernstein components and the
monodromy of πv for all v ∤ p∞.

Proof The existence and (4.1.2) follow from the factorization of the Petersson inner
product into parings in the Whittaker models [CST14, Proposition 2.1], together with
the local calculations of [CST14, Proposition 3.11] away from p and [Dis/b, Lemma
A.3.3] at p. Since the elements f ι ,a in the right-hand side of (4.1.1) are antiholomorphic,
it is clear that the pairing factors through ehol. ∎

Proposition 4.2 Let XG ⊂ YG be a Hida family of tame level U p, let S be a
finite set of places such that U S p is maximal, and let Π = ΠU S p

XG
. There is a unique
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O(YG,Qab
p
)-bilinear pairing

⟨⟨ , ⟩⟩∶Π ⊗O(YG) S ⋎(YG)Qab
p
→ K (XG,Qab

p
)

such that for all x ∈ X cl
G,Qab

p
, corresponding to an ordinary representation π = πx over

Qab
p (x), and for all f ∈ ΠQab

p
, g ∈ S ⋎(YG)Qab

p
, we have

⟨⟨f , g⟩⟩(x) = ⟨fx , gx⟩.

Proof The construction is very similar to that of the pairing denoted by H−1 lλ in
[Hid91, p. 380]. In this case, let f⋎0 = (2.4.10) be the normalized primitive form in Π⋎,
let U p

0 ⊂ G(Ap∞) be a maximal open compact subgroup fixing f⋎0 , and let

ef⋎0 ∶S
⋎ → K (XG) f⋎0

be the unique H sph
U p

0
-equivariant idempotent that factors through the idempotent

projection S ⋎ → S U p
0 ,⋎. Then we define ⟨⟨f0 ,−⟩⟩ by

⟨⟨f0 , g⟩⟩f⋎0 = c−1
XG

⋅ ef⋎0 (g),

where cXG ∶= cπ∞ for any automorphic representation π such that πU S p ,ord ≅ Π∣x ,
for some x ∈ X cl

G,Qab
p

. Let us explain why this is well defined independently of x. As
noted before, cπ∞ only depends on the Bernstein component and the (rank of the)
monodromy of πx ,v for v ∤ p∞. (In plain terms, the rank of the monodromy is 1 if
πx ,v is a special representation and it is 0 otherwise.) The Bernstein component is an
invariant of connected families. As for the rank of the monodromy, by the local–global
compatibility result of Proposition 2.4, it is the rank of the monodromy of the Weil–
Deligne representation attached to VG∣x . Since the latter is pure, the desired constancy
along XG follows from [Dis20, Proposition 3.3.1].

In general, we may write f = Tf0 for some Hecke operator T supported away from
p. We then define ⟨⟨f , g⟩⟩ ∶= ⟨⟨f0 , T⋎g⟩⟩. The interpolation property follows from the
definitions, the interpolation property proved in [Hid91, Lemma 9.3], and (4.1.2). ∎

4.2 Waldspurger’s Rankin–Selberg integral

We recall the local and global theory of Waldspurger’s [Wal85] integral representation
of our L-function.

4.2.1 Setup

Let y ∈ Y cl
H (C), let χ = χy be the corresponding character of E×/A×

E , let κχ ∈ Wcl(C)
be its weight, let l be its numerical weight, and let ωχ ∶= χ∣A× .

Let x ∈ X cl
G (C), corresponding to a point x0 ∈ X cl

G and an embedding ι∶Qp(x) ↪
C. Let π0 be the ordinary automorphic representation of G(A) over Qp(x0) attached
to x0, and let π = π ι

0. We denote by

κπ ∈ Wcl(C), w , ωπ ,
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respectively, the weight, numerical weight, and central character of π. We let α =
⊗v αv ∶ F×

p → C× be the character such that Uy f ι = α(t) f ι for any f ∈ πord
0 and t ∈ F×

p .
Then

κπ ,0(z) = ωπ(z)zw0 , κπ(t) = α∣U○F , p
(t)t(w+w0)/2

are the decompositions of κπ ,0 and κπ into a product of a smooth and an algebraic
character.

Define, as in Corollary 3.15, a numerical weight k and a smooth character κ′2 of
U○

F , p by

κ′χκ
′
2 = κ′π∨ = α∣U○F , p

, ξ = ωπ ωχ ,

k = (w − 2 − ∣l ∣ − k0)/2, k0 = w0 + l0 ,
(4.2.1)

and let κ2 ∈ W(C) be the associated weight as in (3.4.6).
For v∣p, we choose a Schwartz function Φv = ϕv ∈ S(Vv × F×

v ) as in (3.4.1) and
(3.4.3) (for ϕ1), and (3.3.11) and (4.2.1) (for ϕ2); then

ϕv(x , u) = δr ,v(x1)1V○2,v
(x2)δU○F ,v

(u)αv(u).(4.2.2)

For v∣∞, let Φv = Φ l0 , l ,k0 ,k ,v be a preimage, under the map (3.1.1), of

ϕ l0 , l ,k0 ,k ,v(x1 , x2 , u) = ϕ1, l0 , l ,v(x1 , u)ϕ2,k0 ,k ,v(x2 , u),

where the factors are defined in (3.2.3) and (3.3.3).

