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THE DIMENSION OF GRAPHS WITH RESPECT TO

THE DIRECT POWERS OF A TWO-ELEMENT GRAPH

KLAUS KRIEGEL, REINHARD POSCHEL AND WALTER WESSEL

Every finite loopless undirected graph G is isomorphic to an

induced subgraph of a suitable finite direct power G of the

undirected graph G with two adjacent vertices 0,1 and one

loop at vertex 1 . The least natural number m such that G

can be represented in this way is called its G -dimension. We

give some upper and lower bounds of this dimension depending on

certain other graph invariants and determine its exact values for

some special classes of graphs. Some methods to determine a

concrete G -representation, that is an embedding of G into

G , are presented. Moreover we show that the problem of

determining the G -dimension of a graph is /1/P-complete.

1. Introduction

Let G denote the undirected graph with two adjacent vertices

0,1 and one loop at vertex 1 , see figure 1.
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Figure 1

PROPOSITION 1.1. Every finite loopless undirected graph is
iscmorphic to an induced subgraph of a suitable finite direct power of
G .o

This result is implicitly or explicitly mentioned in several papers,

for example in [7], [5] and [70] (in connection with investigations of

graph algebras) or in L111. The graph G also appears in connection

with investigations of subdirectly irreducibles of so-called productive

classes of graphs (see for example [13], [14], [12]).

We recall some notions and notation. Let G = (V,E) be a graph

(without multiple edges) with vertex set V = V(G) and edge set

E = E(G) g V x V . For V £ V the graph G' with V(G') = V and

E(G') = E(G) n V x V is the induced subgraph of G (induced by V ) ,

which will be denoted by G(V'). In the following we are mainly concern-

ed with undirected and loopless graphs G = (V,E)} that is we have

(a,b) e E = > (b,a) e E f o r a l l a } b e V , a n d (c,c) / E f o r c e V .

Then the two directed edges (a,b),(b,a) are considered often as one

undirected edge ab . The set of all finite undirected loopless graphs

is denoted by G° . The graphs (V,E) with E = V x y \ {(a,a)\a e V]

are called (loopless) cliques or complete graphs.

The m-th direct power G of G is the graph with vertex set

V(G ) = {0,1} s and there is an edge between two vertices {a.-,...,a ),

(b-, • • • j b ) e V(G ) if and only if 'there is an edge (in G ) between

a. and b. (that is, these are not both 0 ) for all components

i = Ij. . . j m. Considering the elements of some subset W ̂  V(G ) as

rows of a matrix one can represent the induced subgraph G m(W) by an

fnxraj-matrix (n = \W\) where two zeros in a column indicate that the

vertices represented by the corresponding rows are not adjacent. This
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leads to the following definition.

DEFINITION 1.2. Let G = (V,E) be a graph with \v\ = n . An

(n *m)-matrix M = (a. .) with a. • e. {O,1}(1 £ i i n , 1 £ j £ m)

and with pairwise different rows is called a G -representation of G if

there is an isomorphism p; V — > W from G onto G (W) where

W = {(a.7, ..., a. ) \i = l, ...3 n] is the set of all rows of M . We

say the row p(v) represents the vertex v e. V . The least natural

number m such that G has a G -representation (a. .) x is called

the G -dimension of G and it is denoted by dim^ G (for short dim G).
o

A corresponding G -representation is called minimal.

Note that by definition dim^ G is the least m such that G is
O

isomorphic to an induced subgraph of G . Proposition 1.1 ensures that

every G e G> has a finite G -dimension. This can be proved directly

by induction on the number of vertices constructing a concrete G -

representation. In fact, start with the (1 x 1)-matrix M=(0) for the

first vertex. Then, for the (i + l)th vertex, say w , add a new row

containing only l's , and then, for each vertex, say V , among the i

former ones not adjacent with w , add a new column containing exactly

two zeros, namely in the row representing v and in the last row

(representing W from now on). If W is adjacent with all i former

vertices V then add a single new column with exactly one zero in the

last row. Since there are added at most i new columns we get:

,-, -.x n * V • n(n+l)(1.3) dxm^ G < 2, *- = 2
o i=l

for every G £ G with n vertices. Thus 1.1 is proved, too.

