SOME RESULTS ON QUASI-UNIFORM SPACES

BY

KAREN S. CARTER AND T. L. HICKS

ABSTRACT. Constructions are made of a T_1 space which does not have a T_1 completion and of a quasi-uniform space which is complete, but not strongly complete. An example relating to a completion due to Popa is given. An alternate definition for Cauchy filter, called *C*-filter, is examined and a construction of a *C*-completion is given. We discuss quasi-pseudometrics over a Tikhonov semifield R^{Δ} . Every topological space is quasi-pseudometric space over R^{Δ} is complete, the corresponding quasi-uniform structure is *C*complete. A general method for constructing compatible quasiuniform structures is given.

The topological concepts used in this paper are as defined in Gaal [7]. The basic definitions relating to quasi-uniform spaces are given in Murdeshwar and Naimpally [9].

DEFINITION 1.1. Let X be a nonvoid set. A quasi-uniform structure, \mathcal{U} , on X is a filter on $X \times X$ satisfying:

(1) $\Delta = \{(x, x) : x \in X\} \subseteq U$ for each $U \in \mathcal{U}$;

(2) if $U \in \mathcal{U}$, then there is a $V \in \mathcal{U}$ such that $V \circ V \subseteq U$.

DEFINITION 1.2. If (X, \mathcal{U}) is a quasi-uniform space, we obtain a topology $\ell_{\mathcal{U}}$ on X by taking as a base for the neighborhood system at $x \in X$, the collection $\mathcal{N}(x) = \{U[x] : U \in \mathcal{U}\}$ and we say that \mathcal{U} generates $\ell_{\mathcal{U}}$. If ℓ is a topology on X and $\ell_{\mathcal{U}} = \ell$, then ℓ is said to be *compatible with* \mathcal{U} . For each $O \in \ell$, define

$$S(O) = O \times O \cup (X - O) \times X.$$

Pervin [10] showed that $\{S(O): O \in \ell\}$ is a subbase for a quasi-uniform structure which is compatible with ℓ . We shall denote this structure by \mathscr{P} and refer to it as the *Pervin* structure. A quasi-uniform structure on a set X is said to be *transitive* if there is a base \mathscr{B} for the structure such that $B \in \mathscr{B}$ implies that $B \circ B = B$.

DEFINITION 1.3. Let (X, \mathcal{U}) be a quasi-uniform space and let \mathscr{F} be a filter on X. If for each $U \in \mathcal{U}$ there is an $x \in X$ such that $U[x] \in \mathscr{F}$, we say that \mathscr{F} is \mathscr{U} -Cauchy. We define (X, \mathcal{U}) to be *complete* (strongly complete) if every \mathscr{U} -Cauchy filter has nonempty adherence (limit).

DEFINITION 1.4. (Y, \mathscr{V}) is a completion of (X, \mathscr{U}) if (Y, \mathscr{V}) is complete and (X, \mathscr{U}) is quasi-uniformly isomorphic to a dense subset of (Y, \mathscr{V}) . Strong completion is defined similarly.

Received by the editors December 11, 1974 and, in revised form, April 28, 1975.

DEFINITION 1.5. Suppose (X, ℓ) is a topological space. If $x \in O \in \ell$, a cover of X about (x, O) is an open cover \mathscr{A} of X such that there is an $A \in \mathscr{A}$ with $x \in A \subseteq O$. Let \mathscr{B} be an open cover of X such that for every $x \in X$, $\bigcap \{B \in \mathscr{B} : x \in B\}$ is open. Then \mathscr{B} is called a *Q*-cover of X.

DEFINITION 1.6. Suppose that (X, ℓ) is a topological space and let \mathscr{C} be a collection of *Q*-covers of *X* satisfying the following condition: for each $O \in \ell$ and each $x \in O$, \mathscr{C} contains a cover of *X* about (x, O). Define $\mathscr{U}_{\mathscr{C}} = \{U_{\mathscr{A}} : \mathscr{A} \in \mathscr{C}\}$ where $U_{\mathscr{A}} = \bigcup \{\{x\} \times O_x^{\mathscr{A}} : x \in X\}$ and $O_x^{\mathscr{A}} = \bigcap \{A_x : x \in A_x \in \mathscr{A}\}.$

Fletcher [5] proves that $\mathscr{U}_{\mathscr{C}}$ is a compatible transitive quasi-uniform structure called a *covering quasi-uniformity*. He also proves that a quasi-uniform structure is transitive if and only if it is a covering quasi-uniformity.

2. Some examples concerning completeness. One would like for separation properties of the original space to carry over to the completion or strong completion. Carlson and Hicks [3] give an example of a T_2 quasi-uniform space which does not have a T_2 completion and, therefore, does not have a T_2 strong completion. They also give an example of a discrete space which does not have a T_1 strong completion. As we show below, this same space is also an example of a discrete space which does not have a T_1 completion.

EXAMPLE 2.1. Let $N = \{1, 2, 3, ...\}$. Define $U_n = \{(x, y) : x = y \text{ or } x \ge n\}$. The collection $\{U_n : n \in N\}$ is a base for a quasi-uniform structure \mathcal{U} . Moreover, the topology ℓ generated by \mathscr{U} is discrete. Let \mathscr{F} be the filter on N consisting of all subsets of N which have finite complements. \mathcal{F} is easily seen to be \mathcal{U} -Cauchy. Next suppose (N^*, \mathcal{U}^*) is a T_1 completion for (N, \mathcal{U}) . Now \mathcal{F} generates a \mathcal{U}^* -Cauchy filter \mathscr{F}^* on N^* . Since (N^*, \mathscr{U}^*) is complete, there is an $x^* \in N^*$ such that $x^* \in adh \ \mathscr{F}^*$. We first show that $x^* \notin N$. If $x^* \in N$, there is an open set $O^* \in \ell^*$ such that $O^* \cap N = \{x^*\}$. Now $N - \{x^*\} \in \mathscr{F} \subseteq \mathscr{F}^*$. By the above, $O^* \cap (N - \{x^*\}) = \emptyset$ and, thus, $x^* \notin cl(N - \{x^*\})$, a contradiction. Next, let B^* be an open set containing x^* . There is a $U^* \in \mathscr{U}^*$ such that $x^* \in U^*[x^*] \subseteq B^*$. Let $W^* \in \mathscr{U}^*$ with $W^* \circ W^* \subseteq \mathscr{U}^*$. We claim that $W^*[x^*] \cap N$ is infinite. Suppose $A = W^*[x^*] \cap N$ is finite. Then $N - A \in \mathscr{F} \subseteq \mathscr{F}^*$. And, $W^*[x^*] \cap (N - A) = \emptyset$ which implies that $x^* \notin cl(N-A)$. From this it follows that $x^* \notin adh \mathscr{F}^*$, a contradiction. Thus, we see that if $k \in N$, there is an s > k such that $s \in W^*[x^*] \cap$ N. Now there is an $m \in N$ with $U_m \subseteq W^* \cap (N \times N)$ and an s > m such that $s \in W^*[x^*] \cap N$. Therefore, $(x^*, s) \in W^*$ and $\{s\} \times N \subseteq W^*$ and, hence, $\{x^*\} \times N \subseteq W^*$ $N \subseteq W^* \circ W^* \subseteq U^*$. It follows that $N \subseteq U^*[x^*] \subseteq B^*$; that is, every open set containing x* contains N. But, then (N^*, ℓ^*) could not be T_1 .

