BULL. AUSTRAL. MATH. SOC. Vol. 43 (1991) [295-302]

APPROXIMATION IN FUNCTION MODULES

FOWZI AHMED SEJEENI

We investigate the existence of best approximation of an element α in a function module from a subfunction module whose fibers satisfy the intersection property of balls. Also we investigate the lower semicontinuity of the metric projection associated with such a subfunction module.

1. INTRODUCTION

Let E be a normed linear space and G a closed subspace of E. The set

(1.1)
$$\mathsf{P}_G(x) = \{g_0 \in G : ||x - g_0|| = \inf ||x - g||, g \in G\}$$

is called the set of all best approximations to x from G. This defines a set valued mapping P_G which is called the metric projection onto G. A mapping $s: E \to G$ is called a selection for P_G if $s(x) \in P_G(x)$ for all $x \in E$. A subspace G of a normed linear space E is called proximinal (respectively Chebychev) if $P_G(x)$ contains at least (exactly) one element for all $x \in E$.

The set valued mapping P_G is called lower semicontinuous (l.s.c.) if the set

$$\{x \in E : \mathsf{P}_G(x) \cap U \neq \emptyset\}$$

is open for each open subset U of G or, what is equivalent, for each sequence $\{x_n\}$ in E converging to x in E and for each g in $P_G(x)$, there is a sequence $\{g_n\}$ in G such that for each $n \in \mathbb{N}$, $g_n \in P_G(x_n)$ and $g_n \to g$, see [2, p.365].

DEFINITION 1.1: A subspace G of the Banach space E is said to have the twoball property for open balls if for any pair $B(x_1, r_1)$ and $B(x_2, r_2)$ of open balls such that $B(x_1, r_1) \cap B(x_2, r_2) \neq \emptyset$ and $B(x_i, r_i) \cap G \neq \emptyset$ for i = 1, 2, the intersection $(G \cap B(x_1, r_1) \cap B(x_2, r_2))$ is nonvoid; see [1, Definition 2.16].

Let T be a nonvoid compact Hausdorff space and (E_t) a family of Banach spaces over T. Consider the Banach space $\prod_{t\in T}^{\infty} E_t = \{\alpha \in \prod_{t\in T} E_t : \|\alpha\|_{\infty} = \sup_{t\in T} \|\alpha(t)\|_t < \infty\}$ (where $\|.\|_t$ is the norm on the Banach space E_t). Closed subspaces of $\prod_{t\in T} E_t$ will be called Banach spaces of a vector valued function on T.

Received 30 April 1990

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/91 \$A2.00+0.00.

DEFINITION 1.2: A function module is a triple $(T, (E_t)_{t\in T}, E_{\infty})$, where T is a nonvoid compact Hausdorff space (called base space), $(E_t)_{t\in T}$ a family of Banach spaces (the component spaces) and E_{∞} a closed subspace of the space $\prod_{t\in T}^{\infty} E_t$ such that:

- (1) E_{∞} is a C(T)-module (where C(T) is the Banach algebra of all continuous scalar valued functions on T), $(f, \alpha)(t) = f(t)\alpha(t), f \in C(T), \alpha \in E_{\infty}$.
- (2) For every $\alpha \in E_{\infty}$, the map $t \mapsto \|\alpha(t)\|_t$ is upper semicontinuous.
- (3) $E_t = \{\alpha(t) : \alpha \in E_\infty\}$ for every $t \in T$.
- (4) $\{t: t \in T, E_t \neq \{0\}\} = T.$

REMARK. Instead of " $(T, (E_t)_{t\in T}, E_{\infty})$ is a function module" we will often say that E_{∞} is a function module in $\prod_{t\in T}^{\infty} E_t$ or (if T and $(E_t)_{t\in T}$ are understood) that E_{∞} itself is a function module, see [1, Definition 4.1].