Let us illustrate this procedure considering the bipartite graph

K - (see figure 2).
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Figure 2

The resulting G -representation is

0 0 1111

10 1111

1 1 0 0 0 1

1110 10

11110 0

where the i-th row represents vertex V. (1 i i £ 5) . Thus

dim Kp < 6 (the number of columns), however, as we see later in 4.4a,

this G -representation is not minimal (deleting the 3rd column one gets

a minimal G -representation).

A lower bound can be also obtained easily. Since the graph G

has 2-1 loopless vertices, we have

(1.4) dim G >_ log Jn+1)
O

for G e <j with n vertices.

In the present note we want to investigate the G -dimension, in

particular we shall give better lower and upper bounds (sections 2 and 3)

and some methods (algorithms) to find "good" (that is close to minimal)

(^-representations of graphs (Section 3). In Section 4 we are going to

determine the G -dimension for some special classes of graphs.

From the graph theoretic point of view usually operations (like

sums) are of interest which are quite different from the direct product.

But there is no reason to think that complexity notions like dimensions

with respect to some direct-product-decomposition (for example G

dimension) might be of less interest. It was shown in the theory of

graph algebras (which goes back to Shallon [75] and Oates-Williams LSI),
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that classes of graphs closed with respect to direct products, induced

subgraphs and disjoint unions are exactly those which can be character-

ized by identities for their graph algebras (see [4], 1101, [9]). More-

over, the G -dimension is a special case of the dimension dim_ TA

0 L:D

proposed in [ J 3; p. 77] for arbitrary concrete categories C and special

classes B of objects. Here, in [73], the general problem of investigat-

ing the various kinds of dimensions is posed.

2. Graph theoretic properties of L and lower bounds for dim G

Let L be the (undirected) graph arising from G by omitting

the only vertex (1,1,...,1) e V(G m) with a loop (m e {1,2,...}) . By

1.1 every (loopless!) G e G is isomorphic also to an induced subgraph

of some graph L . In this section we investigate some graph theoretic

properties of 1^ which will lead to lower bounds for the G -dimension

of any graph G e. G° .

At first consider the number of edges. Since G has o

directed edges one of which is a loop (note ((a^, ..., a ),(b~, ..., b ))

e E(Gm) if and only if V i : (a . ,b .) e { (0,1) , (1,0) , (1,1) }) , we get

O tr 1,

\E(G)I < f if m = dim G , that is

(2.1) dim,, G > log,2e

Go 3

for every G e G with e undirected edges (= 2e directed edges).

This bound is better than (1.4) if e > -^(n+l)log2 , (log~3 < 1.0987).

For G=L however, the lower bound (1.4) is attained. Using the number
e of undirected edges of L (it is easy to see that 2e = \E(L )\ =
m m m ' m '
^(Gj" ) \-2'2m~ -1 ), one gets the following condition for

m = dim G: e < e =-Ai-l) +v . This improves (2.1) but it does not

allow an explicit expression for the lower bound.
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Now, for G e G° , let \(G), m(G), a(G), &(G) be the chromatic

number, the clique number (= maximum number of vertices of an induced

complete subgraph), the independence number (= ta(G) ) and the clique

covering number (= x(G)) , respectively (see [3]) . Here G denotes the

loopless complement of G: V(G)=V(G), E(G) = {(a,b) \ a ? b e V(G) and

(a,b) \E(G)} , Obviously

(2 .2 ) x(G) > u(G) , $(G) > a(G)

for every G e G

By colouring each vertex (a., . . . 3 a ) of L with colour i if

a , = . . . = a. 7 = 1 and a . = 0 , we see %(L ) £ m • O n t n e other

hand the ve r t i ces (0,1,1,...,1), (1,0,1,...,!), . . . , (1,1,...,1,0) form

a n ffl-clique w h i c h p r o v e s rrt < m(L ) ; h e n c e by ( 2 . 2 ) :

( 2 . 3 ) x(I>m) = m(L ) = m .