4.2.2 Waldspurger’s integral

The next proposition gives an integral representation for the L-function we are
interested in. We first define the local terms. Let f0 ∈ πord

0 , let f ∶= f ι
0 , and let

W(g) ∶= ∫
F/A

f a (( 1 x
1 ) g)ψ(x) dx

be the Whittaker function of f a with respect to ψ−1. It is related to the q-expansion
(2.2.1) of f by

W (( y
1 )) = WC

f (y).

We assume that W ∶G(A) → C is factorizable as W = ⊗v Wv .
For Φ = ⊗v Φv ∈ S(V × A×), let

Rr ,v(Wv , Φv , χv)

∶= ∫
Z(Fv)N(Fv)/G(Fv)

Wv(g)δξv ,r(g)∫
T(Fv)

χv(t)r(gw−1
r ,v)Φv(t−1 , q(t)) dt dg ,

where δξ,r is as in (3.3.1). Note that the integral Rr ,v does not depend on r ≥ 1 unless
v∣p; we will accordingly simplify the notation in these cases. We also define normalized
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versions. For v∣p∞, let Φv be as fixed in Section 4.2.1. Then we put

R♮v(Wv , Φv , χv) ∶= ∣dv ∣−2 ∣Dv ∣−1/2 ζF ,v(2)L(1, ηv ξv)
L(1/2, πE ,v ⊗ χv)

Rv(Wv , Φv , χv), if v ∤ p∞,

R†
r ,v(Wv , χv , αv) ∶= ∣dv ∣−2 ∣Dv ∣−1/2 ζF ,v(2)L(1, ηv)

L(1/2, πE ,v ⊗ χv)
qr

F ,v α−r
v Rr ,v(Wv , Φv , χv), if v∣p,

R†
v(Wv , χv , k) ∶= ζF ,v(2)L(1, ηv)

L(1/2, πE ,v ⊗ χv)
Rv(Wv , Φv , χv), if v∣∞.

By a result of Waldspurger (see [Dis17, Lemma 5.3.2]), for a place v such that πv and
χv are unramified, ϕv is standard, and Wv is unramified, we have

R♮
v(Wv , Φv , χv) = Wv(1).(4.2.3)

Proposition 4.3 Let f0 ∈ πord
0 and assume that f ∶= f ι ,a

0 has a factorizable ψ−1-
Whittaker function W = ⊗v Wv . Let ϕp∞ ∈ S(Vp∞ × Ap∞,×). For sufficiently large
r = (rv)v∣p, we have

ιqr
F , pα(�p)−r( f , w−1

r , pI(ϕp∞; χ, ξ,κ′2 , k)) = ∣DF ∣−1∣DE ∣−1/2 L(1/2, πE ⊗ χ)
ζF(2)L(1, η)

⋅ ∏
v∤p∞

R♮
r ,v(Wv , ϕv , χv)∏

v∣p
R†

r ,v(Wv , χv , αv)∏
v∣∞

R†
v(Wv , χv , k),

where all but finitely many of the factors in the infinite product are equal to 1.

Proof As in [Dis17, Proof of Proposition 3.5.1], corrected in [Dis/a, Appendix B,
under “Proposition 2.4.4.1”] to include the factor qr

F , p . ∎

4.2.3 Nonvanishing of the local integrals

We recall a fundamental nonvanishing result for our zeta integrals for self-dual π ⊠ χ,
as well as a useful refinement.

Lemma 4.4 Let v ∤ p∞ be a place of F, and let L be a field of characteristic zero. Let πv
be a smooth irreducible representation of G(Fv) over L, with central character ωπ ,v , and
let χv ∶E×

v → L× be a smooth character. Assume the self-duality condition ωπ ,v χ∣F×v = 1.
There exist:

• a four-dimensional quadratic space Vv = Bv over Fv of the type described in Section
3.1.4, uniquely determined by

ε(Bv) = ηv χv(−1)ε(πE ,v ⊗ χv),

• a function Wv in the Whittaker model of πv ,
• a Schwartz function ϕv ∈ S(Vv × F×

v , L),
such that

Rv(Wv , ϕv , χv) ≠ 0.