DEFINITION 1.3: Let G_{∞} be a sub-function module in the function module E_{∞} and α be an element of E_{∞} . The element γ_0 in G_{∞} is called:

(1) global best approximation of α from G_{∞} if

$$\|\alpha - \gamma_0\|_{\infty} = \inf\{\|\alpha - \gamma\|_{\infty} : \gamma \in G_{\infty}\};\$$

(2) local best approximation if for each $t \in T$

$$\|\alpha(t) - \gamma_0(t)\|_t = \inf\{\|\alpha(t) - g\|_t : g \in G_t\};\$$

that is, $\gamma(t)$ in $P_{G_t}(\alpha(t))$ for each $t \in T$.

Note that local best approximations are always global but the converse is not always true.

2. RESULTS

THEOREM 2.1. Let G be a closed subspace of the Banach space E. If G satisfies the two-ball property for open balls, then G is proximinal and P_G is lower semicontinuous.

PROOF: Let x be an arbitrary element in $E \setminus G$ and define $r = d(x, G) = \inf\{||x - g|| : g \in G\}$. For any positive real number ε and any $g \in G$ such that $||x - g|| < r + \varepsilon$ we have $B(x, r + \varepsilon/2) \cap B(g, \varepsilon/2) \neq \emptyset$, $B(x, r + \varepsilon/2) \cap G \neq \emptyset$ and $B(g, \varepsilon/2) \cap G \neq \emptyset$. Therefore $B(x, r + \varepsilon/2) \cap B(g, \varepsilon/2) \cap G \neq \emptyset$, and then there exists an element g_0 in G satisfying the following:

(2.1)
$$||x-g_0|| \leq r + \frac{\varepsilon}{2} \text{ and } ||g-g_0|| \leq \frac{\varepsilon}{2}.$$

297

By applying (2.1) inductively, we can construct a sequence $\{g_n\}$ in G satisfying the following:

(2.2)
$$||x - g_n|| \leq r + 2^{-n} \text{ and } ||g_n - g_{n+1}|| \leq 2^{-n}.$$

The sequence $\{g_n\}$ is Cauchy, and hence it has a limit g in G. Moreover, we have ||x - g|| = r; that is, $g \in P_G(x)$.

For the lower semi-continuity of P_G , let U be an arbitrary open subset of G and $V = \{x \in E : P_G(x) \cap U \neq \emptyset\}$. We may assume without loss of generality that $V \neq \emptyset$ and show that V^c (the complement of V in E) is closed. For, let $\{x_n\}$ be a sequence in V^c converging to x in V, $g \in P_G(x) \cap U$ and $\varepsilon > 0$ such that $B(g, \varepsilon) \subseteq U$. Define $r_n = d(x_n, G)$ and r = d(x, G). Let N be the positive integer such that $||x_n - x|| < \varepsilon/2$ and $||r_n - r|| < \varepsilon/2$ for each $n \ge N$. Now, for each $n \ge N$, the two balls $B(x_n, r_n)$ and $B(g, \varepsilon)$ satisfy the following:

$$B(x_n, r_n) \cap B(g, \varepsilon) \neq \emptyset$$

(since $||x_n - g|| \leq ||x_n - x|| + ||x - g|| < \epsilon/2 + r < \epsilon/2 + (r_n + \epsilon/2) = r_n + \epsilon$,) $B(x_n, r_n) \cap G \neq \emptyset$, and $B(g, \epsilon) \cap G \neq \emptyset$. Hence $B(x_n, r_n) \cap B(g, \epsilon) \cap G \neq \emptyset$, or, what is equivalent, there is a $g_n \in P_G(x_n)$ such that $g_n \in B(g, \epsilon) \subseteq U$. This contradicts the assumption. Thus V must be open.

THEOREM 2.2. Let E_{∞} be a function module in $\prod_{t\in T}^{\infty} E_t$, such that for each α in E_{∞} the mapping $t \mapsto \|\alpha(t)\|_t$ is continuous. If $\alpha_1, \ldots, \alpha_n$ are elements of E_{∞} such that for each t in T, span $\langle \alpha_1(t), \ldots, \alpha_n(t) \rangle$ has dimension n and satisfies the two-ball property for open balls, then $\operatorname{span}(\alpha_1, \ldots, \alpha_n)$ contains a local best approximation for each $\alpha \in E_{\infty}$.

In order to prove the above theorem, we need the following lemma, which perhaps is interesting in itself.