Since x(G) < x(L ) = m for any subgraph G of L (with m = dim G)

we get

PROPOSITION 2.4. dimG G > \(G) > u(G) for G e G° . 0

o

The set {((Zj, ..., a ) \ a- = 0} c V(L ) is independent in L

(that is, there is no edge between its vertices), hence a(L ) > 2 .

On the other hand, each of the -j- z "complementary pairs"

{(an, ..., a), (b-, ..., b )} with a.+b.=l (i = 1, ..., m) is an
X In 1 Til is u

undirected edge of G , and they together cover all vertices of G

(and so of L^ , too), that is f'1 > BfL^ ; thus, by (2.2),

(2.5) a(Lm) = &(Lm) = f'
1 .

Since &(G) < &(L ) for any subgraph G of L we have;
— 171 771

PROPOSITION 2 . 6 . dimr G > l+logo &(G) > l + log0 a(G) for

G e G°
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3. Tight bounds for the G -dimension

DEFINITION 3.1. Let G = (V,E) be a graph. A family
K = {V. | j e J) of subsets V. c V is called an edge covering of G

3 3
by cliques if for every j e J the induced subgraph G(V.) is a clique

3
and if every edge (a,b) e E is contained in at least one such clique

(that is, E = u E(G(V.)) ). Let $'(G) denote the least number of
3

cliques covering the edges of G e (f . Moreover, let T(G) =
{v e V | ¥u) e V\ {v}: (v,w) e E} be the set of all vertices adjacent to
every other vertex and let x(G) = |2YGj|.

THEOREM 3.2. Let G = (V,E) e (f and V= {v^ ..., vj . Then

&'(G) + T (G) < dimn G < e' (G) + n .
Go ~

Proof. Concerning the lower bound, let M=(a. .) be a G -
^(7 nxrn o

representation (compare 1.2) of G , m - dim G , and let v. e V be the
If

vertex represented by the i-th row (a .n,..., a. ), i =1,,.., n .

D e f i n i n g V . = {v . \ a . . = 0} (1 < j £ m) , w e h a v e \{V .\ | V . | = I } | = T C G J ,
3 i %3 - - 3 3

and we shall show that K = {V.| \V.\ > 2} is an edge covering of G
3 3

by cliques (proving i(G) + &'(G) < m) . In fact, by the definitions

, ,vJ 4 E(G) <=> Sg : a. .=a? .=0 <=> 3j : v,,vy e V. .

Thus all G(V.) are cliques and every edge in E(G) is contained in
3

some G(V.) .
3

As to the upper bound, let {V. | 1 < j £ 3 ' (G):} be an edge covering
3 ~ ~

of G by cliques. It is easy to check that the matrix M=(a- .) with

0 if V • e V. (j < 6 ' (G)) ,
t j =

or if j = i + 6 ' CG) (j > 6' CGJ J .,

1 otherwise

(1 < i < n , 1 < j < n + 6' ('GJ J

is a G -representation of G (the -i-th row represents V. ). D
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Remark 3.3. The matrix M just defined splits in a natural way

into a matrix M' consisting of the first 8'(G) columns and the matrix

M" consisting of the last n columns. Note that M' reflects the

adjacency relation for the vertices of G , whereas M" does not change

the relation but forces all rows of the matrix to be different. Let

T(G) = {v^, ..., V ,„,} . Then we must have a. . = 1 for 1 < i < x(G) ,

1 < j < &'(G) , and the first &'(G) + i(G) columns of M form a matrix

M which is an extension of M' and ensures that all veT(G)

correspond to different rows. Hence, if the rows of M' or M ,

respectively, are pairwise different, then already M' or M* is a GQ-

representation of G (which implies dim G = $' (G) or

dim G = Q'(G) + \(G) , respectively).

