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Abstract Given a separably closed field K of characteristic p > 0 and finite degree of imperfection, we
study the ] functor which takes a semiabelian variety G over K to the maximal divisible subgroup of G(K ).
Our main result is an example where G], as a ‘type-definable group’ in K , does not have ‘relative Morley

rank’, yielding a counterexample to a claim in Hrushovski [J. Amer. Math. Soc. 9 (1996), 667–690].
Our methods involve studying the question of the preservation of exact sequences by the ] functor,

and relating this to issues of descent as well as model-theoretic properties of G]. We mention some

characteristic 0 analogues of these ‘exactness-descent’ results, where differential algebraic methods are
more prominent. We also develop the notion of an iterative D-structure on a group scheme over an

iterative Hasse field, which is interesting in its own right, as well as providing a uniform treatment of

the characteristic 0 and characteristic p cases of ‘exactness descent’.

1. Introduction

For a semiabelian variety G over a separably closed field K of characteristic p > 0
and finite degree of imperfection, the group p∞G(K ) =⋂n pn(G(K )) played a big

role in Hrushovski’s proof of the function field Mordell–Lang conjecture in positive

characteristic [16]. The group p∞G(K ), which we also sometimes call G], is type definable

in the structure (K ,+, ·). It was claimed in [16] (in the Remark just before Lemma 2.15)

that p∞G(K ) always has finite relative Morley rank. One of the reasons or motivations

for writing the current paper is to show that this is not the case: there are G such that

p∞G(K ) does not even have relative Morley rank. (Note that, however, Lemma 2.15 itself

does hold; the generic type of p∞G(K ) is indeed ‘thin’, which implies that p∞G(K ) does
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have finite U -rank, but just not that it has finite relative Morley rank. The finiteness

of U -rank suffices for all the results in § 4 of [16], in particular Proposition 4.3, to go

through, and hence the validity of the main results of [16] is unaffected.) Hrushovski

used expressions such as ‘Morley dimension’ or ‘internal Morley dimension’ for what we

call here relative Morley rank. The notion is somewhat subtle and concerns performing a

Cantor–Bendixon analysis inside a closed space of types. Details and examples are given

in § 2.3.

As the second author noticed some time ago, the ‘relative Morley rank’ problem is

related in various ways to whether the p∞ (or ]) functor preserves exact sequences. So

another theme of the current paper is to give conditions on an exact sequence 0→ G1 →
G2 → G3 → 0 of semiabelian varieties over K which imply exactness of the sequence 0→
G]

1 → G]
2 → G]

3 → 0, as well as giving situations where the sequence of G]
i is NOT exact.

A third theme relates the preservation of exactness by ] to the issue of descent of a

semiabelian variety G over K to the field of ‘constants’ K p∞ =⋂n K pn
of K .

If K has degree of imperfection e (meaning that K has dimension pe as a vector space

over its pth powers K p), then K can be equipped naturally with e commuting iterative

Hasse derivations. We will, for simplicity, mainly consider the case where e = 1 (so, for

example, where K = Fp(t)sep), in which case we have a single iterative Hasse derivation

(∂n)n whose field of absolute constants is K p∞ . This differential structure on K will play

a role in some proofs, by virtue of so-called D-structures on varieties over K .

The analogue in characteristic 0 of the differential field (K , (∂n)n) is simply a

differentially closed field (K , ∂) (of characteristic zero). And for an abelian variety G over

our characteristic 0 differentially closed field K , we have what is often called the ‘Manin

kernel’ for G, the smallest Zariski-dense ‘differential algebraic’ subgroup of G(K ), which

we denote again by G]. The issues of preservation of exactness by ] and the relationship

to descent to the field C of constants make sense in characteristic 0 too.

In characteristic p, it is possible to obtain our results with a purely algebraic approach

using p-torsion and Tate modules (carried out in § 4). In characteristic 0, we need to

use differential algebraic methods, in particular D-structures. But in fact the algebraic

proofs given in characteristic p can also be seen as involving D-structures, and we take

the opportunity of giving such a uniform proof in all characteristics in § 5.