If moreover all the data are unramified at a place v inert in E, it is possible to choose
Wv and ϕv = ϕ1,v ϕ2,v such that ϕ2,v(0, u) = 0 for all u (condition (3.3.7)).
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Proof The argument in [Dis17, Proof of Proposition 3.7.1, second paragraph] applies
verbatim to prove the first statement. Let us prove the second one. We drop all
subscripts v. Fix an isomorphism V2 ≅ E, and let us choose W to be a new vector,
ϕ1,v to be the standard Schwartz function, and

ϕ2(x2 , u) = 1O×E
(x2)1O×F

(u).

Writing ≐ for an equality up to nonzero scalars, by the Iwasawa decomposition

R(W , ϕ, χ) ≐ ∫
F×

W(( y
1 ))∫E×

χ(t)∫
GL2(OF)

r(g)ϕ(t−1 y, y−1q(t)) dg d×y dt.

Let U0(�r) ⊂ U0 ∶= GL2(OF) be the set of matrices which are upper-triangular
modulo �r . It is easy to verify that ϕ2 is invariant under U0(�r) for some r, and
that U0 = U0(�r) ⊔ ⊔b∈OF ,v/�t ( 1

b 1 )U0(�). Thus, the integral in dg is a constant
multiple of

∫
OF

r(w)[ψ(y−1bq(tx′))ϕ̂(x′ , y−1q(t))]∣x=t−1 y db

= ∫
OF
∫

E×E
ψ(TrE/F tx1)ψ(y−1q(t) ⋅ bq(x))1OE (x1)1̂O×

E
(x2)1×OF (y

−1q(t))] dxdb

= 1×OF (y
−1q(t))∫

OF

1̂OE (t)∫
E

ψ(y−1q(t)bq(x2)1̂O×
E
(x2) dx2 db ≐ 1OE (t)1

×
OF (y

−1q(t)),

where the last equality follows from interchanging the order of integration and
observing that 1̂O×E

(x2) = vol(O×
E ) for x2 ∈ OE .

The last quantity equals ϕ○(t−1 y, y−1q(t)) for the standard Schwartz function ϕ○;
therefore, the integral R is a constant multiple of the unramified integral, in particular,
it is nonzero by (4.2.3). ∎

4.3 Evaluation of the integrals at p and ∞

We explicitly compute the local integrals at the places v∣p∞.

4.3.1 p-adic integrals

Define, for v∣p,

ev(VπE⊗χ) ∶=
L(1/2, πE ,v ⊗ χv)
ζF ,v(2)L(1, ηv)

∏
w∣v

γ(χw απ ,v ∣ ⋅ ∣ ○ NEw/Fv , ψv)−1 ,

ep(VπE⊗χ) ∶= ∏
v∣p

ev(VπE⊗χ).
(4.3.1)

Lemma 4.5 Let v∣p, and assume that Wv is normaliz,ed by Wv(1) = 1. Then for any
sufficiently large r (depending on χv , πv), we have

R†
r ,v(Wv , χv , αv) =

χv(−1)
L(1, ηv)

ev(VπE⊗χ).
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Proof By [Dis17, Proposition A.2.2] (with the discriminant factors corrected as in
[Dis/a, Appendix B]), we have

R†
r ,v(Wv , ϕv , χv) =

L(1/2, πE ⊗ χv)
ζF ,v(2)L(1, ηv)2 Zv ,

where Zv are integrals defined in [Dis17, Lemma A.1.1]. By [Dis/a, Lemma A.1.1], we
have

Zv = χv(−1)∏
w∣v

γ(χw αv ∣ ⋅ ∣ ○ NEw/Fv , ψv)−1 .

The asserted formula follows. ∎

4.3.2 Archimedean integrals

We compute the local integrals R†
v when v∣∞. The standard antiholomorphic Whittaker

function for ψ−1 of weight (w0 , w) is

W(w0 ,w),a(( z
z ) ( y x

1 ) rθ) = zw0 1R+(y)∣y∣(w+w0)/2ψ(−x + iy)ψ(−wθ).(4.3.2)

Lemma 4.6 Let v∣∞, and let Wv be the standard antiholomorphic Whittaker function
of weight (w0 , w) for ψ−1. Then

R†
v(Wv , χv , k) = i−k0 2−1−w .

Proof By the Iwasawa decomposition, we can uniquely write any g ∈ GL2(R) as

g = ( 1
x ) 1( z

z )( y
1 )( cos θ sin θ

− sin θ cos θ )

with x ∈ R, z ∈ R×, y ∈ R× and θ ∈ R/2πZ; the local Tamagawa measure is then dg =
dxd×z d× y

∣y∣
dθ
2 . Let Φv = Φ l0 , l ,k0 ,k ,v . We drop all subscripts v. Since the weights match,

the integration over SO(2, R) yields 1, and we have

R = R(W , Φ, χ) = ∫
R××(R×/C×)×R/2πZ×R×

χ(tz)ωπ(z)∣y∣(w+w0)/2e−2π y ξ−1(z)∣y∣Φ(yzt−1 , y−1z−2q(t)) d×z dθ
2

d×y
∣y∣ dt.

