SOLUTIONS

P 16. (a) Prove that there is a polyhedron whose faces
consist of 6 squares and (say f hexagons where f may be
greater than any given number.

(b) What is the sequence of possible values of f ?

(c) What is the largest value of f for which the hexagons
can all be regular.

(d) What is the largest value of f for which the hexagons
can all be centrally symmetric?

H.S. M. Coxeter, University of Toronto

Partial solution by W. Moser, University of Manitoba.
Consider the following sequence of maps M

k:
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RN

and so on.

Mg

Mk has 2k + 4 vertices; exactly 6 of these vertices are each

incident with 4 edges, and the other 2k-2 of the vertices are
each incident with 6 edges. Also, Mk has 4k + 4 faces, all

triangular. Because all the faces are triangular, it is possible
to transfer the vertices of Mk to the surface of a sphere, and

join them by straight edges to form convex polyhedron Pk
having the same incidence relations as Mk. Truncating Pk

produces a convex polyhedron which has 6 quadrilateral faces
and (4k+ 4) + (2k - 2) = 6k + 2 hexagonal faces. Thus we have
proved {(a) with '"squares' replaced by ''quadrilaterals'.

Let P be a convex polyhedron. Let V, E and F be

the number of vertices edges and faces of P respectively.
Let Vi denote the number of vertices each incident with

i edges, and F, denote the number of faces each having
i

i sides. Then
(1) V-E+ F = 2
and

(2) TiV. = ZiF = 2E.
i=3 ' =3

‘Hence for real numbers a and b satisfying
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we have, from (1) and (2),

(4) Z(1-a) F +Z(1-bi)V = 2.

In particular with a=1/6 and b =1/3 (4) reduces to

3 2F + = 12+ F .+ 2V 44V _+ ...
(5) F3+ 4 FS + 7+2F8+3F9+ +Z4+ 5+

If P satisfies the conditions

(6) F =6 and F =0, i# 4, 6
4 i

then (5) yields

2V +4V_+ 6V, + ... =0
4 5 6

and this implies

(1) VvV, =V =V =...=0.

Thus, (6) implies V =V _.

3 (4) now reads

(1-42)6 + (‘l-éa)F6 + (1-3b)V = 2

and this with a =4/3 and b=1/6 yields

(8) v;3+2F6.

Now suppose that in addition to (6), P satisfies the condition
(9) the hexagonal faces are regular.

Then there are at most 2 hexagonal faces meeting at a vertex.

Thus, if hi denotes the number of hexagons at the it vertex

(i=1,2,...,V), we have, using (8),
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.(10) 6F, = h +h +...+hv_<_2V = 16 + 4F

6 1 2 6

from which we deduce that F6 < 8.

Since the truncated regular octahedron has 6 square faces and
8 hexagonal faces, we have answered part (c).

Now consider a polyhedron S with 6 parallelogram faces
and f centrally symmetrical hexagonal faces. Then (see
Coxeter, Regular Polytopes, p.29), this polyhedron is
necessarily a zonohedron and

(11) 2.6 + 6]:"6 = 2n(n-1)

where n is the number of zones. Furthermore, a zonohedron
with n zones has at least 3n/7 pairs of parallelogram faces
(see Kelly and Moser, '""On the number of ordinary lines
determined by n points', Can. J. of Math., 1958, pp.210-219).

It follows that for S,
(12) 6 > 2(3n/7) .

Thus 3<n< 7. Relation (11) with n=3,4,5,6,7 yields in

turn F6 =0, 2, no solution, 8, 12. This concludes the proof

of (d).

2
P52. Let n be an integer > 2 and put w =e mi/n

Show that if f(z) is regular for [z| < A and satisfies the

equation
n-1
(1) I fx +o x +... +o® VT
o O 1 n-1
n-1 J - (n-1)
= 0 {Hx )t f(x )t ...t T e )Y,
0 l 0 1 n-1
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where XO’ x1,. Lo, X 1 are arbitrary complex numbers, then
n-

f(z) =az, where a is some complex constant.

L. Carlitz, Duke University

Solution by N. Kimura, University of Saskatchewan.

For convenience of notation, define

2r . +w(n-1)r,

(3) s(r)=1+w +o  +.. r=0,1,2,...,n-1

n if r=0

Then s(r) =
0 otherwise .
Letting Xy =¥ =+ =% _, in (1), we have
n-1
n
(£(0))" = m (s(r) £(0)) = 0,
r=0

because one factor contains s(1) which is zero by (3). Thus

(4) c, = £(0) = 0.

Let x0=x+y, X, =%, =... =x , =X in (1),

where x and y are any complex numbers in the circle
|z| < A/(n + 1) so that (1) has meaning. Then we have

n-1 n-1 ;
I f(s(r)x+vy) = 1 flx+ vy) - f(x) + s(r)f(x) , or.
r=0 =0 1

(flnx + Y)EyN™ T = (x4 y) - 8™ H(f(x + y)-£(x) + ni(x)) -

P -1
Dividing both members by yn (excepting the case
y =0), and letting y - 0, we have
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(5) 2" lenx) =nf(x) (¢ ()", for |x|< A/(n+ 1), where

(6) a =c, =£'(0) .
If a=0, then £(x)(f'(x))" > =0, and therefore

(@/dx)(E02)"1 = 0,

which implies that f(x) itself must be a constant such that
£(0) =0 by (4). Thus f(z) =0=az for a=0.

We assume that a # 0, in what follows.

