VoL. 43 (1991) [295-302]

APPROXIMATION IN FUNCTION MODULES

Fowzi Ahmed Sejeeni

We investigate the existence of best approximation of an element α in a function module from a subfunction module whose fibers satisfy the intersection property of balls. Also we investigate the lower semicontinuity of the metric projection associated with such a subfunction module.

1. Introduction

Let E be a normed linear space and G a closed subspace of E. The set

$$
\begin{equation*}
\mathrm{P}_{G}(x)=\left\{g_{0} \in G:\left\|x-g_{0}\right\|=\inf \|x-g\|, g \in G\right\} \tag{1.1}
\end{equation*}
$$

is called the set of all best approximations to x from G. This defines a set valued mapping P_{G} which is called the metric projection onto G. A mapping $s: E \rightarrow G$ is called a selection for P_{G} if $s(x) \in P_{G}(x)$ for all $x \in E$. A subspace G of a normed linear space E is called proximinal (respectively Chebychev) if $\mathrm{P}_{G}(x)$ contains at least (exactly) one element for all $x \in E$.

The set valued mapping P_{G} is called lower semicontinuous (l.s.c.) if the set

$$
\begin{equation*}
\left\{x \in E: \mathrm{P}_{G}(x) \cap U \neq \emptyset\right\} \tag{1.2}
\end{equation*}
$$

is open for each open subset U of G or, what is equivalent, for each sequence $\left\{x_{n}\right\}$ in E converging to x in E and for each g in $P_{G}(x)$, there is a sequence $\left\{g_{n}\right\}$ in G such that for each $n \in N, g_{n} \in \mathrm{P}_{G}\left(x_{n}\right)$ and $g_{n} \rightarrow g$, see [2, p.365].

Definition 1.1: A subspace G of the Banach space E is said to have the twoball property for open balls if for any pair $B\left(x_{1}, r_{1}\right)$ and $B\left(x_{2}, r_{2}\right)$ of open balls such that $B\left(x_{1}, r_{1}\right) \cap B\left(x_{2}, r_{2}\right) \neq \emptyset$ and $B\left(x_{i}, r_{i}\right) \cap G \neq \emptyset$ for $i=1,2$, the intersection $\left(G \cap B\left(x_{1}, r_{1}\right) \cap B\left(x_{2}, r_{2}\right)\right)$ is nonvoid; see [1, Definition 2.16].

Let T be a nonvoid compact Hausdorff space and (E_{t}) a family of Banach spaces over T. Consider the Banach space $\prod_{t \in T}^{\infty} E_{t}=\left\{\alpha \in \prod_{t \in T} E_{t}:\|\alpha\|_{\infty}=\sup _{t \in T}\|\alpha(t)\|_{t}<\infty\right\}$ (where $\|\cdot\|_{t}$ is the norm on the Banach space E_{t}). Closed subspaces of $\prod_{t \in T}^{\infty} E_{t}$ will be called Banach spaces of a vector valued function on T.

[^0]Definition 1.2: A function module is a triple $\left(T,\left(E_{t}\right)_{t \in T}, E_{\infty}\right)$, where T is a nonvoid compact Hausdorff space (called base space), $\left(E_{t}\right)_{t \in T}$ a family of Banach spaces (the component spaces) and E_{∞} a closed subspace of the space $\prod_{t \in T}^{\infty} E_{t}$ such that:
(1) E_{∞} is a $C(T)$-module (where $C(T)$ is the Banach algebra of all continuous scalar valued functions on $T),(f, \alpha)(t)=f(t) \alpha(t), f \in C(T)$, $\alpha \in E_{\infty}$.
(2) For every $\alpha \in E_{\infty}$, the map $t \mapsto\|\alpha(t)\|_{t}$ is upper semicontinuous.
(3) $E_{t}=\left\{\alpha(t): \alpha \in E_{\infty}\right\}$ for every $t \in T$.
(4) $\left\{t: t \in T, E_{t} \neq\{0\}\right\}=T$.

Remark. Instead of " $\left(T,\left(E_{t}\right)_{t \in T}, E_{\infty}\right)$ is a function module" we will often say that E_{∞} is a function module in $\prod_{t \in T}^{\infty} E_{t}$ or (if T and $\left(E_{t}\right)_{t \in T}$ are understood) that E_{∞} itself is a function module, see [1, Definition 4.1].