One question which naturally arises is does there exist a quasi-uniform space which is complete, but not strongly complete. As the following example shows, the answer is affirmative. EXAMPLE 2.2. Let X be the integers. For $n \in X$, define $U_n = \Delta \cup \{(x, y): x \ge n, y=0 \text{ or } 1\}$. Now $\{U_n: n \in X\}$ is a base for a quasi-uniform structure \mathscr{U} on $X \times X$ and the topology \mathscr{I} generated by \mathscr{U} is discrete. Suppose that \mathscr{F} is a Cauchy filter. Now if $n \in X$, $U_n[x] = \{0, 1, x\}$ if $x \ge n$ and $U_n[x] = \{x\}$ if x < n. It easily follows that \mathscr{F} must be generated by a finite set and that $\operatorname{adh} \mathscr{F} \neq \phi$. Let \mathscr{S} be the collection of all supersets of $\{0, 1\}$. Now $\lim \mathscr{S} = \phi$ and, in fact, \mathscr{S} is the only non-convergent \mathscr{U} -Cauchy filter.

Popa [11] gave a construction that yields the following result.

THEOREM. Let (X, \mathcal{U}) be a T_2 quasi-uniform space. Then there exists a strongly complete quasi-uniform space $(\hat{X}, \hat{\mathcal{U}})$ and a uniformly continuous mapping $\phi: X \rightarrow \hat{X}$ having the following properties:

(a) For every uniformly continuous mapping $f: X \rightarrow Y$, Y being a strongly complete quasi-uniform space, there exists a unique uniformly continuous mapping $g: \hat{X} \rightarrow Y$ such that $f=g \circ \phi$.

(b) The pair (\hat{X}, ϕ) is unique up to an isomorphism of quasi-uniform spaces.

Popa calls $(\hat{X}, \hat{\mathcal{U}})$ "the" completion of (X, \mathcal{U}) . In a uniform space setting, one proves the above theorem and also proves:

(c) $\phi: X \rightarrow \hat{X}$ is an isomorphism of X onto a dense subspace of \hat{X} .

It seems reasonable to inquire about the status of (c) in this setting. In fact, most authors would not call \hat{X} a completion unless X is isomorphic to a dense subspace of \hat{X} . The following example show that "Popa's completion" is not a good candidate for a completion of a quasi-uniform space.

EXAMPLE 2.3. The following construction gives a quasi-uniform structure \mathscr{U} for the set N of natural numbers such that:

1. The topology $\ell_{\mathscr{U}}$ generated by \mathscr{U} is the discrete topology and

2. Popa's completion $(\hat{N}, \hat{\mathcal{U}})$ of (N, \mathcal{U}) is a single point.

Let $U_n = \{(x, y): x = y \text{ or } x \ge n\}$, $\mathscr{B} = \{U_n: n \in N\}$, and let \mathscr{U} denote the quasiuniform structure generated by the base \mathscr{B} . If x < n, $U_n[x] = \{y: (x, y) \in U_n\} = \{x\}$. Thus $\ell_{\mathscr{U}}$ is the discrete topology. If $\mathscr{F} = \{N\}$, \mathscr{F} is \mathscr{U} -Cauchy since $U_n[n] = N$. Let $\phi: (N, \mathscr{U}) \to (\hat{N}, \hat{\mathscr{U}})$ be the uniformly continuous mapping constructed by Popa. $\phi(\mathscr{F}) = \{\phi(N)\}$ is a base for a \mathscr{U} -Cauchy filter $\mathscr{F}^* = \{A: \phi(N) \subseteq A\}$ so there exists $z \in \hat{N}$ such that \mathscr{F}^* converges to z. It follows that $\phi(N)$ is the only neighborhood of z in the subspace $\phi(N)$. The space is T_2 so $\phi(N) = \{z\}$ and cl $\phi(N) = N$ gives $\hat{N} = \{z\}$.

3. On the definition of Cauchy filter. The present definition of Cauchy filter, proposed by Sieber and Pervin [12], is an extension of the concept of Cauchy filter for a uniform space and, moreover, convergent filters are clearly Cauchy.

We would like to have a definition of Cauchy filter which would allow us to construct completions which preserve more of the separation properties than is possible with the present definition.

DEFINITION 3.1. Let (X, \mathcal{U}) be a quasi-uniform space and let \mathscr{F} be a filter on X. We say that \mathscr{F} is a *C*-filter with respect to \mathscr{U} if \mathscr{F} satisfies either of the following two conditions:

- (i) given $U \in \mathcal{U}$, there is an F in \mathcal{F} such that $F \times F \subseteq U$;
- (ii) $\lim \mathcal{F} \neq \phi$.

The concepts of C-complete, C-strong complete, C-completion, and C-strong completion are defined in the obvious manner.

It is clear that in the uniform space case the concepts of Cauchy filter and *C*-filter are precisely the same. One may easily show that if \mathscr{F} is a filter satisfying condition (i) of the definition of *C*-filter, then $\operatorname{adh} \mathscr{F} = \lim \mathscr{F}$; and thus, if \mathscr{F} is a *C*-filter such that $\operatorname{adh} \mathscr{F} \neq \phi$, then $\lim \mathscr{F} \neq \phi$. We see, therefore, that the concepts of *C*-complete and *C*-strong complete coincide. Although the concepts of complete and strongly complete do coincide for uniform spaces, we have shown in example 2.2 that they are not the same for quasi-uniform spaces.

Using the current definition of Cauchy filter, Sieber and Pervin [12] obtain a generalization of the Niemytzki-Tychonoff theorem. If we use the definition of C-filter and replace the concept of precompactness by that of total boundedness, we may similarly derive the following:

THEOREM 3.1. A topological space (X, ℓ) is compact if and only if it is C-complete with respect to every compatible quasi-uniformity.

Proof. The proof of the theorem given by Sieber and Pervin [12] carries over with minor changes.

We remark that every finite space is C-complete. This follows from the fact that every finite space has a unique compatible quasi-uniform structure generated by a single set, as shown by Fletcher [4].