It is easy to check that f(z) =az satisfies the condition
(1). We shall prove that there is no other solution of (1). To
this end, let b be the seqond non-zero coefficient of the

Taylor expansion of f(z), in other words,

(7) b =c #£0, and ¢, = 0 for 1< j<p; i.e.,
J

P
(8) f(z) = az + bzp + ...
Then for [xl <A/(n+ 1), f(nx) = anx + bnpxp + ..., or
n-1 n n-1. pp
(9) a flnx) = a nx+a bnx +...;

and (f' (x))n_1 = (a+ bpxp-1 + ... )n-i

-1 -2 -1
=a" +an bp(n-i)xp 4+ ..., or

(10) nf(x){f ()} =atnx+ 2 bn(pn - p+ 1)+ ..
Now from (5), (9) and (10) above, we have:

(11) an-1bnp = ban-1n(pn -p+1).

Since a# 0, b# 0 and n# 0,

.(12) nph'1 =pn-1)+1.
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-1 -1
But nb 1+ (n-1)F

2
1+ (p-1)n - 1)+%(p- 1)(p - 2)n -1) +.
Therefore from (12)

2
%(p- AMp - 2)n-1) <n-1,

or
(p-1)p- 2)n-1)< 2.

From this, since n> 2 or n -1 > 2, the only
possibility is that p=2 or p=3. But p=2 implies from
(12) that n =1 which contradicts the assumption that n > 2.
Similarly, p =3 implies from (12) that either n=1 or
n =2. Thus there exists no such b satisfying (7), in other
words, there is no solution of (12). This proves that there
is no solution of (5) other than f(z) =az .

Also solved by the proposer.

Comment by the proposer. Rosenbaum and Segal,
Math. Gaz., 44, (1960), 97-4105, have shown that in the case
n = 2 the only regular solutions of (1) are f(z) =az and
f(z) = A sinh cz where A,c are complex constants. The
case n =3 is treated in a paper of the proposer, Amer. Math.
Monthly, 68, (1961), 753-756. '

P 53. For real «, B, y, 6§ and (ax + By)yx + 6y) =

2 2
ax + bxy + cy prove that max(a, b, c)> 4/9 (a+ B)(y + 8) .

L. Moser and J. R. Pounder,
University of Alberta

Solution by W.J. Blundon, Memorial University of
Newfoundland. The problem is equivalent to proving for real,
a,b,c the inconsistency of the inequalities
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5a < 4b + 4c
5b < 4c + 4a
5¢ < 4a + 4b
4ac < b‘2
Case I (b =0). Addition of the first and third inequalities gives

a + ¢ < 0, whereas the second gives a + ¢ > 0. Note that the
fourth inequality is not used.

Case II (b > 0). Substitution of a =1 bX, c=

> bY gives

N~

-5X+4Y +8>0
2X+2Y -5>0
4X - 5Y + 8> 0

XYy<1.
The first three inequalities of this set define the interior of the
triangle with vertices at (1/2, 2), (2, 1/2), (8, 8). It is clear
that this triangle lies outside the region defined by XY < 1.
The inequalities are therefore inconsistent. Further, if > is
replaced by >, equality will occur only for (X,Y)=(1/2, 2) or
(2, 1/2). Thus equality in the original relations occurs only
when b =c =4a or b =a =4c.

Case III (b < 0). The inequalities are now those of Case II with
the sense reversed in the first three inequalities. It follows
from the properties of convex 'polygonal sets that the set of
points defined by the transformed inequalities is now empty.
Thus the inequalities are again inconsistent. Note that, as

in Case I, the fourth inequality is not used.

Also solved by A. Feldmar, W. Moser and the proposers.
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P 55. Let P be a regular polygon and S a concentric
sphere. Prove that the sum of the squares of the distances
from a variable point of S to the vertices of P is a constant.

L. Moser, University of Alberta

Solution by G.D. Chakerian and J.D. Dixon, California

- -

Institute of Technology. More generally, let ‘71’ Voo Vo

be any points of n-space whose centroid Z\—z). =0. Let S bea
i

sphere centred at 0. Then for any point x of S, the sum

— —_—
of the squares of the k distances from x to the v, 6 is
i

P L AT TA R 2e-rS

X5 2|9 1%,

1]

which is a constant.
Also solved by N. Kimura, A. Makowski, C.J. Scriba,

L. P. Wood, and the proposer.

P56. If x# 0 prove that
2 2
y+y = X+XxXx +x

has no solutions in integers.

W.J. Blundon, Memorial University of Newfoundland

Solution by the proposer. Let x=ab and y - x=ac,

2 3
where (b,c) =1. Then c(ac + 2ab + 1) =a b3. Now (b ,c)=1
. 2 2
and (ac+ 2ab+ 1, a )=41. Therefore c=a and

3 3
b =ac+ 2ab+1=a +2x+ 1. Writing the last equation in the
form
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3
(2-b) +3a-b)x+2x+1=0,

and putting 3(a - b) + 2 =z, we have, on elimination of a - b,

27x = -19/2-12+6z-zz.

Since z is an integer, there are four possibilities.
(1) z =1, whence 27x=-26, which is impossible.
(2) z=19, whence 27x=-260, which is impossible.

(3) z=-19, whence x=-18. This gives

2
ab=-18, a-b=-17, sothat (a +b) =- 23 whichis
impossible.

(4) z=-1, whence x=0, which is contrary to
hypothesis.

Also solved by L. Carlitz, J.D. Dixon, N. Kimura,
A. Makowski, and E. Rosenthall.

Remark by A. Makowski. A proof for x> 0 was given
by me and A. Schinzel, Mathesis 68, (1959), 128-142. The
equation is also treated by O. Gross, Math. Mag. 34 (1961),
259-267.
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