Our paper builds on earlier work by the second author and Françoise Delon [8],

where, among other things, the groups G] (in positive characteristic) are characterized

as precisely the commutative divisible type-definable groups in separably closed fields.
Our results, especially in characteristic 0, are also influenced by and closely related to

themes in the third author’s joint paper with Daniel Bertrand [6].

Let us now describe the content and results of the paper.

Section 2 recalls key notions and facts about differential fields, and semiabelian varieties

over separably closed fields. We also discuss relative Morley rank, preservation of descent

under isogeny, and some properties of p∞G(K ).
In § 3, we introduce the ] functor in all characteristics, and begin relating relative

Morley rank to exactness.

Section 4 concentrates on the characteristic p case. We begin by making some

observations about descent of semiabelian varieties and Tate modules, proving for
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example that an ordinary semiabelian variety G descends to the constants of K if

and only if all of the (power of p) torsion of G is K -rational (§ 4.1). We make no

claim that our results on descent are especially novel, and we would not be surprised

if they were explicit or implicit in the literature on semiabelian varieties in positive

characteristic. However, we were unable to find precise references despite consulting

several experts. In § 4.2, we answer the original question which motivated this paper.

In Proposition 4.12, we show that, if 0→ G1 → G2 → G3 → 0 is an exact sequence

of ordinary semiabelian varieties such that G1 and G3 descend to the constants, C,

then the sequence of the G]
i is exact if and only if G2 descends to C. This yields an

example of a semiabelian variety G such that G] does not have relative Morley rank (in

fact, the example is simply any nonconstant extension of a constant ordinary abelian

variety by an algebraic torus). See Corollary 4.14, which as mentioned above is among

the main results of our paper. The remainder of § 4 contains both positive and negative

results about preservation of exactness by ] in various situations. In particular, we give

an example of an exact sequence of ordinary abelian varieties for which the ] functor

does not preserve exactness. This cannot happen in characteristic 0, as shown in the

next section.

In § 5, we switch to differential algebraic methods in order to treat uniformly both

characteristic 0 and characteristic p. In § 5.1, we recall the definition of D-structures for

group schemes and the fact that a semiabelian variety G over a Hasse field K descends

to the constants of K if and only if G admits an iterative D-structure.

In order to relate exactness of the ] functor and descent in characteristic 0, we use,

as in [6], the universal extension G̃ of G by a vector group, which always admits a

unique D-structure. In characteristic p, we need to replace this universal extension

by a (p-divisible) proalgebraic group, also called G̃. In § 5.2, in characteristic p, we

endow G̃ with an iterative D-structure, and prove the characteristic p version of the

characteristic 0 results relating descent and the D-structure on G̃. Finally, in § 5.3, we

can then give a uniform proof, in all characteristics (Proposition 5.21), of the fundamental

result (Proposition 4.12) proved previously in characteristic p.

We should say that, as far as ‘algebraic geometry’ is concerned, this paper is elementary,

and, even in § 5.3, it does not make heavy use of modern methods. The reader is referred

to [12] for a modern scheme-theoretic treatment of descent, K/k-trace, etc., for abelian

varieties in positive characteristic. As is pointed out there, much of the literature on

such questions, and on important results such as the Lang–Neron theorem, remains in

the language of Weil. The same will be to some extent true of the current paper, where

our real aim and motivation is to understand G(K ) as a definable group in the structure

(K ,+, ·), as well as its type-definable subgroups.

2. Preliminaries

2.1. Hasse fields

We summarize here basic facts and notation about the fields K that concern us. More

details can be found in [4, 41] for the characteristic p case and [21] for the characteristic 0

case.
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If K is a separably closed field of characteristic p > 0, then the dimension of K as a

vector space over the field K p of pth powers is infinite or a power pe of p. In the second

case, e is called the degree of imperfection (we will just say the ‘invariant’) of K , and we

will be interested in the case when e > 1 (and often when e = 1). For e finite, a p-basis

of K is a set a1, . . . , ae of elements of K such that {an1
1 an2

2 . . . ane
e : 0 6 ni < pe} form a

basis of K over K p.