One may show that a C-filter is Cauchy in the usual sense. It then follows that if (X, \mathscr{U}) is complete, then (X, \mathscr{U}) is also C-complete. Hence, any completion or strong completion would also be a C-completion. One might, therefore, hope to be able to obtain better results with C-completions. The following example shows that a T_2 , locally connected space may have a T_2 , locally connected C-completion, but not have a T_2 , locally connected strong completion. This illustrates that the concept of C-filter is an improvement over that of Cauchy filter.

EXAMPLE 3.1. Let $X = \{1, 2, 3, ...\}$. Define $U_n = \Delta \cup \{(x, y) : x \ge n \text{ and } y \ge x\}$. Now $\{U_n : n \in X\}$ is a base for a quasi-uniform structure \mathscr{U} on X and $(X, \mathscr{E}_{\mathscr{U}})$ is discrete. Suppose that \mathscr{F} is a C-filter. If $\lim \mathscr{F} = \phi$, then there is an $F \in \mathscr{F}$ such that $F \times F \subseteq U_n$. In this case, \mathscr{F} must be the collection of all supersets of a singleton

set $\{x\}$. Therefore, (X, \mathcal{U}) is easily seen to be a C-completion of itself. Let \mathcal{G} be the filter generated by the collection $\{G_n : n \in X\}$ and $G_n = \{n, n+1, \ldots\}$. Then \mathscr{G} is \mathscr{U} -Cauchy, but it does not converge. Therefore, (X, \mathscr{U}) is not strongly complete. Now let (X^*, \mathcal{U}^*) be a T_2 , locally connected strong completion for (X, \mathcal{U}) . Now \mathscr{G} generates a \mathscr{U}^* -Cauchy filter \mathscr{G}^* . Since (X^*, \mathscr{U}^*) is strongly complete, there is an $x^* \in X^*$ such that $x^* \in \lim \mathscr{G}^*$. Therefore, if $U^* \in \mathscr{U}^*$, $U^*[x^*] \supseteq \{n, n+1, \ldots\}$ for some $n \in X$. We first show $x^* \notin X$. Suppose that $x^* = n \in X$. There is a U^* in \mathscr{U}^* such that $U^* \cap (X \times X) = U_{n+1}$. Therefore, $U^*[n] \cap X = \{n\}$. Since $X \in \mathscr{G} \subseteq$ \mathscr{G}^* , we obtain the contradiction $\{n\} \in \mathscr{G}^*$. Thus, $x^* \in X^* - X$. Next we show $\{x^*\}=X^*-X$. Let $y^* \in X^*-X$ with $y^* \neq x^*$. Since (X^*, \mathcal{U}^*) is T_2 , there is a $V^* \in \mathcal{U}^*$ such that $V^*[x^*] \cap V^*[y^*] = \phi$. Since there is a k in X such that $V^*[x] \supseteq$ $\{k, k+1, \ldots\}, V^*[y^*] \cap X \subseteq \{1, \ldots, k-1\}$. Let $m \in X$. Since X is discrete, there is a $W_1^* \in \mathcal{U}^*$ such that $W_1^*[n] \cap X = \{n\}$. Since (X^*, \mathcal{U}^*) is T_2 , there is a $W_2^* \in \mathscr{U}^*$ such that $W_2^*[n] \cap W_2^*[y^*] = \phi$. Letting $W^* = W_1^* \cap W_2^*$, we have that $W^*[y^*] \cap X = \phi$. This implies that $\overline{X} \neq X^*$, a contradiction. Therefore $X^* = X \cup X$ $\{x^*\}$ where $x^* \notin X$. Now it is easily seen that a neighborhood basis at x^* is $\{O_n:$ $n \in X$ where $O_n = \{x^*\} \cup \{n, n+1, ...\}$ and a neighborhood basis at $n \in X$ is $\{n\}$. Thus, (X^*, \mathcal{U}^*) is not locally connected.

Carlson and Hicks [3] give a construction of a strong completion for a quasiuniform space which possesses a transitive base. The following construction of a *C*-completion was motivated by their work, except that we do not require a transitive base. Whenever the proof is straightforward or the same as in the earlier construction, we omit details.

Let (X, \mathcal{U}) be a quasi-uniform space (not necessarily transitive). Let Ω be the collection of all nonconvergent ultrafilters on X which satisfy condition (i) in the definition of C-filter. Define an equivalence relation on Ω as follows:

If $\mathcal{M}_1, \mathcal{M}_2 \in \Omega$, then $\mathcal{M}_1 \cap \mathcal{M}_2$ if and only if (i) for each $U \in \mathcal{U}$ and $F \in \mathcal{M}_2$ with $F \times F \subseteq U$, then $F \in \mathcal{M}_1$; and, (ii) for each $U \in \mathcal{U}$ and $F \in \mathcal{M}_1$ with $F \times F \subseteq U$, then $F \in \mathcal{M}_2$.

Let $\Lambda = \{\hat{\mathcal{M}} : \mathcal{M} \in \Omega\}$, where $\hat{\mathcal{M}}$ denotes the equivalence class of \mathcal{M} under the relation \sim . Let $X^* = X \cup \Lambda$. Let Δ^* denote the diagonal in $X^* \times X^*$. If $V \in \mathcal{U}$, define $S(V) = V \cup \Delta^* \cup \{(\hat{\mathcal{M}}, y) : y \in V[x] \text{ for some } x \in X, \text{ where } V[x] \in \mathcal{M} \text{ for all } \mathcal{M} \in \hat{\mathcal{M}}\}.$

LEMMA 3.1. $\{S(U): U \in \mathcal{U}\}$ is a subbase for a quasi-uniform structure \mathcal{U}^* on X^* and $\mathcal{U} = \mathcal{U}^* \cap (X \times X)$, where we understand $\mathcal{U}^* \cap (X \times X)$ to be $\{U^* \cap X \times X: U^* \in \mathcal{U}^*\}$.

LEMMA 3.2. (X^*, \mathscr{U}^*) is C-complete.

Proof. Let \mathscr{F}^* be a C-filter with respect to \mathscr{U}^* . If adh $\mathscr{F}^* \neq \phi$, we are through. Suppose that adh $\mathscr{F}^* = \phi$ and let \mathscr{M}^* be an ultrafilter containing \mathscr{F}^* . Now \mathscr{M}^* does not converge and $X \in \mathcal{M}^*$. Then $\mathcal{M} = \{n^* \cap X : n^* \in \mathcal{M}^*\}$ is a C-ultrafilter on X satisfying condition (i) of the definition. It is easily seen that \mathcal{M} does not converge. Now we must have that \mathcal{M}^* converges to $\hat{\mathcal{M}} \in \Lambda$, a contradiction.

LEMMA 3.3 X is dense in X^* .