LEMMA 2.3. With the assumption of Theorem 2.2, for each α in E_{∞} the function $\rho: T \to \mathbb{R}$ defined by $\rho(t) = d(\alpha(t), G_t)$ is continuous.

PROOF: Let $H: T \times \ell_1^n \to \mathbb{R}$ be the mapping defined by $H(t, a) = \left\| \alpha(t) - \sum_{i=1}^n a_i \alpha_i(t) \right\|_t$ (where $a_i = h_i(a) and\{h_i\}$ is the sequence of coefficient functionals associated with the unit vector basis of ℓ_1^n). Let (t_0, r) be a fixed point in $T \times \ell_1^n$.

Then

$$\begin{aligned} |H(t, a) - H(t_0, r)| &\leq |H(t, a) - H(t, r)| + |H(t, r) - H(t_0, r)| \\ &\leq \sum_{i=1}^n |a_i - r_i| \, \|\alpha_i(t)\|_t \\ &+ \left| \left\| \alpha(t) - \sum_{i=1}^n r_i \cdot \alpha_i(t) \right\|_t - \left\| \alpha(t_0) - \sum_{i=1}^n r_i \cdot \alpha_i(t_0) \right\|_{t_0} \right|. \end{aligned}$$

This inequality and the continuity of the map $t \mapsto \left\| \alpha(t) - \sum_{i=1}^{n} r_i \cdot \alpha_i(t) \right\|_t$ imply that *H* is continuous on *T*. For each $t \in T$, define $\Lambda_t \colon \ell_1^n \to G_t$ by $a \mapsto \sum_{i=1}^{n} a_i \cdot \alpha_i(t)$. Here Λ_t is a one to one onto linear mapping. Moreover for each $t \in T$, $a \in \ell_1^n$ we have

$$\|\Lambda_t a\|_t = \left\|\sum_{i=1}^n a_i \cdot \alpha_i(t)\right\|_t \leq \sum_{i=1}^n \|a_i\| \|\alpha_i(t)\|_t$$
$$\leq n \max_i \|h_i\| \cdot \max_i \|\alpha_i\|_{\infty}.$$

Hence the open mapping theorem and the uniform boundedness principle give positive reals m and k such that

Now, let t_0 be a fixed point in T, and $\{t_b\}_{b\in B}$ be any net in T converging to t_0 . Pick $g \in \mathsf{P}_{G_{t_0}}(\alpha(t_0))$ and write $g = \sum_{i=1}^n g_i \cdot \alpha_i(t_0)$, $\beta = \sum_{i=1}^n g_i \cdot \alpha_i$ ($\beta \in G_{\infty} =$ span of $\langle \alpha_1, \ldots, \alpha_n \rangle$ over C(T)). Let ε be any positive real number, and U_{t_0} the neighbourhood of t_0 such that $\|\alpha(t) - \beta(t)\|_t < \|\alpha(t_0) - \beta(t_0)\|_{t_0} + \varepsilon = \rho(t_0) + \varepsilon$. But

(2.4)
$$\rho(t) \leq \|\alpha(t) - \beta(t)\|_t < \rho(t_0) + \varepsilon \quad \forall t \in U_{t_0}$$

 $(\text{since } \beta(t) = \sum_{i=1}^{n} g_i . \alpha_i(t) \in G_t). \text{ The net } \{a(t_b)\}_{b \in B} \text{ (where } a(t_b) = (a_1(t_b), \dots, a_n(t_b))$ and $\left\| \alpha(t_b) - \sum_{i=1}^{n} a_i(t_b) . \alpha_i(t_b) \right\|_{t_b} = \rho(t_b)$ is eventually bounded since $\|a(t_b)\| \leq \frac{1}{m} \left\| \sum_{i=1}^{n} a_i(t_b) \alpha_i(t_b) \right\|_{t_b}$ $\leq \frac{1}{m} \left(\left\| \alpha(t_b) - \sum_{i=1}^{n} a_i(t_b) . \alpha_i(t_b) \right\|_{t_b} + \|\alpha(t_b)\|_{t_b} \right).$

298

By (2.4) there is a $c \in B$ such that $\rho(t_b) < \rho(t_0) + 1$ for each $b \ge c$. Thus $||a(t_b)|| \le (1/m)(\rho(t_0) + 1 + ||\alpha||_{\infty})$. We may assume without loss of generality that $a(t_b) \to a$.