For a given graph G = (V,E) let 5. (v) = {v' e. V\ (v,v')eE} be

the .2-sphere (the neighbours) of a vertex v e V . Then:

PROPOSITION 3.4. Let G e Q° be a graph such that different non-

adjaoent vertices have different 1-spheres. Then

dimr G = &'(G) + T(G) .
Go

In particular, if in addition T(G) = 0 then dimG G = &'(G) .
o

Proof. It is straightforward that the assumption is a sufficient

condition that the rows of M* (as defined in 3.3) are pairwise

different for any given edge covering of G by cliques. D

In view of 3.4, the lower bound B'(G) + x(G) is exact for a large

class of graphs. In contrast to this, for every ne {1,2, . ..} , there

is only one graph for which the upper bound 3'(G) +n is exact, namely

the complete graph K with n vertices (B' (K ) = 0 , i(K ) =n .
n n n

compare with 4.1a), since otherwise, if E(G) ̂  0 , one can delete at

least one column in M" . For G=K upper and lower bound coincide.

Of course it would be nice to have an efficient algorithm which

determines the C -dimension of a graph. But this problem is tfP-hard.

We have:
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THEOREM 3 . 5 . The problem GQ-DIMENSION = {(G,k)\ G e G° and

dimG G <k , fee {1,2,...}} is NP-complete.
o ~

Proof. Obviously, G -DIMENSION is in NP . To show the NP-

completeness we reduce the #P-complete problem COVERING BY CLIQUES =

{(G,t)\ G e G and there is an edge covering of G by t cliques,

te. {1,2, ...}} (Problem GT17 in [2]) to G -DIMENSION. Given a graph

G=(V,E) with V={v-, ..., V } , construct the 2n-vertex graph

H=(V',E>) where V = {v^... , v^w^ ... , U J J } , E' = {

{(v .,W .) I i f£j} . Then
t 3

H = (V, E u {(v.,w.)\ 1 < i < n}u {(w.,w.)\ i?j
% % — — % Q

and the only clique in H covering an edge (v.3W,) is H({v.9W.})
Is 1s Is Is

itself, whereas all edges (w.,V).) are covered by the clique
•Z- 0

H({w.\ 1 < i < n}) . Furthermore, H fulfils the assumption of
"V — —

Proposition 3.4 (i(H) = 0) . This implies

(G,k) e COVERING BY CLIQUES if and only if (H,k-tn+l) e G -DIMENSION. Q

At the end of this section we are going to present a method of

approximating the G -dimension of a graph more precisely under the

assumption that a minimal edge covering of G by cliques is given.

Thus let G= (V,E) e G° and let M' = (a.J oif7-\ be the matrix

corresponding to a minimal edge covering of G by cliques (see the proof

of 3.2, 3.3). Let V={v., . . . ,V } and let the i-th row

W. = (a.^, ...,<!.,,•£,) of M' represent the vertex v. . Then M'

defines an equivalence relation ~M, on V by

i M' Q ^ 3

Note that the equivalence class [l>.]^ is an independent set
1 M'

(anticlique) of G if and only if W. contains a component a., equal
.,

to 0 ; otherwise, for u. = (1,1,...,1) we get the clique
%o
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[u. ] = T(G). It is our aim to extend M' to a G -representation of
XO ~M' °

G adding as few as possible new columns. First it is straightforward

(in order to reach the lower bound in 3.2), that for any vertex V.eT(G)
3

one must add one column containing only 1's except one 0 in the J-th

row ( compare with 3.3). We get the matrix M (see 3.3) with

5' (G) + i(G) columns. Now, in view of Proposition 3.4 and its proof,

we ask what is to be done if the assumption SJ.v)^SAv') fails to

hold. For two non-adjacent vertices V,v' we have SAv) =SAv') if

and only if {v3v'} is a so-called autonomous set of G .