Definition 1.3: Let G_{∞} be a sub-function module in the function module E_{∞} and α be an element of E_{∞}. The element γ_{0} in G_{∞} is called:
(1) global best approximation of α from G_{∞} if

$$
\left\|\alpha-\gamma_{0}\right\|_{\infty}=\inf \left\{\|\alpha-\gamma\|_{\infty}: \gamma \in G_{\infty}\right\}
$$

(2) local best approximation if for each $t \in T$

$$
\left\|\alpha(t)-\gamma_{0}(t)\right\|_{t}=\inf \left\{\|\alpha(t)-g\|_{t}: g \in G_{t}\right\}
$$

that is, $\gamma(t)$ in $P_{G_{t}}(\alpha(t))$ for each $t \in T$.
Note that local best approximations are always global but the converse is not always true.

2. Results

Theorem 2.1. Let G be a closed subspace of the Banach space E. If G satisfies the two-ball property for open balls, then G is proximinal and P_{G} is lower semicontinuous.

Proof: Let x be an arbitrary element in $E \backslash G$ and define $r=d(x, G)=$ $\inf \{\|x-g\|: g \in G\}$. For any positive real number ε and any $g \in G$ such that $\|x-g\|<r+\varepsilon$ we have $B(x, r+\varepsilon / 2) \cap B(g, \varepsilon / 2) \neq \emptyset, B(x, r+\varepsilon / 2) \cap G \neq \emptyset$ and $B(g, \varepsilon / 2) \cap G \neq \emptyset$. Therefore $B(x, r+\varepsilon / 2) \cap B(g, \varepsilon / 2) \cap G \neq \emptyset$, and then there exists an element g_{0} in G satisfying the following:

$$
\begin{equation*}
\left\|x-g_{0}\right\| \leqslant r+\frac{\varepsilon}{2} \text { and }\left\|g-g_{0}\right\| \leqslant \frac{\varepsilon}{2} \tag{2.1}
\end{equation*}
$$

By applying (2.1) inductively, we can construct a sequence $\left\{g_{n}\right\}$ in G satisfying the following:

$$
\begin{equation*}
\left\|x-g_{n}\right\| \leqslant r+2^{-n} \text { and }\left\|g_{n}-g_{n+1}\right\| \leqslant 2^{-n} \tag{2.2}
\end{equation*}
$$

The sequence $\left\{g_{n}\right\}$ is Cauchy, and hence it has a limit g in G. Moreover, we have $\|x-g\|=r$; that is, $g \in P_{G}(x)$.

For the lower semi-continuity of P_{G}, let U be an arbitrary open subset of G and $V=\left\{x \in E: P_{G}(x) \cap U \neq \emptyset\right\}$. We may assume without loss of generality that $V \neq \emptyset$ and show that V^{c} (the complement of V in E) is closed. For, let $\left\{x_{n}\right\}$ be a sequence in V^{c} converging to x in $V, g \in \mathrm{P}_{G}(x) \cap U$ and $\varepsilon>0$ such that $B(g, \varepsilon) \subseteq U$. Define $r_{n}=d\left(x_{n}, G\right)$ and $r=d(x, G)$. Let N be the positive integer such that $\left\|x_{n}-x\right\|<\varepsilon / 2$ and $\left\|r_{n}-r\right\|<\varepsilon / 2$ for each $n \geqslant N$. Now, for each $n \geqslant N$, the two balls $B\left(x_{n}, r_{n}\right)$ and $B(g, \varepsilon)$ satisfy the following:

$$
B\left(x_{n}, r_{n}\right) \cap B(g, \varepsilon) \neq \emptyset
$$

(since $\left\|x_{n}-g\right\| \leqslant\left\|x_{n}-x\right\|+\|x-g\|<\varepsilon / 2+r<\varepsilon / 2+\left(r_{n}+\varepsilon / 2\right)=r_{n}+\varepsilon$, $B\left(x_{n}, r_{n}\right) \cap G \neq \emptyset$, and $B(g, \varepsilon) \cap G \neq \emptyset$. Hence $B\left(x_{n}, r_{n}\right) \cap B(g, \varepsilon) \cap G \neq \emptyset$, or, what is equivalent, there is a $g_{n} \in \mathrm{P}_{G}\left(x_{n}\right)$ such that $g_{n} \in B(g, \varepsilon) \subseteq U$. This contradicts the assumption. Thus V must be open.