Proof. Let $\hat{\mathcal{M}} \in \Lambda$ and $U^* \in \mathcal{U}^*$. Then $U^* \supseteq \bigcap \{S(V_i): 1 \le i \le n\}$, where $V_i \in \mathcal{U}, 1 \le i \le n$. Let $\mathcal{M} \in \hat{\mathcal{M}}$. Now, there is an $M \in \mathcal{M}$ such that $M \times M \subseteq V_i$ for all $1 \le i \le n$. Therefore, if $V = \bigcap \{V_i: 1 \le i \le n\}$ and $x \in M$, then $x \in V[x] \in \mathcal{M}$ for all $\mathcal{M} \in \hat{\mathcal{M}}$. Hence $x \in U^*[\hat{\mathcal{M}}]$.

THEOREM 3.2. (X^*, \mathcal{U}^*) is a C-completion for (X, \mathcal{U}) .

Proof. A consequence of lemmas 3.1, 3.2, and 3.3.

THEOREM 3.3. Suppose that $(X, \ell_{\mathcal{U}})$ is a T_1 topological space and \mathcal{U} is the Pervin structure. Then $(X^*, \ell_{\mathcal{U}^*})$ is T_1 .

Proof. Suppose that x^* and y^* are elements of X^* . If both x^* and y^* are members of either X or Λ , the result is obvious. Now suppose that $x^* \in X$ and $y^* = \hat{\mathcal{M}} \in \Lambda$. Let $\mathcal{M} \in \hat{\mathcal{M}}$. Since \mathcal{M} does not converge to x^* , there is an open set O such that $x^* \in O$ and $O \notin \mathcal{M}$. Let $V = (O \times O) \cup (X - O) \times X$, $U = (X - \{x^*\}) \times (X - \{x^*\}) \cup \{x^*\} \times X$ and $W = U \cap V$. Now $x^* \notin S(W)[\hat{\mathcal{M}}]$ and $\hat{\mathcal{M}} \notin S(W)[x^*]$.

DEFINITION 3.2. A quasi-uniform space (X, \mathcal{U}) is R_3 if and only if given $x \in X$ and $U \in \mathcal{U}$, there is a symmetric $V \in \mathcal{U}$ such that $V \circ V[x] \subseteq U[x]$.

THEOREM 3.4. Let (X, \mathcal{U}) be a T_1 and R_3 quasi-uniform space. Then (X^*, \mathcal{U}^*) is T_1 .

Example 2.1 may be used to show that a discrete space need not have a T_1 C-completion. This shows that C-completeness is not a vast improvement over the standard concept of completeness. Theorem 4.5 of the next section supports the argument that it is an improvement.

4. Quasi-pseudometrics over \mathbb{R}^{Δ} . Let Δ denote a non-empty set. \mathbb{R}^{Δ} will denote the set of all functions from Δ into the set \mathbb{R} of real numbers. Thus \mathbb{R}^{Δ} is the product of m copies of \mathbb{R} where m is the cardinal number of Δ . Give \mathbb{R}^{Δ} the product topology If $f, g \in \mathbb{R}^{\Delta}, f \leq g$ means $f(a) \leq g(a)$ for every $a \in \Delta$. Addition and multiplication in \mathbb{R}^{Δ} are defined pointwise. \mathbb{R}^{Δ} is called a Tikhonov semi-field.

DEFINITION 4.1. $d: X \times X \rightarrow R^{\Delta}$ is called a *quasi-pseudometric* (q.p. metric) on X over R^{Δ} provided:

(1) $d(x, y) \ge 0$ and d(x, x) = 0 for every $x, y \in X$.

(2) $d(x, y) \leq d(x, z) + d(z, y)$ for every $x, y, z \in X$.

If d also satisfies d(x, y)=0 implies x=y, d is a quasi-metric over R^{Δ} and if in addition d(x, y)=d(y, x) for every $x, y \in X$, d is a metric over R^{Δ} .

For a discussion of metric spaces over \mathbb{R}^{Δ} and the theory of Topological Semi-Fields see [1] and its references. Given \mathbb{R}^{Δ} , $\mathcal{N}(0)$ will denote the set of neighborhoods of 0 in \mathbb{R}^{Δ} . Let

$$U_{a,b}^{q} = \{ f \in R^{\Delta} : a < f(q) < b \}.$$

We recall that $\{U_{a,b}^q: a, b \in \mathbb{R}, q \in \Delta\}$ is a subbase for the product topology and, if $U \in \mathcal{N}(0)$, there exists $q_i \in \Delta, \varepsilon > 0$, $i=1, 2, \ldots, n$ such that $U \supseteq \bigcap_{i=1}^n U_{-\epsilon,\epsilon}^{q_i}$.

THEOREM 4.1. Suppose (X, d) is a q.p. metric space over \mathbb{R}^{Δ} . For $x \in X$ and $U \in \mathcal{N}(0)$,

$$\Omega(x, U) = \{ y \in X : d(x, y) \in U \}.$$

Then $\mathcal{N}(x) = \{\Omega(x, U) : U \in \mathcal{N}(0)\}$ is the set of neighborhoods in a topology t_d , called the natural topology for X.

Proof. Clearly, $x \in \Omega(x, U)$ and $\Omega(x, U) \cap \Omega(x, V) = \Omega(x, U \cap V)$. If $M \supseteq \Omega(x, U)$, put $V = U \cup \{d(x, y): y \in M\}$. Then $M = \Omega(x, V)$.

To complete the proof, we must show that given $\Omega(x, U)$, there exists $V \in \mathcal{N}(0)$ such that $\Omega(x, V) \subseteq \Omega(x, U)$ and $y \in \Omega(x, V)$ implies $\Omega(x, U) \in \mathcal{N}(y)$. The result follows if we can prove it for $U^{q}_{-a,a}$. In this case, let $V = U^{q}_{-a/2,a/2}$ and note that if $y \in \Omega(x, V)$, then $\Omega(y, V) \subseteq \Omega(x, U)$.

THEOREM 4.2. Let (X, d) be a q.p. metric space over \mathbb{R}^{Δ} . If $U \in \mathcal{N}(0)$,

$$S(U) = \{(x, y) \in X \times X : d(x, y) \in U\}.$$

Then $\mathscr{B} = \{S(U) : U \in \mathcal{N}(0)\}$ is a base for a quasi-uniform structure \mathscr{U} and $t_u = t_d$.

Proof. $d(x, x)=0 \in U$ implies $S(U) \supseteq \{(x, x): x \in X\}$. $S(U_1) \cap S(U_2)=S(U_1 \cap U_2)$. Given S(U), there exists $q_i \in \Delta$ and $\varepsilon > 0$ such that

$$U \supseteq \bigcap_{i=1}^{n} U^{q}_{-\varepsilon,\varepsilon}$$
. Let $V = \bigcap_{i=1}^{n} U^{q}_{-\varepsilon/2,\varepsilon/2}$.