We recall: For G = (V'}E) e. Q , a set A c V is called autonomous

in G (in the sense of for example [J], [6]) if, for aeA and

beV\A , (a,b) eB implies (a'1b)eE for all a' e A . An equivalence

relation ~ on V is called congruence if all equivalence classes are

autonomous sets. Then G=(V,E) induces a well-defined graph

G/~ = (V/^ , E) for which Ca]^ and t^]^ are adjacent if and only if

the representatives a and b are adjacent in G . There exists a

sufficiently well-developed decomposition theory for graphs (with

respect to autonomous subgraphs and congruences, see [6]) , some results

of which probably could be used to determine the GQ-dimension of a

graph in terms of its "factors". We shall not go into details here and

will consider only a very special case in section 4.

Let us return to M' and „,„, . Since, by construction,

8' (G)
(v.,V.)e.E <=> (w .,W .) eE(G ) , the equivalence classes [u. 1^

are autonomous sets and „,,,, is a congruence. Let G' denote the

factor graph G/«, , = (V/~ ,,E) . Since T(G) is an equivalence class,

that is T(G) e V/~ , s we can consider the induced subgraph

G* = G'(V(G')\{T(G)}) . Choose some colouring {W.\ i=l,..., x(G*^ of

the vertices of G with x(G*J colours {W. is the set of elements of
tr

V/~Ml with colour i ). Moreover, for each i let X. be the maximal

cardinality among the elements of W. (note that the elements of W.
1, T*
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are equivalence classes of ~M,!),1 < i < x(G ) •

THEOREM 3.6. For G e G° we have

X(G*)
B'(G) + x(G) £ dimn G < 6' (G) + a(G) + \ \"Log0 X. \ .

o ~ i=l * %

( fx~| denotes the least integer not less than x ).

Proof. The lower bound was found in 3.2. In order to prove the

upper bound we construct a G -representation M- (a. •) as follows.

The first 3'(G) + T(G) columns are to form the matrix M* (as

considered above). Adding new columns one has to distinguish still the

vertices of each equivalence class of ~w, except T(G) . Since - by

construction! - each W. consists of cliques of G (= equivalence

classes of ~M, = independent sets of G ), which are pairwise non-

adjacent in G (since they are in the same colour class), one can

distinguish all equivalence classes in W. simultaneously (that is with

the same columns). In order to distinguish the vertices of a clique of

G with X elements one has to add [~log0 X | new columns to M

This completes the proof. D

Problem 3.7. The upper bound in 3.6 depends 1) on the W^'s,

that is on the choice of the edge covering of G by cliques (yielding

M' and M* ) and it depends 2) on the X.'s, that is on the chosen

(vertex-) colouring of G . Does there exist, for any graph G e G ,

an edge covering of G by cliques and a vertex-colouring of the

corresponding G* such that the upper bound in 3.6 equals dim G (that

is does the above construction lead to a minimal G -representation)?

We have no counter-example.

4. Examples

In this section we investigate some families of graphs with respect

to their G -dimension and present some tools for doing this. In

particular we shall determine the exact G -dimension of several graphs

applying the results of Section 2 and 3.
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PROPOSITION 4 .1 . Let K be the complete graph with n vertices

(n = l,2,...) . Then

a) dimG K^ = n ,
o

b) dimG Kn = 1 +[log2 n~\

o

Proof, a) follows from 3.4 (B'(K ) =0 , t(K ) =n) . b) follows

from 2.6 (lower bound, &(K ) =n) and 3.6 (upper bound, (5 ' (K ) = 1 ,

n 1 *

Recall that the join G+R of two disjoint graphs G,R e G is

given by V(G + H) =V(G) u V(R) and E(G + R) =E(G) uE(H) u V(G) x V(H)

u V(R) x V(G) (every vertex of G is adjacent to every vertex of R ) .