Theorem 2.2. Let E_{∞} be a function module in $\prod_{t \in T}^{\infty} E_{t}$, such that for each α in E_{∞} the mapping $t \mapsto\|\alpha(t)\|_{t}$ is continuous. If $\alpha_{1}, \ldots, \alpha_{n}$ are elements of E_{∞} such that for each t in $T, \operatorname{span}\left\langle\alpha_{1}(t), \ldots, \alpha_{n}(t)\right\rangle$ has dimension n and satisfies the two-ball property for open balls, then $\operatorname{span}\left\langle\alpha_{1}, \ldots, \alpha_{n}\right\rangle$ contains a local best approximation for each $\alpha \in E_{\infty}$.

In order to prove the above theorem, we need the following lemma, which perhaps is interesting in itself.

Lemma 2.3. With the assumption of Theorem 2.2, for each α in E_{∞} the function $\rho: T \rightarrow \mathbf{R}$ defined by $\rho(t)=d\left(\alpha(t), G_{t}\right)$ is continuous.

Proof: Let $H: T \times \ell_{1}^{n} \rightarrow \mathbf{R}$ be the mapping defined by $H(t, a)=$ $\left\|\alpha(t)-\sum_{i=1}^{n} a_{i} \alpha_{i}(t)\right\|_{i}$ (where $a_{i}=h_{i}(a)$ and $\left\{h_{i}\right\}$ is the sequence of coefficient functionals associated with the unit vector basis of ℓ_{1}^{n}). Let (t_{0}, r) be a fixed point in $T \times \ell_{1}^{n}$.

Then

$$
\begin{aligned}
&\left|H(t, a)-H\left(t_{0}, r\right)\right| \leqslant|H(t, a)-H(t, r)|+\left|H(t, r)-H\left(t_{0}, r\right)\right| \\
& \leqslant \leqslant \sum_{i=1}^{n}\left|a_{i}-r_{i}\right|\left\|\alpha_{i}(t)\right\|_{t} \\
& \quad+\left|\left\|\alpha(t)-\sum_{i=1}^{n} r_{i} . \alpha_{i}(t)\right\|_{t}-\left\|\alpha\left(t_{0}\right)-\sum_{i=1}^{n} r_{i} \cdot \alpha_{i}\left(t_{0}\right)\right\|_{t_{0}}\right|
\end{aligned}
$$

This inequality and the continuity of the map $t \mapsto\left\|\alpha(t)-\sum_{i=1}^{n} r_{i} . \alpha_{i}(t)\right\|_{t}$ imply that H is continuous on T. For each $t \in T$, define $\Lambda_{t}: \ell_{1}^{n} \rightarrow G_{i}$ by $a \mapsto \sum_{i=1}^{n} a_{i} . \alpha_{i}(t)$. Here Λ_{t} is a one to one onto linear mapping. Moreover for each $t \in T, a \in \ell_{1}^{n}$ we have

$$
\begin{aligned}
\left\|\Lambda_{t} a\right\|_{t} & =\left\|\sum_{i=1}^{n} a_{i} \cdot \alpha_{i}(t)\right\|_{t} \leqslant \sum_{i=1}^{n}\left\|a_{i}\right\|\left\|\alpha_{i}(t)\right\|_{t} \\
& \leqslant n \max _{i}\left\|h_{i}\right\| \cdot \max _{i}\left\|\alpha_{i}\right\|_{\infty}
\end{aligned}
$$

Hence the open mapping theorem and the uniform boundedness principle give positive reals m and k such that

$$
\begin{equation*}
m\|a\| \leqslant\left\|\Lambda_{t} a\right\|_{t} \leqslant k\|a\| \quad \forall t \in T, \quad \forall a \in \ell_{1}^{n} \tag{2.3}
\end{equation*}
$$