The first-order theory of separably closed fields of characteristic p > 0 and invariant e
(in the language of rings) is complete (and model complete). We call the theory SCFp,e.

It is also stable (but not superstable), and certain natural (inessential) expansions that

we mention below have quantifier elimination.

For R an arbitrary ring (commutative with a 1), an iterative Hasse derivation ∂ on R
is a sequence (∂n : n = 0, 1, . . .) of additive maps from R to R such that

(i) ∂0 is the identity,

(ii) for each n, ∂n(xy) =∑i+ j=n ∂i (x)∂ j (y), and,

(iii) for all i, j , ∂i ◦ ∂ j =
(i+ j

i

)
∂i+ j (iterativity).

Note that ∂1 is a derivation, and that, when R has characteristic 0, ∂n = ∂n
1 /n!. (So, in

the characteristic 0 case, the whole sequence (∂n)n is determined by ∂1.)

In some rare cases, we will speak about noniterative Hasse derivation, meaning that

the third condition is not required.

By the constants of (R, (∂n)n>0), one usually means {r ∈ R : ∂1(r) = 0}, and by the

absolute constants {r ∈ R : ∂n(r) = 0 for all n > 0}. In this paper, we will mainly consider

the field of absolute constants, denoted C, and refer to them in what follows as ‘the

constants’.

If ∂1 and ∂2 are iterative Hasse derivations on R, we say that they commute if each ∂1
i

commutes with each ∂2
j .

Fact 2.1. (i) If K is a separably closed field of invariant e > 1, then there are

commuting iterative Hasse derivations ∂1, . . . , ∂e on K such that the common

constant of ∂1
1 , . . . , ∂

e
1 is K p. In this case, the common (absolute) constant of

∂1, . . . , ∂e is the field K p∞ =⋂n K pn
.

(ii) Moreover, in (i), if a1, . . . , ae is a p-basis of K , then each ∂ i
j is definable in the

field K over parameters consisting of the a1, . . . , ae and their images under the

maps ∂n
m (n = 1, . . . , e,m > 0).

(iii) The theory CHFp,e of separably closed fields of degree e, equipped with e commuting

iterative Hasse derivations ∂1, . . . , ∂e, whose common field of constants is K p, is

complete and stable, with quantifier elimination (in the language of rings together

with unary function symbols for each ∂ i
n, i = 1, . . . , e, n > 0).

Note that, after adding names for a p-basis a1, . . . , ae of the separably closed field K , we

obtain for each n a basis 1, d1, . . . , dpn−1 of K over K pn
, and the functions λn,i such that

x =∑i (λn,i (x))pn
di for all x in K , are definable with parameters a1, . . . , ae in the field

K . The theory of separably closed fields also has quantifier elimination in the language

with symbols for a p-basis and for each λn,i . The relation between the λ-functions and

the ∂ i
j is given in § 2 of [4].
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In the current paper, we concentrate on the iterative Hasse derivation formalism. In

fact, when we mention separably closed fields K with an iterative Hasse structure, we will

usually assume that e = 1, and so K is equipped with a single iterative Hasse derivation

∂ = (∂n)n . The basic example is Fp(t)sep (where sep denotes separable closure) with ∂1(t) =
1 and ∂i (t) = 0 for all i > 1. The assumption that e = 1 is made here for the sake of

simplicity, as some of the results we will be quoting are only explicitly written out for

this case, but it will be no real restriction, thanks to the following.

Fact 2.2 (See, for example, [4]). Let K0 be an algebraically closed field of characteristic

p, and let K1 be a finitely generated extension of K0. Then there is a separably closed

field K of degree of imperfection 1, extending K1 and such that K0 = K p∞ .