By definition, ωπ χξ−1(z) = 1, so that the integration in d×z simply realizes the map
Φ ↦ ϕ. Then

R = π ∫
R×

∫
R×/C×

χ(t)∣y∣(w+w0)/2e−2π y ∣y∣1R+(y)Pk(0)y(∣l ∣+l0)/2 χ(t)−1e−2π y d×y
∣y∣ dt

= 2πPk0 ,k(0)∫
R+

y(w+∣l ∣+w0+l0)/2e−4π yd×y,

(4.3.3)

where 2 = vol(R×/C×).
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Recall from (4.2.1) and (3.3.2) that k0 = w0 + l0 and k = (w − 2 − ∣l ∣ − k0)/2 and
that Pk0 ,k(0) = (2πi)−k0(4π)−k(k + k0)!. Then, after a change of variables, we have

R = (2π)1−k0 i−k0(4π)−(w−∣l ∣−k0−2)/2Γ(w − ∣l ∣ + k0

2
)(4π)−(w+∣l ∣+k0)/2Γ(w + ∣l ∣ + k0

2
)

= i−k0 2−1−w π2ΓC(
w − l + k0

2
)ΓC(

w + l + k0

2
).

Now, the result follows from identifying

π2ΓC(
w − l + k0

2
)ΓC(

w + l + k0

2
) = L(1, πE ,v ⊗ χ)

ζF ,v(2)L(1, ηv)
. ∎

4.4 Interpolation of the local zeta integral

Let X = XG×̂XH be a Hida family for G × H, let v ∤ p∞ be a place of F, and let
Πv ∶= Π(VG,v) be as in Section 2.4.8. Let X

(v)
G ⊂ X be the open subset containing

X cl
G over which Πv is defined, and let X (v) = X

(v)
G ×̂XH. Let Wv be the ψv-Whittaker

model of Πv ,Qab
p

, which exists since Πv is co-Whittaker (see [Dis20, Section 4.2]); it is
OX (v)[G(Fv)]-isomorphic to the tensor product of Πv and an invertible sheaf with
trivial G(Fv)-action. The space Wv is, as usual, a space of functions on G(Fv), ψv-
invariant under the action of the unipotent subgroup N(Fv). For any x ∈ X cl

G and
any Wv ∈ Wv , the twisted specialization

Wv∣x(g) ∶= Wv∣x ((
−1

1 ) g ( −1
1 ))

belongs to the ψ−1-Whittaker model of πx .

Proposition 4.7 Let v ∤ p∞. There exists an O(X (v)
Qab

p
)-linear map

Rv ∶Wv ⊗O(X (v)
G,Qab

p
) O(X (v)

Qab
p
) ⊗Qp S(Vv × F×

v ) → O(X (v)
Qab

p
)

such that for all Wv ∈ Wv , all ϕv ∈ S(Vv × F×
v ), and all (x , y) ∈ X cl

Qab
p
(C), with under-

lying embedding ι∶Qab
p (x , y) ↪ C, we have

Rv(Wv , ϕv)(x , y) = R♮
v(ιWv∣x , ιϕv , χι

y ,v).

Proof In fact, we may prove a stronger statement by replacing XH by (its image
in) YH,v , or equivalently any connected component Y ○

H,v thereof (which is an étale
torsor for G{w∣v}

m ,Qp
, the action being induced by multiplication by the uniformizers in

E×
v = ∏w∣v E×

w).
The proof is largely similar to that of [Dis20, Proposition 5.2.3] (whose statement

is corrected in Appendix B); we refer to loc. cit. and the sections preceding it for
more details on the notions we use. Since Wv ≅ Π(VG,v) is in the image of the local
Langlands correspondence, there exists an irreducible component X○ of the extended
Bernstein variety of [Dis20, Section 3.3] and a map X

(v)
G → X○, such that Wv is a
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quotient of the universal co-Whittaker module overX○. We may further extend scalars
to C and replace X○ by a cover of the form

X̃
○ = Gd

m

for d = 1 or 2; then the pull-back W̃v of the universal co-Whittaker module has one of
the following shapes:

(a) W̃v = IndG(Fv)
Pv

(β1 ⊠ β2), where d = 2 and β i ∶ F×
v → O(X̃○)× are the universal

characters;
(b) W̃v = St ⊗ β1, where d = 1 and β1∶ F×

v → O(X̃○)× is the universal character;
(c) W̃v = π0 ⊗ β1, where π0 is a complex supercuspidal representation of G(Fv), d = 1,

and β1∶ F×
v → O(X̃○)× is the universal character.