THEOREM 4.2. For G}H e G?, dim., (G+R)=dimn G + dim. R .
Go Go Go

Proof. Let the matrix M be a G -representation of G + R . By

definition of G + R all zeros in each column either belong to rows

representing vertices of G or to rows representing vertices of R .

Therefore the set of rows of M splits into two disjoint classes such

that the matrix built from each of them represents one of G and R ,

that is, 6im(G + H) >_ dim G + dim H . Conversely, two G -representations

of G and R can easily be arranged to a G -representation of G + R

proving the opposite inequality. D

The join G^+... + G, is a special case of the decomposition of

graphs into "sums" of autonomous sets (see Section 3 and [6]). Now let

K be the complete fe-partite graph consisting of k disjoint

independent sets with cardinalities n~, ..., n, and all edges joining

vertices from different sets, that is, K = K + ... +K . B y

4.1b and 4.2 we have:

k
COROLLARY 4 . 3 . dimQ Kn _ n =k+ I [log^']. In particular,

o 1 K i=l

the G -dimension of a bipartite graph K is
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G v
EXAMPLES 4.4. a) dim K. . = 5 (by 4.3), see Figure 2.

b) dim * = 2 + [log, n l (bY 4 - 2 a n d 4.1), where * denotes the star
Yi Li Yt '

with n edges, *^=K^+K

c) dim P = S (by 3.4, &'(P) =5 ) , where P denotes the well-known

Petersen graph.

THEOREM 4.5. Let C denote the undirected cycle with n

vertices. Then

(i) dim C =n for n = 3,5,7,

(ii) dim C = 2-£l for n = 4,6,8,

it &

(Hi) dim C < ̂ -^- for odd n > 9 ,

Yl ~f~ 2

(iv) dim C <_ — 5 — for even n > 10 .

Yl *~ & —

Proof. The graphs C7 = K7 and C.=K „ are covered by 4.1a and

4.3. Thus we can assume n >_ 5 . Since non-adjacent vertices of C

have different -Z-spheres and T (C ) = 0 we get dim,; C =&'(C ) by

o
3.4. Thus the proof reduces to the determination of B'(C ) . Let

n

V(C ) =V = {1,2,..., n} = V u V 7 , where V (V , respectively, contains

all even (odd, respectively) numbers. For i e V(C ) let

SAi) = {i- l,i + 1} (mod n) be the two neighbours. Further define

Xi = U) uVo\S2(i) for i e ̂  .

1) Let n be even. Then X. fi e 7.^ and Vn induce -r + 1 cliques

in C , which for n >_ 10 cover all edges of C . To see this,

consider an edge e of C?n joining two even vertices Ce V ) . Since

n >_ 10 , there is a path of length > 6 in C connecting these vertices.

Consequently, there is an odd vertex D s L on this path such that

e eC (X ) . All other edges of C (joining even and odd vertices)

n v n
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are covered by X. or V - t r ivial ly (by construction) . This proves
"£- J.

(iv) . For even n ±8, X. (i e V^), V-,,V is an edge covering by cliques.

This proves the < -part of (ii) . Since no two edges 14, 25, 36, 13, 24

belong to a common clique of C. we have g'' (C' ) > 5 . Analogously,
b o —

14, 72, 58, 36, 15, 26 yield 6'(CJ > 6 . This proves the > - part of

(ii) and finishes the proof of (ii) .

2) Let n be odd. Then X.tteV^, V.\{1} and Vj\{n} induce

— — + 2 cliques in C . By the same argument as for even n , they
& Yl

cover a l l edges of C provided that n - 1 > 10 , that isj n > 11 . A
Yl — —

direct examination shows that these cliques do the job also for n = 9 .

Thus (iii) is proved. Finally, for n = 5,7 one easily finds B ' (C ) =n ,
which completes the proof of (i) . D

Remark. The G -dimension of C does not grow with n in every

case. The upper bounds in 4.5 are attained for n = 9,10,12. It is

an open problem whether the bounds are exact for other n >_ 11 ,
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