Our characteristic 0 analogue is simply a differentially closed field (K , ∂) of

characteristic 0, where now ∂ is the single distinguished derivation (rather than a

sequence). The corresponding first-order theory is DCF0, in the language of rings together

with a symbol for ∂. The theory DCF0 is complete with quantifier elimination, but is now

ω-stable.

2.2. Varieties, semiabelian varieties, and separable morphisms

From now on, K is an algebraically closed field of characteristic 0, or a separably closed

field of characteristic p and of finite degree of imperfection e > 1, and K denotes an

algebraic closure of K .

As already mentioned in the introduction, we will use mainly Weil type language in

this paper, except in § 5.2. A variety over K , or defined over K , will always be a separated

reduced scheme of finite type over K . We denote by V (L) the set of L-rational points

of V , for L an extension of K . Recall that, when K is separably closed, and V is over

K , V (K ) is Zariski dense in V . We will often identify V with its set of geometric points

V (K ). For L an extension of K , we will denote VL = V ×K L (extension of scalars or base

change).

Recall that, if V and W are two irreducible varieties over K , and f is a dominant

K -morphism from V to W , f is said to be separable if the function field extension K (W ) ⊂
K (V ) is separable.

The following is classical. For the convenience of the reader, we include a short

(model-theoretic) proof in Appendix A.

Fact 2.3. Let G, H be two connected algebraic groups defined over K , and let f be a

dominant separable homomorphism from G to H (equivalently a surjective separable

homomorphism from G(K ) onto H(K )). Then f takes G(K ) surjectively onto H(K ).

In this paper, we will only consider exact sequences of algebraic groups

0→ G1
g→ G2

f→ G3 → 0

such that both morphisms are separable. These are sometimes called strict exact

sequences [34]. We will say also that G2 is an algebraic group extension of G3 by G1,

denoted by G2 ∈ EXT(G3,G1). By the assumption of separability of the morphisms,
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G3 is isomorphic (as an algebraic group) to G2/g(G1), and G1 is isomorphic to a closed

subgroup of G2.

We will say that the exact sequence is over K if the groups G1,G2,G3 are algebraic

groups over K and f, g are separable K -morphisms of algebraic groups.

We now recall some very basic facts about semiabelian varieties. We will be particularly

interested in rationality issues, that is, in the groups of K -rational points of some

basic subgroups of G(K ). There are many classical references for abelian varieties (for

example [26], or [19]). For the case of tori, see, for example, [9].

It is then easy to obtain the corresponding facts for the case of arbitrary semiabelian

varieties.

Recall that a semiabelian variety G (over K ) is an extension of an abelian variety by a

torus, i.e.,

0→ T → G → A→ 0,

where T is a torus over K , A is an abelian variety over K , and the two morphisms are

separable K -morphisms (G is then also an algebraic group over K ).

The following facts hold when K is separably closed.

Fact 2.4. (i) Let T be a torus over K . Then T is K -split; i.e., T is isomorphic over K
to some product of the multiplicative group, (Gm)

×n. Any closed subgroup of TK is

then also defined over K .

(ii) Semiabelian varieties are commutative and divisible; i.e., G(K ), the group of
K -rational points of G, is a commutative divisible group.

(iii) Let G be a semiabelian variety over K . Then any closed connected subgroup of G K
is defined over K .

Definition 2.5. Let K0 ⊂ K1 be an extension of fields, and let G be an algebraic group

over K1. We will say that G descends to K0 if G is isomorphic to HK1 for some algebraic

group H over K0.

As semiabelian varieties are defined as extensions, one should check what descent

exactly means in that case. The following fact, which follows from classical manipulations

on EXT(A, T ) (see, for example, [34]), deals with this question.

Fact 2.6. Let K0 ⊂ K1 be separably closed fields, and let G be a semiabelian variety defined

over K1, which is an extension of A by T = (Gn
m)K1 . If G descends to K0, i.e., if G

is isomorphic to (G0)K1 for some semiabelian variety G0 over K0, then we have the

following:

0 T G A 0

0 T (G0)K1
(A0)K1 0

i f

i0 f0

id g h
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where g and h are isomorphisms, and 0→ (Gn
m)K0 → G0 → A0 → 0 is a semiabelian

variety over K0. Furthermore, if A is of the form (A0)K1 for some A0 over K0, we can

choose h to be the identity.