In all cases, we need to show that for every Wv ∈ W̃v , there is an element Rv(Wv , ϕv) ∈
O(X̃○ ×YH,v) such that

Rv(Wv , ϕv)(x , y) = L(1/2, πx ,E ,v ⊗ χy ,v)−1Rv(ϕv , Wv∣x , χy ,v)

for all x , y; in other words, that the power series in X±1
i ∶= β i(�v)±1 and Y±1

w ∶=
χuniv(�w)±1 obtained from the integral defining Rv is a Laurent-polynomial multiple
of the inverse of the Laurent polynomial L(1/2, πx ,E ,v ⊗ χy ,v). This is proved by the
same argument as in [Dis17, Proof of Proposition 3.6.1]: since W̃v is torsion-free, it
embeds in the representation W̃v ⊗K (X̃○) over the field K (X̃○), so that the usual
explicit description of the Kirillov model used in loc. cit. applies. ∎

4.5 The p-adic L-function

Let

X ⊂ YG×̂YH

be a Hida family with X sd ≠ ∅, of tame level U p = U p
G × U p

H. Let S be a finite set of
places of F, disjoint from Sp∞ and containing all those at which the tame level of X

is not maximal, and let Π ∶= ΠU S p
G

XG
. If X ′ is an (ind-)scheme over Qab

p , we define

X ′
/Qab

p
(C) ⊂ X ′(C)

to be the subset of geometric points over ιab (that is, those such that the composition
Spec C → X ′

Qab
p
→ Spec Qab

p is ιab,♯).

4.5.1 Whittaker models and q-expansions in families

For v ∈ S, let X
(v)
(G) ⊂ X(G) and Wv be as in Section 4.4, and let X ′

(G) ∶= ⋂v∈S X
(v)
(G) ;

it contains X cl
(G).

https://doi.org/10.4153/S0008414X22000256 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X22000256


1010 D. Disegni

Lemma 4.8 There is an isomorphism of OX ′

G,Qab
p

[G(FS)]-modules

W−,S ∶ΠQab
p

≅,→ ⊗
v∈S

Wv ,

f ↦ Wf ,S = ⊗v Wf ,v

(4.5.1)

such that for all classical points x ∈ X cl
G,Qab

p
and all aS ∈ F×

S , we have

Wf ,S ((
aS

1 ))(x) = Wf(x)(aS 1S∞),(4.5.2)

where the right-hand side is the p-adic q-expansion of f(x) defined in Section 2.3.2.

Proof By Proposition 2.4 and [Dis20, Theorem 4.4.3], after possibly shrinking X ′
G,

there exist an invertible sheaf W S ,U S
over X ′

G,Qab
p

with trivial G(FS)-action and an
OX ′

G,Qab
p

[G(FS)]-isomorphism

W∶ΠQab
p

≅,→ W S ,U S
⊗⊗

v∈S
Wv ,(4.5.3)

unique up to O×
X ′

G,Qab
p

, that we may write locally as

f J→ WS(1S) ⊗ Wf ,S = WS
f (1S) ⊗ ⊗v∈S Wf ,v ,

where WS(1S) is a section trivializing W S ,U S
.

For v ∉ S ∪ Sp∞ and x ∈ X cl
G , let λx ,v ∶ F×

v → Qp(x) be the smooth function such
that Wv(a) = λx ,v(a)Wv(1) for any spherical element Wv in the Kirillov model of
πx ,v ; by the standard formulas (see, for instance, [Wal85, p. 190]), there are functions
λv ∶ F×

v → O(XG) such that λv(x) = λx ,v for all x ∈ X cl
G . Let λS p ∶= ⊗v∉S∪Sp∞λv , and

let α○
p ∶ F×

p → O(XG)× be the U○
p-eigencharacter. Then we may define a pair of injective

maps in Hom H ord
G

(Π, OA∞,×

X ′
G

) by

f ↦ (Wf(a)), f ↦ (α○(ap)λS p(aS p)Wf ,S(aS)),

where the former arises from (2.4.5) and interpolates the q-expansions (Wfx (a)) for
x ∈ X cl

G . By [Dis20, Lemma 4.2.5], the maps differ by a scalar in OX ′
G

. It follows
that the invertible sheaf W S ,U S

is trivial, and that, from (4.5.3), we may deduce an
isomorphism (4.5.1) normalized so as to satisfy (4.5.2) ∎

4.5.2 Definition of the p-adic L-function and interpolation property

For each classical point (x , y) ∈ X cl,sd and each place v ∤ p∞, let V(x , y),v be the
quadratic space given by the application of Lemma 4.4 to πx and χy .

Lemma 4.9 The quadratic space Vv = V(x , y),v is independent of (x , y) ∈ X cl,sd.