Now, let t_{0} be a fixed point in T, and $\left\{t_{b}\right\}_{b \in B}$ be any net in T converging to t_{0}. Pick $g \in P_{G_{i_{0}}}\left(\alpha\left(t_{0}\right)\right)$ and write $g=\sum_{i=1}^{n} g_{i} . \alpha_{i}\left(t_{0}\right), \beta=\sum_{i=1}^{n} g_{i} . \alpha_{i}\left(\beta \in G_{\infty}=\right.$ span of $\left\langle\alpha_{1}, \ldots, \alpha_{n}\right\rangle$ over $\left.C(T)\right)$. Let ε be any positive real number, and $U_{t_{0}}$ the neighbourhood of t_{0} such that $\|\alpha(t)-\beta(t)\|_{t}<\left\|\alpha\left(t_{0}\right)-\beta\left(t_{0}\right)\right\|_{t_{0}}+\varepsilon=\rho\left(t_{0}\right)+\varepsilon$. But

$$
\begin{equation*}
\rho(t) \leqslant\|\alpha(t)-\beta(t)\|_{t}<\rho\left(t_{0}\right)+\varepsilon \quad \forall t \in U_{t_{0}} \tag{2.4}
\end{equation*}
$$

(since $\left.\beta(t)=\sum_{i=1}^{n} g_{i} . \alpha_{i}(t) \in G_{t}\right)$. The net $\left\{a\left(t_{b}\right)\right\}_{b \in B}\left(\right.$ where $a\left(t_{b}\right)=\left(a_{1}\left(t_{b}\right), \ldots, a_{n}\left(t_{b}\right)\right)$ and $\left.\left\|\alpha\left(t_{b}\right)-\sum_{i=1}^{n} a_{i}\left(t_{b}\right) \cdot \alpha_{i}\left(t_{b}\right)\right\|_{t_{b}}=\rho\left(t_{b}\right)\right)$ is eventually bounded since

$$
\begin{aligned}
\left\|a\left(t_{b}\right)\right\| & \leqslant \frac{1}{m}\left\|\sum_{i=1}^{n} a_{i}\left(t_{b}\right) \alpha_{i}\left(t_{b}\right)\right\|_{t_{b}} \\
& \leqslant \frac{1}{m}\left(\left\|\alpha\left(t_{b}\right)-\sum_{i=1}^{n} a_{i}\left(t_{b}\right) \cdot \alpha_{i}\left(t_{b}\right)\right\|_{t_{b}}+\left\|\alpha\left(t_{b}\right)\right\|_{t_{b}}\right)
\end{aligned}
$$

By (2.4) there is a $c \in B$ such that $\rho\left(t_{b}\right)<\rho\left(t_{0}\right)+1$ for each $b \geqslant c$. Thus $\left\|a\left(t_{b}\right)\right\| \leqslant$ $(1 / m)\left(\rho\left(t_{0}\right)+1+\|\alpha\|_{\infty}\right)$. We may assume without loss of generality that $a\left(t_{b}\right) \rightarrow a$.

$$
\begin{gather*}
\rho(t)-\rho\left(t_{0}\right) \leqslant H\left(t, a\left(t_{0}\right)\right)+H\left(t_{0}, a\left(t_{0}\right)\right) . \tag{2.5}\\
\rho\left(t_{0}\right)-\rho(t) \leqslant H\left(t_{0}, a(t)\right)+H(t, a(t)) . \tag{2.6}\\
\left|H\left(t_{0}, a\left(t_{b}\right)\right)-H\left(t_{b}, a\left(t_{b}\right)\right)\right| \leqslant \\
\\
\\
\\
\\
\end{gather*}
$$

The continuity of the map H and $a\left(t_{b}\right) \rightarrow a$ imply that $\left|H\left(t_{0}, a\left(t_{b}\right)\right)-H\left(t_{b}, a\left(t_{b}\right)\right)\right| \rightarrow$ 0 as $t_{b} \rightarrow t$. Consequently, (2.5) and (2.6) imply that ρ is continuous.