(2.5)
$$\rho(t) - \rho(t_0) \leq H(t, a(t_0)) + H(t_0, a(t_0)).$$

(2.6)
$$\rho(t_0) - \rho(t) \leq H(t_0, a(t)) + H(t, a(t)).$$

$$egin{aligned} |H(t_0,\,a(t_b))-H(t_b,\,a(t_b))| &\leq |H(t_0,\,a)-H(t_0,\,a(t_b))| \ &+ |H(t_0,\,a)-H(t_b,\,a(t_b))|\,. \end{aligned}$$

The continuity of the map H and $a(t_b) \to a$ imply that $|H(t_0, a(t_b)) - H(t_b, a(t_b))| \to 0$ as $t_b \to t$. Consequently, (2.5) and (2.6) imply that ρ is continuous.

PROOF OF THE THEOREM: It suffices to show that for each $\alpha \in E_{\infty}$, $t_0 \in T$, $g \in \mathsf{P}_{G_{t_0}}(\alpha(t_0))$ and $\varepsilon > 0$ there exists $\gamma \in G_{\infty}$ such that $\gamma(t_0) = g$, and $d(\gamma(t), \mathsf{P}_{G_t}(\alpha(t))) < \varepsilon$ for each $t \in T$. Write $g = \sum_{i=1}^n g_i \cdot \alpha_i(t_0)$, $\alpha_0 = \sum_{i=1}^n g_i \cdot \alpha_i \in G_{\infty}$. Let U_{t_0} be the neighbourhood of t_0 such that, for $s \in U_{t_0}$,

$$\begin{split} \|\alpha_0(s) - \alpha(s)\|_s < \|\alpha_0(t_0) - \alpha(t_0)\|_{t_0} + \varepsilon/4 \\ \rho(t_0) < \rho(s) + \varepsilon/4. \|\alpha_0(s) - \alpha(s)\|_s \\ < \|\alpha_0(t_0) - \alpha(t_0)\|_{t_0} + \varepsilon/4 \\ = \rho(t_0) + \varepsilon/4 < \rho(s) + \varepsilon/2. \end{split}$$

Thus for each $s \in U_{t_0}$, we have the following:

$$egin{aligned} B(lpha(s),\,
ho(s))\cap B(lpha_0(s),\,arepsilon/2)
eq \emptyset,\ &B(lpha(s),\,
ho(s))\cap G_{s}
eq \emptyset,\ &B(lpha_0(s),\,arepsilon/2)\cap G_{s}
eq \emptyset. \end{aligned}$$

and

Therefore, there is g_s in $B(\alpha(s), \rho(s)) \cap B(\alpha_0(s), \varepsilon/2) \cap G_s$, and then $d(\alpha_0(s), \mathsf{P}_{G_s}(\alpha(s))) :$ $\|g_s - \alpha_0(s)\|_s \leq \varepsilon/2 < \varepsilon$.

Now, for each $t \in T$, $t \neq t_0$, select a g_t from $\mathsf{P}_{G_t}(\alpha(t))$. By the above there is $\alpha_t \in G_{\infty}$ and a neighbourhood U_t of t (we may assume that $U_{t_0} \cap U_t = \emptyset$, since T is Hausdorff) such that $\alpha_t(t) = g_t$ and $d(\alpha_t(p), \mathsf{P}_{G_p}(\alpha(p))) < \varepsilon$ for each p in U_t . Let $f_t : T \to [0, 1]$ be the continuous function such that $f_{|u_{t_0}} = 1$ and $f_{|u_t} = 0$. For $\beta_t = f_t \cdot \alpha_0 + (1 - f_t) \cdot \alpha_t$, we have $\beta_{t|u_{t_0}} = \alpha_0$, $\beta_{t|u_t} = \alpha_t$ and $d(\beta_t(s), \mathsf{P}_{G_s}(\beta(s))) < \varepsilon$ for each s in $V_t = U_{t_0} \cup U_t$. The collection $\{V_t : t \in T\}$ forms an open covering of T; then there are t_1, \ldots, t_n in T such that $T = \bigcup_{i=1}^n V_{t_i}$. Let $\{h_i\}_{i=1}^n$ be the partition of