Proof This follows from the characterization in (3.1.3) and the constancy results for
epsilon factors of [Dis20, Corollary 5.3.3]. ∎
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Let Vp∞ ∶= ⊗v∤p∞Vv , and assume that S is not disjoint from the set S′ of inert
places v where U p is maximal. Let

A ⊂ (ΠK (XG) − {0}) × S(Vp∞ × Ap∞,×)

be the set of those pairs (f , ϕp∞) such that ϕS p∞ is standard, (3.3.7) holds at an inert
place v ∈ S ∩ S′, and the meromorphic function Rv(Wf ,v , ϕv) on X is nonzero for all
v ∈ S.

For (f , ϕp∞) ∈ A, we define a meromorphic function

Lp(V , f , ϕp∞) ∈ K (XQab
p
),

Lp(V , f , ϕp∞)(x , y) ∶= C ⟨⟨fx , Iord,⋎(ϕp∞; x , y)⟩⟩
∏v∈S Rv(Wf∣x ,v , ϕv , χy ,v)

,
(4.5.4)

where we still denote by Iord,⋎(ϕp∞) the restriction to X of the (YG×̂YH)-adic form
of (3.4.10), and

C = C(x , y) ∶= ωp∞
x ωp∞

y (−1)L(1, ηp)
∣DF ∣−1/2ζF(2)

π[F∶Q]

is a constant in Q×; here, ωx = ωπx and ωy = ωχy . Note that the (base change of the)
functional ⟨⟨f ,−⟩⟩ may be applied to Iord,⋎(ϕp∞), thanks to Lemma 2.3.

Proposition 4.10 The collection

(Lp(V , f , ϕp∞))(f ,ϕp∞)∈A

of meromorphic functions on XQab
p

has the following properties.

(1) Let (x , y) ∈ X cl
Qab

p /Qab
p
(C) have contracted weight (k0 , w , l) satisfying

∣lτ ∣ ≤ wτ − 2, ∣k0∣ ≤ wτ − 2 − ∣lτ ∣.(4.5.5)

If (x , y) is outside the polar locus of Lp(V , f , ϕp∞), we have

Lp(V , f , ϕp∞)(x , y) = ep∞(V(π , χ)) ⋅L (V(π , χ), 0),(4.5.6)

where π = πx , χ = χy .
(2) For each (x , y) ∈ X cl,sd, there is a pair (f , ϕp∞) ∈ A such that Lp(V , f , ϕp∞)

does not have a pole at (x , y).

Note that the right-hand side of (4.5.6) is the same as in (1.1.8) and independent
of (f , ϕp∞). This will enable us to glue the various L (V , f , ϕp∞) into the sought-for
p-adic L-function.

Proof The second statement follows from Lemma 4.4.
It remains to prove the interpolation property. Abbreviate Lp = Lp(V , f , ϕp∞),

and let Wv ∶= Wf∣x , α = απ . Denote by (x0 , y0) ∈ X cl and ι∶Qab
p (x0 , y0) ↪ C the data

corresponding to (x , y). Let kx , y and ξx , y (respectively, kx0 , y0 , ξx0 , y0 , κ2 = κ2,x0 , y0
) be

defined by (4.2.1) (respectively, by the analogous formulas for the objects attached to
(x0 , y0) instead of (x , y)).
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By the definitions and the defining property of ⟨⟨ , ⟩⟩ in Proposition 4.2, and of Rv
in Proposition 4.7, we have

Lp(x , y) = C ⋅ ι⟨fx0 , eordI(ϕp∞; χy0 , ξx0 , y0 , kx0 , y0 ⟩
∏v∈S R♮v(ιWv , ϕv , χv)

= C ⋅ ∣DF ∣1/2ζF(2) ⋅ ∣DF ∣∣DE ∣1/2

ωx , p(−1) ⋅ ep(ad(Vπ)(1)) ⋅ 2∑v∣∞ −1−wv
⋅

qr
F , pα−r

π (fa
x , w−1

r , pIr(ϕp∞; χ, ξx , y ,κ′2 , kx , y)
L(1, π , ad) ⋅ ∏v∈S R♮v(ιWv , ϕv , χv)

,

where r ∈ (Z≥1)Sp is sufficiently large, and the second equality follows from the
interpolation properties of Iord,⋎ in (3.4.11), and of ⟨ , ⟩ in Lemma 4.1.