Proof of the Theorem: It suffices to show that for each $\alpha \in E_{\infty}, t_{0} \in T$, $g \in \mathrm{P}_{G_{t_{0}}}\left(\alpha\left(t_{0}\right)\right)$ and $\varepsilon>0$ there exists $\gamma \in G_{\infty}$ such that $\gamma\left(t_{0}\right)=g$, and $d\left(\gamma(t), \mathrm{P}_{G_{i}}(\alpha(t))\right)<\varepsilon$ for each $t \in T$. Write $g=\sum_{i=1}^{n} g_{i} . \alpha_{i}\left(t_{0}\right), \alpha_{0}=\sum_{i=1}^{n} g_{i} . \alpha_{i} \in G_{\infty}$. Let $U_{t_{0}}$ be the neighbourhood of t_{0} such that, for $s \in U_{t_{0}}$,
and

$$
\begin{aligned}
\left\|\alpha_{0}(s)-\alpha(s)\right\|_{s} & <\left\|\alpha_{0}\left(t_{0}\right)-\alpha\left(t_{0}\right)\right\|_{t_{0}}+\varepsilon / 4 \\
\rho\left(t_{0}\right) & <\rho(s)+\varepsilon / 4 .\left\|\alpha_{0}(s)-\alpha(s)\right\|_{0} \\
& <\left\|\alpha_{0}\left(t_{0}\right)-\alpha\left(t_{0}\right)\right\|_{t_{0}}+\varepsilon / 4 \\
& =\rho\left(t_{0}\right)+\varepsilon / 4<\rho(s)+\varepsilon / 2
\end{aligned}
$$

Thus for each $s \in U_{t_{0}}$, we have the following:

$$
\begin{aligned}
B(\alpha(s), \rho(s)) \cap & B\left(\alpha_{0}(s), \varepsilon / 2\right) \neq \emptyset \\
& B(\alpha(s), \rho(s)) \cap G_{s} \neq \emptyset \\
& B\left(\alpha_{0}(s), \varepsilon / 2\right) \cap G_{s} \neq \emptyset
\end{aligned}
$$

Therefore, there is g_{0} in $B(\alpha(s), \rho(s)) \cap B\left(\alpha_{0}(s), \varepsilon / 2\right) \cap G_{s}$, and then $d\left(\alpha_{0}(s), \mathrm{P}_{G_{s}}(\alpha(s))\right)$: $\left\|g_{s}-\alpha_{0}(s)\right\|_{s} \leqslant \varepsilon / 2<\varepsilon$.

Now, for each $t \in T, t \neq t_{0}$, select a g_{t} from $P_{G_{t}}(\alpha(t))$. By the above there is $\alpha_{t} \in G_{\infty}$ and a neighbourhood U_{t} of t (we may assume that $U_{t_{0}} \cap U_{t}=\emptyset$, since T is Hausdorff) such that $\alpha_{t}(t)=g_{t}$ and $d\left(\alpha_{t}(p), P_{G_{p}}(\alpha(p))\right)<\varepsilon$ for each p in U_{t}. Let $f_{t}: T \rightarrow[0,1]$ be the continuous function such that $f_{\mid u_{t_{0}}}=1$ and $f_{\mid u_{t}}=0$. For $\beta_{t}=f_{t} \cdot \alpha_{0}+\left(1-f_{t}\right) \cdot \alpha_{i}$, we have $\beta_{t \mid u_{t_{0}}}=\alpha_{0}, \beta_{t \mid u_{t}}=\alpha_{t}$ and $d\left(\beta_{t}(s), P_{G_{s}}(\beta(s))\right)<\varepsilon$ for each s in $V_{t}=U_{t_{0}} \cup U_{t}$. The collection $\left\{V_{t}: t \in T\right\}$ forms an open covering of T; then there are t_{1}, \ldots, t_{n} in T such that $T=\bigcup_{i=1}^{n} V_{t_{i}}$. Let $\left\{h_{i}\right\}_{i=1}^{n}$ be the partition of
unity subordinate to $\left\{V_{t_{i}}\right\}$. A simple calculation will show that $\gamma=\sum_{i=1}^{n} h_{i} . \beta_{t_{i}}$ is the desired element of G_{∞}. Since ε was arbitrary, the result follows from the closeness of $P_{G_{t}}(\alpha(t))$ and the fact that $d\left(\alpha(t), G_{t}\right) \leqslant d\left(\alpha, G_{\infty}\right)$ for each t in T.

Theorem 2.4. Let E_{∞} be a function module in $\prod_{t \in T}^{\infty} E_{t}$. If G_{∞} is a sub- $C(T)$ module of E_{∞} such that for each t in T the fiber $G_{t}=\left\{\gamma(t): \gamma \in G_{\infty}\right\}$ has the two-ball property for open balls, then G_{∞} is proximinal (global best approximation exists).