Since $S(U^{q}_{-\epsilon/2,\epsilon/2}) \circ S(U^{q}_{-\epsilon/2,\epsilon/2}) \subseteq S(U^{q}_{-\epsilon,\epsilon})$, $S(V) \circ S(V) \subseteq U$. Also, $S(U)[x] = \{y: (x, y) \in S(U)\} = \{y: d(x, y) \in U\} = \Omega(x, U)$. Thus \mathscr{B} is a base for a structure \mathscr{U} such that $\ell_{\mathscr{U}} = \ell_{d}$.

REMARK 4.1. If we set

$$\Omega'(x, U) = \{ y \in X : d(y, x) \in U \}$$

we get another topology $\ell_{d'}$ for X. This is just the natural topology for the q.p. metric d' over R^{Δ} where d'(x, y) = d(y, x). If d is a pseudometric over R^{Δ} , d=d' and the quasi-uniform structure in theorem 4.2 is a uniform structure.

REMARK 4.2. *d* is a q.p. metric on *X* over \mathbb{R}^{Δ} . Then (1) \mathscr{E}_d is T_0 if and only if $x \neq y$ implies $d(x, y) \neq 0$ or $d(y, x) \neq 0$, and (2) \mathscr{E}_d is T_1 , if and only if d(x, y) = 0 implies x = y. Thus \mathscr{E}_d is T_1 if and only if *d* is a quasi-metric over \mathbb{R}^{Δ} .

1976]

THEOREM 4.3. Suppose \mathcal{U} is a quasi-uniform structure with a base \mathcal{B} such that $B \circ B = B$ for every $B \in \mathcal{B}$. If $B \in \mathcal{B}$, let $\rho_B(x, y) = 0$ if $(x, y) \in B$ and $\rho_B(x, y) = 1$ if $(x, y) \notin B$. For $\varepsilon > 0$ and $B \in \mathcal{B}$,

$$U_{\rho_B,\varepsilon} = \{(x, y): \rho_B(x, y) < \varepsilon\}.$$

Then ρ_B is an ordinary q.p. metric and $\{U_{\rho_n,\varepsilon}: B \in \mathcal{B}, \varepsilon > 0\}$ is a base for \mathcal{U} .

Proof. Clearly, $\rho_B(x, x) = 0$ and $\rho_B(x, y) \ge 0$. Is $\rho_B(x, y) \le \rho_B(x, z) + \rho_B(z, y)$? Yes, since $\rho_B(x, z) = \rho_B(z, y) = 0$ implies $(x, z), (z, y) \in B$ which gives $(x, y) \in B \circ B = B$ or $\rho_B(x, y) = 0$. Note that $U_{\rho_B, \varepsilon} = X \times X$ if $\varepsilon > 1$ and equals B if $\varepsilon \le 1$.

REMARK 4.3. Quasi-uniform structures that have a base \mathscr{B} such that $B \circ B = B$ for every $B \in \mathscr{B}$ are called transitive structures and they have been characterized by Fletcher [5]. The Pervin structure is transitive. The ρ_B 's in theorem 4.3 are quasi-uniformly upper semi-continuous with respect to the structure $\mathscr{U} \times \mathscr{U}^{-1}$ Thus a transitive quasi-uniform structure is determined by a nice family of ordinary q.p. metrics. If \mathscr{U} is a uniform structure and \mathscr{U} has a base \mathscr{B} such that for every $B \in \mathscr{B}$, $B = B^{-1} = B \circ B$, then the family $\{\rho_B : B \in \mathscr{B}\}$ will give back the structure and each ρ_B is uniformly continuous with respect to $\mathscr{U} \times \mathscr{U}$.

In [1], it is shown that a topological space is metrizable over some Tikhonov semi-field if and only if it is T_2 and uniformizable (completely regular). The following theorem was proved independently by Boltjanskii [2]; however, the proof given below is different.

THEOREM 4.4. Every topological space (X, ℓ) is q.p. metrizable over some Tikhonov semi-field \mathbb{R}^{Δ} . Every T_1 topology is quasi-metrizable over some \mathbb{R}^{Δ} .

Proof. If \mathscr{U} is the Pervin structure, $\ell = \ell_{\mathscr{U}}$ and \mathscr{U} has a base \mathscr{B} such that $B \circ B = B$ for each $B \in \mathscr{B}$. Consider the family $\{\rho_B : B \in \mathscr{B}\}$ of ordinary q.p. metrics defined in theorem 4.3. Let $\Delta = \mathscr{B}$ and define $d: X \times X \to R^{\Delta}$ as follows: If $(x, y) \in X \times X$, $d(x, y)(B) = \rho_B(x, y)$. Now $d(x, y)(B) = \rho_B(x, y) \ge 0$ for every $B \in \mathscr{B}$ implies $d(x, y) \ge 0$. $(x, x) \in B$ for every $B \in \mathscr{B}$ gives d(x, x) = 0. Also,

$$d(x, y)(B) = \rho_B(x, y) \le \rho_B(x, z) + \rho_B(z, y) = d(x, z)(B) + d(z, y)(B).$$

Thus d is a q.p. metric over R^{Δ} . By theorem 4.1, d gives rise to a quasi-uniform structure \mathscr{V} such that $\ell_d = \ell_{\mathscr{V}}$. We show that $\mathscr{U} = \mathscr{V}$ and then we have $\ell_d = \ell_{\mathscr{V}} = \ell_{\mathscr{U}} = \ell_{\mathscr{U}}$.

 $\mathscr{C} = \{S(V): V \in \mathscr{N}(0)\}$ is a base for \mathscr{V} where $S(V) = \{(x, y): d(x, y) \in V\}$ and $\mathscr{A} = \{U_{\rho_B, \varepsilon}: B \in \mathscr{B}, \varepsilon > 0\}$ is a base for \mathscr{U} . Note that $U_{\rho_B, \varepsilon} = S(U_{-\varepsilon, \varepsilon}^B)$ and it follows that $\mathscr{U} = \mathscr{V}$.

If ℓ is T_1 , the q.p. metric d generates a T_1 topology and d is a quasi-metric by remark 4.2.

(X, d) is a q.p. metric space over \mathbb{R}^{Δ} . Sets of the form $U_{\epsilon}(q_1, \ldots, q_n) = \{f \in \mathbb{R}^{\Delta} : -\varepsilon < f(q_i) < \varepsilon \text{ for } 1 \le i \le n\}, \varepsilon > 0$, make up a base for the neighborhoods of $\overline{0}$ in \mathbb{R}^{Δ} , where $\overline{0}(g) = 0$, for all $g \in \Delta$. Let Λ denote the collection of sets of the above form. If Λ is ordered by inverse inclusion, Λ is a directed set. Let $\{X_0 : O \in \Lambda\}$ be a net in X.

DEFINITION 4.2. We say that $\{X_0: O \in \Lambda\}$ converges to $y \in X$ if and only if for any $U \in \mathcal{N}(\bar{0})$, there exists $O^U \in \Lambda$ such that $O > O^U$ implies $d(x_0, y) \in U$ and $d(y, x_0) \in U$.