Using first Waldspurger’s integral representation as in Proposition 4.3, and then the
calculations of local integrals in Lemmas 4.5 and 4.6, we find

Lp(x , y) = C ⋅
∏v∣p R†

r ,v(Wv , χv , αv)
2∑τ −1−wτ ωx , p(−1) ⋅ ep(ad(Vπ)(1))

⋅ ∣DF ∣1/2L(1/2, πE ⊗ χ)
L(1, η)L(1, π, ad) ∏

v∣∞
R†

v(Wv , χv , kv)

= C ⋅ i−k0[F∶Q]ωx , pωsm
y , p(−1) ep(VπE⊗χ)

L(1, ηp) ⋅ ep(ad(Vπ)(1))
⋅ ∣DF ∣1/2L(1/2, πE ⊗ χ)

L(1, η)L(1, π, ad) .

= ik0[F∶Q] ⋅ ep(V(π , χ)) ⋅L (V(π , χ) , 0),

as desired. ∎

Remark 4.11 The interpolation factors ep∞(V(π , χ)) are easily seen to agree with
the predictions of Coates and Perrin-Riou (see [Coa91]) for a (cyclotomic) p-adic L-
function attached to the “virtual motive” (1.1.3), up to a subtlety that we now explain.
With the notation used in (1.1.4), for v∣p, consider the GFv -representations

ad(Vπ ,v)(1) ∶= End 0(Vπ)(1)
⊃ ad(Vπ ,v)(1)+ ∶= Ker [ad(Vπ)(1) → Hom (V+

π ,v , V−
π ,v)(1)]

⊃ ad(Vπ ,v)(1)++ = Hom (V−
π ,v , V+

π ,v)(1)),

where “0” denotes trace-0 elements, and the cokernel of the second containment
is isomorphic to the cyclotomic character. Then (1.1.4) differs from the ratio of
the v-adic Coates–Perrin-Riou factors for the hypothetical L-functions of Vπ ⊗
IndGE

GF
Vχ and of ad(Vπ)(1) by the appearance of γ(ιad(Vπ ,v)(1)++, ψv)−1 in place of

γ(ιad(Vπ ,v)(1)+, ψv)−1. This discrepancy removes the trivial zero γ(C(1), ψv)−1 from
the latter inverse gamma factor.

4.5.3 Rationality and completion of the proof of Theorem A

By Proposition 4.10 and the density of classical points, the functions Lp(V , f , ϕp∞) =
(4.5.4) ∈ K (XQab

p
) glue to a function

Lp(V ) ∈ K (XQab
p
),

which satisfies the required interpolation property, and whose polar locus does not
meet the set X cl,sd. All that is left to show is that Lp(V ) descends to K (X ). It will
be a consequence of the following.
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Proposition 4.12 Let X cl,∥ ⊂ X cl be the sub-ind-scheme of those (x , y) correspond-
ing to a representation π ⊠ χ whose contracted weight (k0 , w , l) satisfies (4.5.5) and is
parallel.11 There is a function

L ∈ O(X cl,∥)

such that for any z = (x , y) ∈ X cl,∥(C) corresponding to a point z0 ∈ X cl,∣∣ and an
embedding ι∶Qp(z0) ↪ C, with attached representation π ⊠ χ, we have

L(z) = ιL(z0) = i−(1+k0)[F∶Q]γ(1, η∞ω∞, ψ∞)−1 ζF(2)L(1/2, πE ⊗ χ)
π[F∶Q]L(1, π, ad) .

(4.5.7)

Here, we denote by ωπ the central character of π, set ωχ ∶= χ∣A× ω = ωπ ωχ , and define
γ(s, ω′∞ , ψ∞) ∶= ∏v∤∞ γ(s, ω′

v , ψv).
Remark 4.13 The construction of this paper gives an alternative proof of this result.
However, due to the occurrence of the additive character ψ in the definition of the form
I (via the Weil representation), keeping track of rationality requires some burdensome
bookkeeping.
Proof This is a consequence of a well-known algebraicity theorem of Shimura
[Shi78, Theorem 4.2], applied to the newform in the representation π and the CM
form attached to χ, whose central character is ηωχ . (For the comparison of Shimura’s
periods and adjoint L-values, see [CST14, Proposition 1.11].) ∎
Corollary 4.14 The function Lp(V ) belongs to K (X ) ⊂ K (XQab

p
).

Proof We need to show that

L (V )σ = L (V )(4.5.8)

for all σ ∈ Gal(Qab
p /Qp). Let X

cl,∥,reg
Qab

p
be the intersection of X cl,∥

Qab
p

with the comple-
ment of the polar locus of Lp(V ). Since this set is dense in XQab

p
, it suffices to show

that (4.5.8) holds for the restriction Lp(V ) of Lp(V ) to X
cl,∥,reg

Qab
p

; in other words,

that Lp(V ) belongs to O(X cl,∥,reg).
By (4.5.6) and (4.5.7),

Lp(V )(z) = i[F∶Q]γ(1, η∞ , ψ∞)
L(1, η) ⋅ γ(1, η∞ω∞, ψ∞)

γ(1, η∞ , ψ∞)γ(1, ω∞, ψ∞) ⋅ 1
γ(1, ωp∞, ψp∞)−1

⋅
ep(V(x , y))

γ(1, ωp , ψp)−1 ⋅ L(z).