Proposition 2.7. Assume that char(K ) = p. Let G be a semiabelian variety over K , such

that G descends to K pn
for all n > 0. Then G descends to K p∞ .

Proof. Let A be the abelian part of G, and let T be its toric part. By Fact 2.6, A
descends to K pn

for all n. Using a suitable moduli space (namely the moduli space of

abelian varieties equipped with a polarization of fixed degree and an m-level structure;

see [27]), it follows that A descends to K p∞ .

Now fix A0 over K p∞ such that A ∼= (A0)K . It is classical that Ext(A, T ) '
(Ext(A,Gm))

t ' ( Â)t , where Â is the dual abelian variety of A, and is isomorphic to

( Â0)K (see, for example, [33]). Using Fact 2.6 again, and since G descends to K pn
for

each n, the isomorphism type of G is parameterized by a point in Â0(
⋂

n K pn
) = Â0(K p∞);

that is, G descends to K p∞ .

Remark 2.8. Over a separably closed field K of characteristic p > 0, the semiabelian

varieties over K are exactly the commutative divisible algebraic groups over K . Indeed,

let H be commutative divisible, and consider the biggest connected affine subgroup of

H , T . By divisibility it must be a torus, and, as K is separably closed, it is defined over

K (and split over K ), and H/T is an abelian variety, by Chevalley’s theorem ([30]).

2.2.1. Torsion. The behaviour of the torsion elements of G is particularly important

in characteristic p. The following classical facts will enable us to fix some notation for

the rest of the paper.

Fact 2.9. Let G be a semiabelian variety over K , written additively, and let

0→ T → G → A→ 0,

with dim(A) = a and dim(T ) = t

1. If n is prime to p = char(K ) or arbitrary in characteristic 0, then [n] : G 7→ G,

x 7→ nx is a separable isogeny of degree (=separable degree) n2a+t . We denote by
G[n] the kernel of [n], the points of n-torsion; then G[n](K ) ∼= (Z/nZ)2a+t . By

separability, G[n](K ) = G[n](K ).
From now on, char(K ) = p > 0.

2. [p] : G 7→ G is an inseparable isogeny of degree p2a+t , and of inseparable degree at

least pa+t . Hence there is some r , 0 6 r 6 a, such that, for every n,

G[pn](K ) = Ker[pn](K ) ∼= (Z/pnZ)r .

We say that G is ordinary if r = a (note that tori are ordinary semiabelian

varieties).

As G[pn](K ) is finite, it is contained in G(K ), but not necessarily in G(K ).
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3. Let G[p∞] or G[p∞](K ) denote the elements of G with order a power of p, and let

G[p′] or G[p′](K ) denote the elements of G with order prime to p. Then G[p′] =
G[p′](K ) is Zariski dense in G.

Note that, even for G ordinary, we may well have that G[p∞](K ) = {0}.
We will also need the following easy observations.

Fact 2.10. Let 0→ G1 → G2
f→ G3 → 0 be an exact sequence of semiabelian varieties

over K . Then for every n, the restriction of f to n torsion induces an exact sequence (in

the category of groups), i.e.,

0→ G1[n](K )→ G2[n](K ) f→ G3[n](K )→ 0.

It follows in particular that, in all characteristics,

0→ Tor G1 → Tor G2
f→ Tor G3 → 0

is an exact sequence of groups, where Tor G denotes the group of all torsion elements of

G(K ).
Divisibility by p also behaves quite differently in G(K ) and in G(K ) when char(K ) = p.

Let

p∞G(K ) :=
⋂
n>1

[pn]G(K ).

Proposition 2.11. 1. G(K ) is n-divisible for any n prime to p.