DEFINITION 4.3. $\{x_0: O \in \Lambda\}$ is a *Cauchy net* if and only if for any $U \in \mathcal{N}(\bar{0})$, there exists an $O^U \in \Lambda$ such that $O_1, O_2 > O^U$ implies $d(x_{0_1}, x_{0_2}) \in U$ and $d(x_{0_n}, x_{0_1}) \in U$.

DEFINITION 4.4. (X, d) is *complete* if and only if every Cauchy net $\{x_0 : O \in \Lambda\}$ converges.

(X, d) quasi-pseudometrizes (X, \mathcal{U}) if and only if $\{S(U): U \in \Lambda\}$ is a base for \mathcal{U} , where $S(U) = \{(x, y) \in X \times X: d(x, y) \in U\}$. The proof of theorem 4.4 shows that for every quasi-uniform structure \mathcal{U} for X, there exists a q.p. metric d over some R^{Δ} such that (X, d) quasi-pseudometrizes (X, \mathcal{U}) .

THEOREM 4.5. Suppose that (X, d) quasi-pseudometrizes (X, \mathcal{U}) . Then (X, d) complete implies that (X, \mathcal{U}) is C-complete.

Proof. Let \mathscr{F} be a *C*-filter in (X, \mathscr{U}) . If \mathscr{F} converges, we are done. Suppose that \mathscr{F} does not converge. Let $O = U_{\varepsilon}(q_1, \ldots, q_n) \in \Lambda$. By the definition of *C*-filter, there is an $F^0 \in \mathscr{F}$ such that $F^0 \times F^0 \subseteq S(O)$. Let $x_0 \in F^0$. Then $\{x_0: O \in \Lambda\}$ is a Cauchy net with respect to (X, d). Since $\{x_0: O \in \Lambda\}$ is Cauchy and (X, d) is complete, $\{x_0: O \in \Lambda\}$ converges to some point $a \in \Lambda$. We claim that $\mathscr{N}_X(a) \subseteq \mathscr{F}$. Now a base for the neighborhood system $\mathscr{N}_X(a)$ is given by the collection $\{\Omega(a, O): O \in \Lambda\}$ where $\Omega(a, O) = \{y \in X: d(a, y) \in O\}$. Suppose that $U_{\varepsilon}(q_1, \ldots, q_n) \in \Lambda$. We wish to show that $\Omega(a, U_{\varepsilon}(q_1, \ldots, q_n)) \in \mathscr{F}$ and hence that $\mathscr{N}_X(a) \subseteq \mathscr{F}$. By definition of convergence, there is $\hat{O} \in \Lambda$ such that $O > \hat{O}$ implies that $d(a, x_0) \in U_{\varepsilon/2}(q_1, \ldots, q_n)$ and $d(x_0, a) \in U_{\varepsilon/2}(q_1, \ldots, q_n)$. It is easily seen that we can choose \hat{O} to be of the form $\hat{O} = U_r(q_1, \ldots, q_n, q_{n+1}, \ldots, q_m)$ where $r < \varepsilon/4$. Let $U = U_{r/2}(q_1, \ldots, q_n, \ldots, q_m)$ and $z \in F^U$. Now, $d(a, z)(q_i) \le d(a, x_U)$ $(q_i) + d(x_U, z)(q_i)$. Also $(x_U, z) \in F^U \times F^U \subseteq S(U)$ and hence $d(x_U, z)(q_i) < r/2 < \varepsilon/4$ for $1 \le i \le n$. Since $U > \hat{O}$, by definition of convergence we obtain that $d(a, x_U) \in U_{\varepsilon/2}(q_1, \ldots, q_n)$ and hence $d(a, X_U)(q_i) < \varepsilon/2$ for $1 \le i \le n$. Thus $d(a, z)(q_i) < \varepsilon/2 + \varepsilon/4 < \varepsilon$.

5. Unsolved problems and related results. One of the more interesting questions concerning quasi-uniform structures which remains unanswered is whether or not every topological space has a compatible strongly complete quasi-uniform structure. Fletcher [4] showed that a finite space possesses a unique compatible

quasi-uniformity generated by a single transitive subset of $X \times X$. This structure is easily seen to be strongly complete. For infinite T_1 spaces we obtain the following result.

THEOREM 5.1. Let (X, ℓ) be an infinite T_1 topological space; let \mathcal{FT} be the fine transitive quasi-uniform structure; and, let $\mathcal{G} = \{A \subseteq X : X - A \text{ is finite}\}$. Then (X, \mathcal{FT}) is strongly complete provided every \mathcal{FT} -Cauchy filter containing \mathcal{G} converges.

Proof. Let \mathscr{F} be a non-convergent filter on X. If \mathscr{F} contains \mathscr{G} , \mathscr{F} is not $\mathscr{F}\mathscr{T}$ -Cauchy. Suppose \mathscr{F} does not contain \mathscr{G} . Then there exists $\{x_i \in X: 1 \leq i \leq n\}$ such that $X - \{x_i: 1 \leq i \leq n\} \notin \mathscr{F}$. It follows that $X - \{x_i\} \notin \mathscr{F}$ for some $1 \leq j \leq n$. And since X is $T_1, X - \{x_j\}$ is open. Also, since $\lim \mathscr{F} = \phi$, there exists an open set O such that $x_j \in O$ and $O \notin \mathscr{F}$. Suppose that $y \in X$. Let $O_y = O - \{x_i\} = O \cap (X - \{x_i\})$ if $y \in O - \{x_i\}$; $O_y = X - \{x_i\}$ if $y \in X - O$; and $O_{x_j} = O$. Let $U(\mathscr{F}) = \{(x, y): y \in O_x\}$. Clearly $U(\mathscr{F})$ contains the diagonal. If $(x, y) \in U(\mathscr{F})$ and $(y, z) \in U(\mathscr{F})$, then $(x, z) \in U(\mathscr{F})$. Thus, the set $U(\mathscr{F})$ generates a transitive quasi-uniform structure $\mathscr{U}(\mathscr{F})$ and the resulting topology will be weaker than \mathscr{E} . It easily seen that the least upper bound \mathscr{V} of $\{\mathscr{P}\} \cup \{\mathscr{U}(\mathscr{F})\}$ is a compatible transitive quasi-uniform structure and that \mathscr{F} is not \mathscr{V} -Cauchy.

DEFINITION 5.1. If (X, \mathcal{U}) is a quasi-uniform space, $\mathcal{U}^{-1} = \{U^{-1} : U \in \mathcal{U}\}$ is a quasi-uniform structure and \mathcal{U} and \mathcal{U}^{-1} are called *conjugate quasi-uniform* structures.