Proof: Let α be any fixed element of E_{∞}. For each t in T, let $g(t) \in \mathbf{P}_{G_{t}}(\alpha(t))$. Define

$$
\begin{equation*}
r=\inf _{\gamma \in G_{\infty}}\|\alpha-\gamma\|_{\infty} \geqslant \sup _{t \in T}\|\alpha(t)-g(t)\|_{t} \tag{2.7}
\end{equation*}
$$

We shall show that there is a Cauchy sequence $\left\{\gamma_{n}\right\}$ in G_{∞} such that $\left\|\alpha-\gamma_{n}\right\|_{\infty} \rightarrow r$. For, let $\varepsilon>0$; then by definition of r there is $\beta \in G_{\infty}$ such that $\|\beta-\alpha\|_{\infty}<r+\varepsilon$. We will show that there is another element $\gamma \in G_{\infty}$. such that

$$
\begin{equation*}
\|\alpha-\gamma\|_{\infty}<r+\frac{\varepsilon}{2} \text { and }\|\beta-\gamma\|_{\infty} \leqslant \frac{\varepsilon}{2} \tag{2.8}
\end{equation*}
$$

For each $t \in T$, the two balls $B(\alpha(t), r)$ and $B(\beta(t), \varepsilon)$ satisfy the conditions of the two-ball property (since $\|\alpha(t)-g(t)\|_{t} \leqslant r$ and $\|\beta(t)-\alpha(t)\|_{t} \leqslant\|\beta-\alpha\|_{\infty}<$ $r+\varepsilon)$. Let $x(t) \in G_{t}$ be such that $\|\alpha(t)-x(t)\|_{t} \leqslant r$ and $\|\beta(t)-x(t)\|_{t}<\varepsilon$. Put $y_{t}=(x(t)+\beta(t)) / 2$; then

$$
\begin{gather*}
\|\alpha(t)-y(t)\|_{t} \leqslant\|\alpha(t)-x(t)\|_{t}+\|x(t)-y(t)\|_{t}<r+\varepsilon / 2 \text { and } \\
\|\beta(t)-y(t)\|_{t}<\varepsilon / 2 \tag{2.9}
\end{gather*}
$$

Now, let $\gamma_{t} \in G_{\infty}$ be such that $\gamma_{t}(t)=y_{t}$ and V_{t} the neighbourhood of t such that for each s in U_{t}

$$
\begin{equation*}
\left\|\alpha(s)-\gamma_{t}(s)\right\|_{0}<r+\varepsilon / 2 \text { and }\left\|\beta(s)-\gamma_{t}(s)\right\|_{t}<\frac{\varepsilon}{2} \tag{2.10}
\end{equation*}
$$

(such U_{t} exists by (u.s.c.) of the norm functions). The collection $\left\{U_{t}: t \in T\right\}$ forms an open covering of T. Let t_{1}, \ldots, t_{n} be in T such that $T=\bigcup_{i=1}^{n} U_{t_{i}}$ and $\left\{f_{i}\right\}_{i=1}^{n}$ the partition of unity subordinate to $\left\{U_{t_{i}}\right\}_{i=1}^{n}$. A simple calculation will show that $\gamma=\sum_{i=1}^{n} f_{i} \cdot \gamma_{t_{i}}$ is the desired element.

By applying (2.10) inductively, we can construct a sequence $\left\{\gamma_{n}\right\}$ in G_{∞} such that

$$
\begin{equation*}
\left\|\alpha-\gamma_{n}\right\|_{\infty} \leqslant r+2^{-n} \text { and }\left\|\gamma_{n}-\gamma_{n+1}\right\|_{\infty} \leqslant 2^{-n} \tag{2.11}
\end{equation*}
$$

The second inequality of (2.11) implies that $\left\{\gamma_{n}\right\}$ is Cauchy; hence it has a limit γ_{0} in G_{∞} and the first inequality of (2.11) implies that $\|\alpha-\gamma\|_{\infty}=r$; that is, γ in $P_{G_{\infty}}(\alpha)$.

Theorem 2.5. Let E_{∞} be a function module in $\prod_{t \in T}^{\infty} E_{t}$. If G_{∞} is a sub- $C(T)$ module of E_{∞} such that for each t in T the fiber $G_{t}=\left\{\gamma(t): \gamma \in G_{\infty}\right\}$ has the two-ball property for open balls, then $\mathrm{P}_{G_{\infty}}$ is (l.s.c.).