F.A. Sejeeni

[6]

unity subordinate to $\{V_{t_i}\}$. A simple calculation will show that $\gamma = \sum_{i=1}^{n} h_i \beta_{t_i}$ is the desired element of G_{∞} . Since ε was arbitrary, the result follows from the closeness of $P_{G_t}(\alpha(t))$ and the fact that $d(\alpha(t), G_t) \leq d(\alpha, G_{\infty})$ for each t in T.

THEOREM 2.4. Let E_{∞} be a function module in $\prod_{t\in T}^{\infty} E_t$. If G_{∞} is a sub-C(T)-module of E_{∞} such that for each t in T the fiber $G_t = \{\gamma(t) : \gamma \in G_{\infty}\}$ has the two-ball property for open balls, then G_{∞} is proximinal (global best approximation exists).

PROOF: Let α be any fixed element of E_{∞} . For each t in T, let $g(t) \in \mathsf{P}_{G_t}(\alpha(t))$. Define

(2.7)
$$r = \inf_{\gamma \in G_{\infty}} \|\alpha - \gamma\|_{\infty} \ge \sup_{t \in T} \|\alpha(t) - g(t)\|_{t}$$

We shall show that there is a Cauchy sequence $\{\gamma_n\}$ in G_{∞} such that $\|\alpha - \gamma_n\|_{\infty} \to r$. For, let $\varepsilon > 0$; then by definition of r there is $\beta \in G_{\infty}$ such that $\|\beta - \alpha\|_{\infty} < r + \varepsilon$. We will show that there is another element $\gamma \in G_{\infty}$. such that

(2.8)
$$\|\alpha - \gamma\|_{\infty} < r + \frac{\varepsilon}{2} \text{ and } \|\beta - \gamma\|_{\infty} \leq \frac{\varepsilon}{2}.$$

For each $t \in T$, the two balls $B(\alpha(t), r)$ and $B(\beta(t), \varepsilon)$ satisfy the conditions of the two-ball property (since $\|\alpha(t) - g(t)\|_t \leq r$ and $\|\beta(t) - \alpha(t)\|_t \leq \|\beta - \alpha\|_{\infty} < r + \varepsilon$). Let $x(t) \in G_t$ be such that $\|\alpha(t) - x(t)\|_t \leq r$ and $\|\beta(t) - x(t)\|_t < \varepsilon$. Put $y_t = (x(t) + \beta(t))/2$; then

(2.9)
$$\|\alpha(t) - y(t)\|_{t} \leq \|\alpha(t) - x(t)\|_{t} + \|x(t) - y(t)\|_{t} < r + \varepsilon/2 \text{ and } \\ \|\beta(t) - y(t)\|_{t} < \varepsilon/2.$$

Now, let $\gamma_t \in G_{\infty}$ be such that $\gamma_t(t) = y_t$ and V_t the neighbourhood of t such that for each s in U_t

(2.10)
$$\|\alpha(s) - \gamma_t(s)\|_s < r + \varepsilon/2 \text{ and } \|\beta(s) - \gamma_t(s)\|_s < \frac{\varepsilon}{2};$$

(such U_t exists by (u.s.c.) of the norm functions). The collection $\{U_t : t \in T\}$ forms an open covering of T. Let t_1, \ldots, t_n be in T such that $T = \bigcup_{i=1}^n U_{t_i}$ and $\{f_i\}_{i=1}^n$ the partition of unity subordinate to $\{U_{t_i}\}_{i=1}^n$. A simple calculation will show that $\gamma = \sum_{i=1}^n f_i \cdot \gamma_{t_i}$ is the desired element.