THEOREM 5.2. Suppose that \mathcal{U} is a transitive quasi-uniform structure for X. Then there is a base \mathcal{B} for \mathcal{U} such that;

- (i) *B* is transitive;
- (ii) if $B \in \mathcal{B}$, then $B[x] \in \ell_{\mathscr{H}}$ for each $x \in X$;
- (iii) if $B \in \mathscr{B}$, then $B^{-1}[x] \in \ell_{\mathscr{Q}^{-1}}$ for each $x \in X$; and
- (iv) if $B \in \mathcal{B}$, then $B^{-1}[x]^c \in \ell_{\mathcal{H}}$ for each $x \in X$.

Proof. It is a well-known fact that any transitive base will suffice for (i), (ii), or (iii). Since \mathscr{U} is transitive, it is a covering quasi-uniformity [6]. Therefore, there is a collection of *Q*-covers \mathscr{A} such that $\{U_{\mathscr{G}}:\mathscr{C}\in\mathscr{A}\}$ is a subbase, \mathscr{S} , for \mathscr{U} ; where $U_{\mathscr{G}}=\bigcup\{\{x\}\times A_x^{\mathscr{G}}:x\in X\}$ and $A_x^{\mathscr{G}}=\bigcap\{C\in\mathscr{C}:x\in C\}\in\ell_{\mathscr{U}}$. Let $y\in X$. We claim that $U_{\mathscr{G}}^{-1}[y]^c\in\ell_{\mathscr{U}}$. Let $z\in U_{\mathscr{G}}^{-1}[y]^c$. Then $z\notin U_{\mathscr{G}}^{-1}[y]$ implies that $(y,z)\notin U_{\mathscr{G}}^{-1}$ which in turn implies that $(z, y)\notin U_{\mathscr{G}}$. Hence $y\notin A_z^{\mathscr{G}}$. We wish to show $z\in A_z^{\mathscr{G}}\in U_{\mathscr{G}}^{-1}[y]^c$. Suppose that $t\in A_z^{\mathscr{G}}$. Then $A_t^{\mathscr{G}}\subseteq A_z^{\mathscr{G}}$ implies that $y\notin A_t^{\mathscr{G}}$. Therefore $(y, t)\notin U_{\mathscr{G}}^{-1}[y]^c$ or $U_{\mathscr{G}}^{-1}[y]^c\in\ell_{\mathscr{U}}$. Now, let \mathscr{B} be the base generated by \mathscr{S} . Then \mathscr{B} is transitive and $B\in\mathscr{B}$ implies that $B=\bigcap\{U_{\mathscr{G}_i}:1\leq i\leq n\}$. If $x\in X$, then $B^{-1}[x]^c=\bigcup\{U_{\mathscr{G}_i}^{-1}[x]^c:$ $1\leq i\leq n\}\in\ell_{\mathscr{Q}}$.

COROLLARY. Let (X, \mathcal{U}) be a transitive quasi-uniform structure. Suppose that $\ell_{\mathcal{U}^{-1}}$ is the discrete topology. Then $\ell_{\mathcal{U}}$ is T_1 .

1976]

Fletcher and Lindgren [6] give an example of a quasi-uniform space which has neither a symmetric nor a transitive base. As we show below, theorem 5.2 gives another proof that this space does not have a transitive base.

EXAMPLE 5.1. Let X be the reals. Define $U_n = \{(x, y): y - x < (1/2^{n-1})\} = \{(x, y): y < (1/2^{n-1}) + x\}$ where $1 \le n < \infty$. $\{U_n: 1 \le n < \infty\}$ is a base for a quasiuniform structure, \mathcal{U} , on X. $\ell_{\mathcal{U}}$ consists of all sets of the form $(-\infty, a)$ where $a \in X$. A base for \mathcal{U}^{-1} is $\{U_n^{-1}: 1 \le n < \infty\}$ where $U_n^{-1} = \{(y, x): y - (1/2^{n-1}) < x\}$. Then $t_{\mathcal{U}^{-1}}$ consists of all sets of the form (b, ∞) where $b \in X$. This means $[a, \infty) = (-\infty, a)^c \notin \ell_{\mathcal{U}^{-1}}$. Clearly, then \mathcal{U} cannot be transitive.

An interesting problem is that of determining when the fine structure is the same as the fine transitive structure. Fletcher [6] has derived a general method for constructing any compatible transitive quasi-uniform structure for a topological space.

There is a simple method for construcing the fine transitive quasi-uniform structure. As a subbase we simply take the collection $\{U \subseteq X \times X : U[x] \in \mathcal{N}(x)$ for all $x \in X$, and $U \circ U = U$. One might then ask whether the set $\mathscr{S}(\Delta) =$ $\{U \subseteq X \times X : U[x] \in \mathcal{N}(x)$ for all $x \in X$ is a subbase for the fine quasi-uniform structure. If (X, ℓ) is a topological space with X finite, $\mathscr{S}(\Delta)$ is easily seen to generate the fine quasi-uniform structure. Fletcher [4] has shown that such a space has a unique compatible quasi-uniform structure generated by a single transitive set W. As the following example shows, $\mathscr{S}(\Delta)$ does not, in general, form a subbase for the quasi-uniform structure.

EXAMPLE 5.2. Let (X, ℓ) be the real numbers with the co-finite topology. Let N be the natural numbers and let $U = [(X - N) \times X] \cup [\{1\} \times X] \cup [\bigcup \{\{i+1\} \cup \{\{i+1\} \cup \{i+1\} \cup$ $(X-\{1,2,\ldots,i\}):1\leq i<\infty\}$]. If $x\in X-N$, then $U[x]=X\in\mathcal{N}(x)$ and if $n\in N$, then $U[n] = X - \{1, 2, \dots, n-1\} \in \mathcal{N}(n)$. Clearly, then $U \supseteq \Delta$ and $U[x] \in \mathcal{N}(x)$ for each $x \in X$. Lindgren [8] has shown that (X, ℓ) is uniquely quasi-uniformizable. We will show that U is not a member of the Pervin structure \mathcal{P} , and, therefore, not a member of the fine structure. Suppose $U \in \mathscr{P}$. Then there are nonempty open sets O_1, \ldots, O_n such that $U \supseteq \bigcap \{O_i \times O_i \cup (X - O_i) \times X : 1 \le i \le n\}$. From this it follows that $U \supseteq [\bigcap \{O_i : 1 \le i \le n\}] \times [\bigcap \{O_i : 1 \le i \le n\}]$. Now, $\bigcap \{O_i : 1 \le i \le n\}$ $i \leq n$ is open in X and, therefore, has finite complement. Suppose $n \in N \cap$ $[\bigcap \{O_i: 1 \le i \le n\}]$. If, also, $n-1 \in \bigcap \{O_i: 1 \le i \le n\}$, then the point (n, n-1) must be in $[\bigcap \{O_i: 1 \le i \le n\}] \times [\bigcap \{O_i: 1 \le i \le n\}]$ and, hence in U, a contradiction. Therefore, $n \in N \cap [\bigcap \{O_i : 1 \le i \le n\}]$ implies that $n-1 \notin N \bigcap [\cap \{O_i : 1 \le i \le n\}]$. Since there must be infinitely many elements in $N \cap [\bigcap \{O_i: 1 \le i \le n\}]$, there must also be infinitely many elements in $N \cap [X - \bigcap \{O_i : 1 \le i \le n\}]$. But, this is a contradiction.