In order to prove the above theorem, we need the following lemma, which maybe is interesting in itself.

Lemma 2.6. With the assumption of Theorem 2.5, for each α in E_{∞}, t in T and x_{t} in G_{t} such that $\left\|\alpha(t)-x_{t}\right\|_{t} \leqslant r=d\left(\alpha, G_{\infty}\right)$, there is γ in $\mathrm{P}_{G_{\infty}}(\alpha)$ such that $\gamma(t)=x_{t}$.

Proof: We shall show that for each positive ε there are two elements β_{ε} and γ_{ε} in G_{∞} such that

$$
\begin{gather*}
\beta_{e}(t)=\gamma_{e}(t)=x_{i} \tag{2.12}\\
\left\|\alpha-\beta_{e}\right\|_{\infty}<r+\varepsilon ; \tag{2.13}\\
\left\|\alpha-\gamma_{e}\right\|_{\infty}<r+\frac{\varepsilon}{2} \text { and }\left\|\beta_{e}-\gamma_{e}\right\|_{\infty}<\frac{\varepsilon}{2} . \tag{2.14}
\end{gather*}
$$

To see this, let $s \in T, x_{s} \in G_{s}$ such that $\left\|x_{s}-\alpha(s)\right\|_{s} \leqslant r$ (if $s=t$ take $x_{x}=x_{i}$). Let φ, φ_{s} be the elements of G_{∞} such that $\varphi(t)=x_{t}$ and $\varphi_{s}(s)=x_{s}$ and $h: T \longrightarrow[0,1]$ the continuous function such that $h(t)=0$ and $h(s)=1$. Take $\beta_{s}=(1-h) \cdot \varphi+h . \varphi_{s}$ and let $U_{\text {e }}$ be the neighbourhood of s such that $\left\|\alpha(p)-\beta_{s}(p)\right\|_{p}<r+\varepsilon$ for each p in U_{s}. The collection $\left\{U_{s}: s \in T\right\}$ forms an open covering of T. Let s_{1}, \ldots, s_{n} in T be such that $T=\bigcup_{i=1}^{n} U_{s_{i}}$ and $\left\{f_{i}\right\}_{i=1}^{n}$ the partition of unity subordinate to $\left\{U_{s_{i}}\right\}_{i=1}^{n}$. Take $\beta_{\varepsilon}=\sum_{i=1}^{n} f_{i} . \beta_{s_{i}}$. A simple calculation will show that β_{ε} satisfies (2.12) and (2.13). Now, for $s \neq t$, let $y_{s} \in G_{a}$ be such that $\left\|\alpha(s)-y_{s}\right\|_{s} \leqslant r$ and $\left\|y_{s}-\beta(s)\right\|_{0}<$ $\varepsilon\left(y_{s} \in B(\alpha(s), r) \cap B\left(\beta_{\varepsilon}(s), \varepsilon\right) \cap G_{s}\right)$. Let $a_{s}=\left(y_{s}+\beta_{\varepsilon}(s)\right) / 2$ and $\Omega, \Omega_{s} \in G_{\infty}$ such that $\Omega(t)=x_{t}$ and $\Omega_{s}(s)=a_{s}$. Put $\gamma_{s}=(1-f) \Omega+f \Omega_{s}$ (where $f: T \rightarrow[1,0]$ such that f is continuous, $f(t)=0$ and $f(s)=1$). Let U, be the neighbourhood of s such that $\left\|\alpha(p)-\gamma_{s}(p)\right\|_{p}<r+\varepsilon / 2$ for each p in U_{s}. Again $\left\{U_{s}: s \in T\right\}$ forms an open covering of T. Let s_{1}, \ldots, s_{n} in T be such that $T=\bigcup_{i=1}^{n} U_{s_{i}}$ and $\left\{h_{i}\right\}_{i=1}^{n}$ the partition of unity subordinate to $\left\{U_{s_{i}}\right\}_{i=1}^{n}$. It can easily be checked that $\gamma_{e}=\sum_{i=1}^{n} h_{i} . \gamma_{s_{i}}$ satisfies (2.12) and (2.14). Now, apply (2.12)-(2.14) inductively to construct a sequence $\left\{\gamma_{n}\right\}$ in G_{∞} with the following:

$$
\begin{equation*}
\alpha_{n}(t)=x_{t},\left\|\alpha-\gamma_{n}\right\|_{\infty} \leqslant r+2^{-n} \text { and }\left\|\gamma_{n}-\gamma_{n+1}\right\|_{\infty} \leqslant 2^{-n} \tag{2.15}
\end{equation*}
$$

The third inequality on the right in (2.15) implies that $\left\{\gamma_{n}\right\}$ is Cauchy, and then it has a limit γ in G_{∞}. Clearly γ is the desired element.