By applying (2.10) inductively, we can construct a sequence $\{\gamma_n\}$ in G_{∞} such that

(2.11)
$$\|\alpha - \gamma_n\|_{\infty} \leq r + 2^{-n} \text{ and } \|\gamma_n - \gamma_{n+1}\|_{\infty} \leq 2^{-n}$$

The second inequality of (2.11) implies that $\{\gamma_n\}$ is Cauchy; hence it has a limit γ_0 in G_{∞} and the first inequality of (2.11) implies that $\|\alpha - \gamma\|_{\infty} = r$; that is, γ in $P_{G_{\infty}}(\alpha)$.

THEOREM 2.5. Let E_{∞} be a function module in $\prod_{t\in T}^{\infty} E_t$. If G_{∞} is a sub-C(T)-module of E_{∞} such that for each t in T the fiber $G_t = \{\gamma(t) : \gamma \in G_{\infty}\}$ has the two-ball property for open balls, then $P_{G_{\infty}}$ is (l.s.c.).

In order to prove the above theorem, we need the following lemma, which maybe is interesting in itself.

LEMMA 2.6. With the assumption of Theorem 2.5, for each α in E_{∞} , t in T and \mathbf{x}_t in G_t such that $\|\alpha(t) - \mathbf{x}_t\|_t \leq r = d(\alpha, G_{\infty})$, there is γ in $P_{G_{\infty}}(\alpha)$ such that $\gamma(t) = \mathbf{x}_t$.

PROOF: We shall show that for each positive ε there are two elements β_{ε} and γ_{ε} in G_{∞} such that

(2.12)
$$\beta_{\epsilon}(t) = \gamma_{\epsilon}(t) = x_{t}$$

$$\|\alpha - \beta_{\epsilon}\|_{\infty} < r + \varepsilon;$$

(2.14)
$$\|\alpha - \gamma_{\varepsilon}\|_{\infty} < r + \frac{\varepsilon}{2} \text{ and } \|\beta_{\varepsilon} - \gamma_{\varepsilon}\|_{\infty} < \frac{\varepsilon}{2}.$$

To see this, let $s \in T$, $x_s \in G_s$ such that $||x_s - \alpha(s)||_s \leq r$ (if s = t take $x_s = x_t$). Let φ, φ_s be the elements of G_{∞} such that $\varphi(t) = x_t$ and $\varphi_s(s) = x_s$ and $h: T \longrightarrow [0, 1]$ the continuous function such that h(t) = 0 and h(s) = 1. Take $\beta_s = (1 - h).\varphi + h.\varphi_s$ and let U_s be the neighbourhood of s such that $\|\alpha(p) - \beta_s(p)\|_p < r + \varepsilon$ for each p in U_s . The collection $\{U_s : s \in T\}$ forms an open covering of T. Let s_1, \ldots, s_n in T be such that $T = \bigcup_{i=1}^{n} U_{s_i}$ and $\{f_i\}_{i=1}^{n}$ the partition of unity subordinate to $\{U_{s_i}\}_{i=1}^{n}$. Take $\beta_{\varepsilon} = \sum_{i=1}^{n} f_i \beta_{s_i}$. A simple calculation will show that β_{ε} satisfies (2.12) and (2.13). Now, for $s \neq t$, let $y_s \in G_s$ be such that $\|\alpha(s) - y_s\|_s \leq r$ and $\|y_s - \beta(s)\|_s < r$ $\varepsilon \ (y_s \in B(\alpha(s), r) \cap B(\beta_{\varepsilon}(s), \varepsilon) \cap G_s)$. Let $a_s = (y_s + \beta_{\varepsilon}(s))/2$ and $\Omega, \Omega_s \in G_{\infty}$ such that $\Omega(t) = x_t$ and $\Omega_s(s) = a_s$. Put $\gamma_s = (1-f)\Omega + f\Omega_s$ (where $f: T \to [1, 0]$ such that f is continuous, f(t) = 0 and f(s) = 1). Let U_s be the neighbourhood of s such that $\|\alpha(p) - \gamma_s(p)\|_p < r + \varepsilon/2$ for each p in U_s . Again $\{U_s : s \in T\}$ forms an open covering of T. Let s_1, \ldots, s_n in T be such that $T = \bigcup_{i=1}^n U_{s_i}$ and $\{h_i\}_{i=1}^n$ the partition of unity subordinate to $\{U_{s_i}\}_{i=1}^n$. It can easily be checked that $\gamma_e = \sum_{i=1}^n h_i \cdot \gamma_{s_i}$ satisfies (2.12) and (2.14). Now, apply (2.12)-(2.14) inductively to construct a sequence $\{\gamma_n\}$ in G_{∞} with the following:

(2.15)
$$\alpha_n(t) = x_t, \|\alpha - \gamma_n\|_{\infty} \leq r + 2^{-n} \text{ and } \|\gamma_n - \gamma_{n+1}\|_{\infty} \leq 2^{-n}$$

F.A. Sejeeni

The third inequality on the right in (2.15) implies that $\{\gamma_n\}$ is Cauchy, and then it has a limit γ in G_{∞} . Clearly γ is the desired element.

PROOF OF THE THEOREM: Let $\{\alpha_n\}$ be a sequence in E_{∞} converging to α , and β an element in $P_{G_{\infty}}(\alpha)$. Define $r = d(\alpha, G_{\infty})$ and $r_n = d(\alpha_n, G_{\infty})$. For each $t \in T$ and $n \in \mathbb{N}$, define $\mathcal{A}_t^n = B(\beta(t), d_n) \cap B(\alpha_n(t), r_n) \cap G$ (where $d_n =$ $\|\alpha_n - \alpha\|_{\infty} + |r_n - r| + 1/n$).

(2.16)
$$\begin{aligned} \|\beta(t) - \alpha_n(t)\|_t &\leq \|\beta(t) - \alpha(t)\|_t + \|\alpha(t) - \alpha_n(t)\|_t \\ &\leq r + \|\alpha_n - \alpha\|_{\infty} \\ &< r_n + |r_n - r| + \|\alpha_n - \alpha\|_{\infty} + \frac{1}{n}. \end{aligned}$$

By (2.16) \mathcal{A}_{t}^{n} is a nonempty convex set for all $t \in T$ and for all $n \in \mathbb{N}$. Now, let t be an arbitrary but fixed element in T and $n \in \mathbb{N}$. Pick $x_{n} \in \mathcal{A}_{t}^{n}$. Let $\beta_{t}^{n} \in \mathbb{P}_{G_{\infty}}(\alpha_{n})$ be the element that exists from Lemma 2.6; that is, $\beta_{t}^{n}(t) = x_{n}$ and U_{t} is the neighbourhood of t such that $\|\beta_{t}^{n}(s) - \beta(s)\|_{s} < d_{n}$ for each $s \in U_{t}$ (such U_{t} exists by the (u.s.c.) of the norm function). Thus for each s in U_{t} we have $\beta_{t}^{n}(s)$ in \mathcal{A}_{s}^{n} . The collection $\{U_{t}: t \in T\}$ is an open covering of T. Let t_{1}, \ldots, t_{n} in T be such that $T = \bigcup_{i=1}^{n} U_{t_{i}}$ and $\{f_{i}\}_{i=1}^{n}$ the partition of unity subordinate to $\{U_{t_{i}}\}_{i=1}^{n}$. Define $\beta_{n} = \sum_{i=1}^{n} f_{i} \cdot \beta_{t_{i}}^{n}$. For each t in T $\beta_{n}(t)$ is a convex combination of elements of \mathcal{A}_{t}^{n} , and hence $\beta_{n}(t) \in \mathcal{A}_{t}^{n}$.

(2.17)
$$\begin{cases} \|\beta_n(t) - \alpha_n(t)\| \leq r_n \\ \|\beta_n(t) - \beta(t)\| < d_n. \end{cases}$$

The first inequality in (2.17) implies that $\beta_n \in P(\alpha_n)$ and the second implies that $\beta_n \to \beta$ as $n \to \infty$.

References

- E. Behrends, M-structure and the Banach Stone Theorem: Lecture Notes in Math. 736 (Springer-Verlag, New York, 1979).
- [2] E. Michael, 'Continuous selection', Ann. of Math. 63 (1956), 361-382.

Department of Mathematical Science Umm Al Qura University Makkah Saudi Arabia