2. For n prime to p, for every k, G[n](K ) = G[n](K ) ⊂ [pk]G(K ).
3. G[p′](K ) = G[p′](K ) is a divisible subgroup of G(K ).

4. p∞G(K ) is n-divisible for any n prime to p.

5. p∞G(K ) is infinite and Zariski dense in G.

6. p∞G(K ) is the biggest divisible subgroup of G(K ).

Proof. 1 to 5 are clear from previous facts.

6 follows from König’s lemma and the finiteness of G[pn] for every n.

2.2.2. Isogenies and descent in char. p. We will not necessarily directly use all

the classical facts about isogenies recalled below, but they give a picture of the various
problems linked to descent questions in characteristic p. We will provide short elementary

proofs when they exist.

In this section, K is any separably closed field of characteristic p > 0, and G and H
are semiabelian varieties over K .

Note first that, if G and H are semiabelian varieties over K , and f a morphism of

algebraic groups GL → HL for some extension L ⊃ K , then f is actually defined over

K , i.e., f = gL for some K -morphism g from G to H : by 2.4, the graph of f , which is a

closed connected subgroup of (G× H)L , is also defined over K .

Recall that an isogeny is a surjective morphism of algebraic groups with finite kernel.

Let G be a semiabelian variety over K . It is classical that for every n > 1 the relative
nth-Frobenius isogeny Fn : G −→ G(pn) (G(pn) descends to K pn

) is purely inseparable
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of degree pn dim G , and admits a ‘quasi-inverse’ isogeny, the nth-Verschiebung, denoted

Vn : G(pn) −→ G, such that Vn ◦ Fn = [pn]G and Fn ◦ Vn = [pn]G(pn ) . It is easily seen,

counting degrees, that the following holds.

Fact 2.12. If G is ordinary, then, for every n, the Verschiebung Vn is separable.

Lemma 2.13. Let G be a semiabelian variety over K , and let L be an extension of K .

Then, if a ∈ pnG(L), there exists b ∈ G(L) such that a ∈ K (Fn(b)). So, if G is over K pn
,

then [pn]G(K ) ⊂ G(K pn
), and in particular p∞G(K ) = p∞G(K pn

).

Proof. Consider the nth-Verschiebung Vn , described above. If a ∈ pnG(L), then a = pnb
for some b ∈ G(L), and a = Vn(Fn(b)). If G is over K pn

, then the Verschiebung is also

over K pn
, and a ∈ K pn

(Fn(b)) = K pn
.

Abelian varieties have one specific very important property.

Fact 2.14. Let A be an abelian variety over K . Then A is isogenous over K to a finite

product of simple (i.e., which have no proper nontrivial closed connected subgroup) abelian

varieties.

We will now recall some very classical facts about descent. We will try to point out

where the difficulties arise, for our readers not completely familiar with the theory of

abelian varieties in characteristic p.

In characteristic 0, any semiabelian variety which is isogenous to one defined over some

algebraically closed K0 descends, in the sense above, to K0 (i.e., Fact 2.15 applies). The

situation is more complicated in characteristic p.

Fact 2.15. Let K0 ⊂ K1, with K0 algebraically closed. Let G be a semiabelian variety over

K0, let H be a semiabelian variety over K1, and let f be a separable isogeny from G K1

onto H . Then H descends to K0.

Proof. As f is a separable isogeny, the kernel of f is a finite closed subgroup of G(K0),

N , of cardinality the degree (= separable degree) of f . Then G ′ := G/N is a semiabelian

variety over K0, and f induces an isomorphism from H onto G ′K1
.

The following is also classical, but more complicated and is only true for abelian

varieties.

Fact 2.16. Let K0 ⊂ K1, with K0 algebraically closed. Let A be an abelian variety over

K1, let B be an abelian variety over K0, and let f be a separable isogeny from A onto

BK1 . Then A descends to K0.

Proof. This is a particularly simple case of the ‘proper base change theorem’ (see, for

example, in [15] or [24]).