We show that all factors belong to O(X cl,∥,reg):
• By the class number formula and standard results on Gauß sums, the ratio

L(1, η)/i[F∶Q]γ(1, η∞) is rational, as both numerator and denominator are rational
multiples of ∣DE/F ∣−1/2.

11That is, wτ is independent of τ ∈ Σ∞ and so is lτ . Without this condition, we may have a slightly
weaker result.
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• By (4.0.1), the second and fourth ratios are values of functions on O(X cl,∥), as
ep(V(x , y)) is a ratio of inverse gamma factors of characters whose ratio is ωp .

• As X is connected and it contains points z with ωz = 1, the character ωz ,v is
unramified for all z ∈ X and all v ∤ p; thus, for those v, the quantity γ(ωv) is a ratio
of L-values, and hence the third factor is also the value of a function in O(X cl,∥).

• Finally, L ∈ O(X cl,∥) by Proposition 4.12.
This completes the proof of the corollary and of Theorem A. ∎

A Reality shows and double-factorial identities

Consider the identity

(∗)
n
∑
k=0

(n
k
)(2k − 1)!!(2n − 2k − 1)!! = 2n n!,

where we recall that (2m − 1)!! = 1 ⋅ 3 ⋅ 5⋯(2m − 1) is the number of perfect matchings
(into pairs) of a 2m-element set. Since Γ( j + 1/2) = (2 j−1)!!

2 j

√
π, the identity (∗) is

equivalent to (3.3.9).
Quick analytic proofs of (∗) have appeared in [AA10] and [GQ12, Theorem 3]. As

we were not able to find a bijective proof in the literature, we give one here. Another
bijective proof was communicated to the author by David Callan.

A reality TV show format is an algorithm whose inputs are called players’ choices and
whose outputs are called outcomes (the set of players is partitioned into two disjoint
sets, the producers and the participants). A format is said to be bijective if its set of
players’ choices is in bijection with its set of outcomes.

We will describe two bijective formats for reality TV shows, with different sets of
players’ choices but the same set of outcomes. In each case, there are 2n participants
forming an ordered set of n heterosexual couples12; there are two tropical islands, Q
and H, and in each case, the outcome is:
• a new matching of the participants into n disjoint couples (which may be homosex-

ual or heterosexual), and
• an assignment of each participant to either island Q or island H, such that
• each person lives in the same island as both their old and their new partners.
Show 1. The producers choose a set of couples, send all their members to island Q,

and send all the other participants to island H. Within each island, people
mingle until they form new disjoint couples (heterosexual or homosexual)
as they wish.

Show 2. The producers pick a permutation σ ∶ {1, . . . , n} → {1, . . . , n}, then they do
the following.
• Initialize: i = 1 and the set variable C = ∅ (where C is for “cycle”; to be

thought of as the set of couples embarked in the show’s boat at a given
time).

12These TV shows, for simplicity or close mindedness, assume the gender binary.

https://doi.org/10.4153/S0008414X22000256 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X22000256


p-adic L-functions for GL2 × GU(1) 1015

• Process:
(a) Consider couple i, set Cnew = Cold ∪ {i}, and interview couple mem-

ber p i where: if C = {i}, then p i is the woman; if C ⊋ {i}, then p i is
the one that does not yet have a new partner.

The possible answers to the interview question are “H” and “Q”.
(b) If j = σ(i) ∉ C and p i responds H (resp. Q):

– rematch p i with the person of opposite (respectively, the same) sex
of couple j = σ(i). Set inew = j. Return to (a).

(c) If j = σ(i) ∈ C and p i responds H (resp. Q):
– rematch p i with the unique nonrematched person of couple j,

and send all members of the “original couples” in C to island H
(respectively, Q); set Cnew = ∅;

– if everyone has been rematched, STOP. Else: set inew ∈ {1, . . . , n} to
be the smallest such that neither member of couple inew has been
rematched. Return to (a).

Proof of (∗) The number of possible players’ choices in Show 1 is the left-hand side
of (∗). The number of possible players’ choices in Show 2 is the right-hand side of (∗).
However, the shows are bijective with the same set of outcomes. ∎

B Errata to [Dis20]

The conclusions of the statements of Lemma 5.2.2 and Propositions 5.2.3 and 5.2.4
should, respectively, have A[T±1], OX[T±1], and OX[T±1] instead of A[T], OX[T],
and OX[T].

Acknowledgment I am grateful to David Callan, Haruzo Hida, Ming-Lun Hsieh,
and Xinyi Yuan for useful correspondence, and to the referees for a very careful
reading.
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