Proof of the Theorem: Let $\left\{\alpha_{n}\right\}$ be a sequence in E_{∞} converging to α, and β an element in $P_{G_{\infty}}(\alpha)$. Define $r=d\left(\alpha, G_{\infty}\right)$ and $r_{n}=d\left(\alpha_{n}, G_{\infty}\right)$. For each $t \in T$ and $n \in N$, define $\mathcal{A}_{t}^{n}=B\left(\beta(t), d_{n}\right) \cap B\left(\alpha_{n}(t), r_{n}\right) \cap G$ (where $d_{n}=$ $\left.\left\|\alpha_{n}-\alpha\right\|_{\infty}+\left|r_{n}-r\right|+1 / n\right)$.

$$
\begin{align*}
\left\|\beta(t)-\alpha_{n}(t)\right\|_{t} & \leqslant\|\beta(t)-\alpha(t)\|_{t}+\left\|\alpha(t)-\alpha_{n}(t)\right\|_{t} \tag{2.16}\\
& \leqslant r+\left\|\alpha_{n}-\alpha\right\|_{\infty} \\
& <r_{n}+\left|r_{n}-r\right|+\left\|\alpha_{n}-\alpha\right\|_{\infty}+\frac{1}{n}
\end{align*}
$$

By (2.16) \mathcal{A}_{i}^{n} is a nonempty convex set for all $t \in T$ and for all $n \in N$. Now, let t be an arbitrary but fixed element in T and $n \in N$. Pick $x_{n} \in \mathcal{A}_{t}^{n}$. Let $\beta_{t}^{n} \in \mathbf{P}_{G_{\infty}}\left(\alpha_{n}\right)$ be the element that exists from Lemma 2.6; that is, $\beta_{t}^{n}(t)=x_{n}$ and U_{t} is the neighbourhood of t such that $\left\|\beta_{t}^{n}(s)-\beta(s)\right\|_{s}<d_{n}$ for each $s \in U_{t}$ (such U_{t} exists by the (u.s.c.) of the norm function). Thus for each s in U_{t} we have $\beta_{t}^{n}(s)$ in \mathcal{A}_{s}^{n}. The collection $\left\{U_{t}: t \in T\right\}$ is an open covering of T. Let t_{1}, \ldots, t_{n} in T be such that $T=\bigcup_{i=1}^{n} U_{t_{i}}$ and $\left\{f_{i}\right\}_{i=1}^{n}$ the partition of unity subordinate to $\left\{U_{t_{i}}\right\}_{i=1}^{n}$. Define $\beta_{n}=\sum_{i=1}^{n} f_{i} \cdot \beta_{t_{i}}^{n}$. For each t in $T \beta_{n}(t)$ is a convex combination of elements of \mathcal{A}_{t}^{n}, and hence $\beta_{n}(t) \in \mathcal{A}_{t}^{n}$. Thus for each t in T we have

$$
\left\{\begin{array}{l}
\left\|\beta_{n}(t)-\alpha_{n}(t)\right\| \leqslant r_{n} \tag{2.17}\\
\left\|\beta_{n}(t)-\beta(t)\right\|<d_{n}
\end{array}\right.
$$

The first inequality in (2.17) implies that $\beta_{n} \in P\left(\alpha_{n}\right)$ and the second implies that $\beta_{n} \rightarrow \beta$ as $n \rightarrow \infty$.

References

[1] E. Behrends, M-structure and the Banach Stone Theorem: Lecture Notes in Math. 736 (Springer-Verlag, New York, 1979).
[2] E. Michael, 'Continuous selection', Ann. of Math. 63 (1956), 361-382.

[^1]
[^0]: Received 30 April 1990

[^1]: Department of Mathematical Science
 Umm Al Qura University
 Makkah
 Saudi Arabia