Let (X, ℓ) be a topological space. Suppose there is a partially ordered set L such that for each $x \in X$, there is a base $\{N(x, \alpha): \alpha \in L\}$ for the neighborhood

4

[March

system at x. Suppose further that the following conditions are satisfied:

(i) If β is not a maximal element of L, there is an $\alpha > \beta$ such that for any given $N(x, \alpha)$ and $y \in N(x, \alpha)$, we have $N(y, \alpha) \subseteq N(x, \beta)$; and

(ii) If β is a maximal element of L, then $N(y, \beta) \subseteq N(x, \beta)$ for $y \in N(x, \beta)$.

We form a subbase for a compatible quasi-uniform structure \mathscr{U}_L as follows: Let $U_{\alpha} = \bigcup \{\{x\} \times N(x, \alpha) : x \in X\}$ where $\alpha \in L$. As we show below the collection $\mathscr{S}_L = \{U_{\alpha} : \alpha \in L\}$ is the subbase. Clearly $\Delta \subseteq U_{\alpha}$ for each α in L and clearly the system will be compatible. Let $U_{\beta} \in \mathscr{S}_L$. We wish to find $U_{\alpha} \in \mathscr{S}_L$ such that $U_{\alpha} \circ U_{\alpha} \subseteq U_{\beta}$. First suppose that β is not a maximal element of L. Choose α as in (i). If $(x, y) \in U_{\alpha} \circ U_{\alpha}$, there is a $z \in X$ such that $(x, z) \in U_{\alpha}$ and $(z, y) \in U_{\alpha}$. Then $z \in U_{\alpha}[x] \subseteq N(x, \alpha)$ and $y \in U_{\alpha}[z] \subseteq N(z, \alpha)$. By (i), $N(z, \alpha) \subseteq N(x, \beta)$ which implies that $y \in N(x, \beta)$. This in turn implies that $(x, z) \in U_{\beta}$ and, hence $U_{\alpha} \circ U_{\alpha} \subseteq U_{\beta}$. Next, suppose β is a maximal element. Then, we claim $U_{\beta} \circ U_{\beta} \subseteq U_{\beta}$. If $(x, y) \in U_{\beta} \circ U_{\beta}$, then there is a $z \in X$ such that $(x, z) \in U_{\beta}$ and $(z, y) \in U_{\beta}$. Hence $z \in N(x, \beta)$ and $y \in N(z, \beta)$. By (ii) $N(z, \beta) \subseteq N(x, \beta)$. Therefore, $y \in N(x, \beta) = U_{\beta}[x]$ or $(x, y) \in U_{\beta}$. Thus $U_{\beta} \circ U_{\beta} \subseteq U_{\beta}$.

Next, let \mathscr{A} be a collection of Q-covers of a topological space (X, ℓ) such that if $x \in O \in \ell$, then there is a $\mathscr{C} \in \mathscr{A}$ for which $A_x^{\mathscr{C}} \subseteq O$, where $A_x^{\mathscr{C}} = \bigcap \{A_x : x \in A_x \in \mathscr{C}\}$. In our general method, let $L = \mathscr{A}$ and partially order \mathscr{A} by inclusion; that is, $\mathscr{C} < \mathscr{D}$ if and only if $\mathscr{C} \subseteq \mathscr{D}$, but $\mathscr{C} \neq \mathscr{D}$. Let $N(x, \mathscr{C}) = A_x^{\mathscr{C}}$ for each $x \in X$ and $\mathscr{C} \in \mathscr{A}$. Then $\{N(x, \mathscr{C}) : \mathscr{C} \in \mathscr{A}\}$ is an open base for the neighborhood system at x. To see that (i) and (ii) are satisfied, suppose that $\mathscr{D} > \mathscr{C}$. If $y \in N(x, \mathscr{D})$, it is easily seen that $N(y, \mathscr{D}) \subseteq N(x, \mathscr{D}) \subseteq N(x, \mathscr{C})$. We remark that the subbase obtained by our general method is the same as that of the covering quasi-uniformity. Hence our general method can be used to construct any compatible transitive quasi-uniformity.

As we show below the general method applies to quasi-uniform structures which are not transitive also. Consider, again, example 5.1. Following the general method given at the beginning of this section, let L be the positive integers. For each $n \in L$ and $x \in X$, let $N(x, n) = \{y: y - x < (1/2^{n-1})\}$. It is easily seen that $\{N(x, n):$ $n \in L\}$ is a base for the neighborhood system of x and that (i) and (ii) are satisfied. It is also easily seen that \mathscr{U}_L is the same as the quasi-uniform structure of example 5.1, which was a non-transitive structure.

References

1. M. Ya. Antonovskii, V. G. Boltyanskii, and T. A. Sarymsakov, A survey of the theory of topological semi-fields, Russian Math. Surveys 21, no. 4, 163-192 (1966).

2. V. G. Boltjanskii, Separability axioms and metric, Soviet Math. Dokl., 12 (1971) 639-643.

3. J. W. Carlson and T. L. Hicks, On completeness in a quasi-uniform space, J. Math. Anal. Appl. 34 (1971) 618-627.

4. P. Fletcher, Finite topological spaces and quasi-uniform structures, Canad. Math. Bull. 12, 771-775 (1969).

5. P. Fletcher, On completeness of quasi-uniform spaces, Archiv. Math. 22 (1971) 200-204.

6. P. Fletcher and W. F. Lindgren, Quasi-uniformities with a transitive base, Pacific J. Math. 43 (1972) 619-631.

7. S. A. Gaal, Point set topology, New York and London: Academic Press 1964.

8. W. F. Lindgren, Topological spaces with a unique quasi-uniform structure, Arch. Math., 22 (1971) 417-419.

9. M. G. Murdeshwar and S. A. Naimpally, *Quasi-uniform topological spaces*, Groningen 1966.

10. W. J. Pervin, Quasi-uniformization of topological spaces, Math. Ann., 147 (1962) 316-317.

11. Eugen Popa, Completion of quasi-uniform spaces., Math. Ann. 186 (1970) 297-298.

12. J. L. Sieber and W. J. Pervin, Completeness in quasi-uniform spaces, Math. Ann., 158 (1965) 79-81.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF MISSOURI-ROLLA ROLLA, MISSOURI 65401 U.S.A.