Remark 2.17. Note that, in the case of dimension one, Fact 2.15 holds without the

assumption that f is separable. That follows easily from the fact that, in dimension one,

an isogeny factors through some power of the Frobenius (see, for example, [36]).

We will give later (Remark 4.20) an example showing that Facts 2.15 and 2.16 do not

hold without the separability assumption in dimension >1.
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2.3. Relative Morley Rank

In this section, T will be a complete theory, and we work in a given κ-saturated model M ,

for κ sufficiently big. We will here define the relative Morley rank, namely the Morley rank

inside a given ∧∧-definable set. This was called the internal Morley dimension in [16]. By

an ∧∧-definable set (infinitely definable set) we mean a subset of some Mn which is the

intersection of a small (size < κ) collection of definable subsets of Mn (that is the set of

realizations of a partial type over a small set of parameters). We will fix an ∧∧-definable

set X ⊆ Mn .

If X is an infinitely definable subset of Mn , by a relatively definable subset of X we

mean a subset of the form Z = X ∩ Y for Y ⊆ Mn definable with parameters. Then we

define the Morley rank for relatively definable subsets Z of X , as follows.

(i) RMX (Z) > 0 if Z is nonempty.

(ii) RMX (Z) > α+ 1 if there are Zi ⊆ Z for i < ω which are relatively definable subsets

of X , such that Zi ∩ Z j = ∅ for i 6= j and RMX (Zi ) > α for all i .

(iii) For limit ordinal α, RMX (Z) > α if RMX (Z) > δ for all δ < α.

As in the absolute case, we obtain the (relative) Morley degree. Namely, suppose that

RMX (Z) = α <∞. Then there is a greatest positive natural number d such that Z can

be partitioned into d (relatively in X) definable sets Zi such that RMX (Zi ) = α for all i .
We will say that X has relative Morley rank if RMX (X) <∞.

Remark 2.18. (i) Suppose that Y is a relatively definable subset of X . Then RMX (Y ) =
RMY (Y ).

(ii) We can also talk about the relative Morley rank RMX (p) of a complete type p of

an element of X over a set of parameters. It will just be the infimum of the relative

Morley ranks of the (relatively) definable subsets of X which are in p.

(iii) Suppose that T is countable and that X is ∧∧-definable over a countable set of

parameters A0. Then X has relative Morley rank if and only if for any countable

set of parameters A ⊇ A0 there are only countably many complete types over A
extending X .

Now suppose that X, Y are ∧∧-definable sets and that f : X → Y is a surjective

definable function. By definability of f we mean that f is the restriction to X of some

definable function on a definable superset of X . Note that then each fibre f −1(c) of f
is a relatively definable subset of X , so we can talk about its relative Morley rank (with

respect to X or to itself, which will be the same by Remark 2.18(i)).

Lemma 2.19. Suppose that X, Y are ∧∧-definable sets and that f : X → Y is surjective

and definable.

(i) Suppose that RMY (Y ) = β and that, for each c ∈ Y , RMX ( f −1(c)) 6 α. Then

RMX (X) 6 α(β + 1) if α > 0, and 6 β if α = 0.

(ii) RMY (Y ) 6 RMX (X).
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Proof. (i) This is proved in the definable (absolute) case by Shelah [35] (Chapter V,

Theorem 7.8) and Erimbetov [14]. Martin Ziegler [40] also gives a self-contained proof.

We point out briefly how Ziegler’s proof (see § 2 of [40]) adapts to the more general

context.

Case 1, when α = 0, [40] works word-for-word.

Case 2, when α > 0. Work by induction on β. We may assume that Y has ‘relative Morley

degree’ 1 (with respect to itself). Suppose for a contradiction that αβ +α < RMX (X).
Lemma 3 of [40] applies, yielding a relatively definable subset X ′ of X , such that αβ <

RMX (X ′) and such that the ‘generic fibre’ of f |X ′ has finitely many, say k, elements

(where possibly k = 0). We now apply compactness to find a relatively definable subset

Y ∗ of Y such that, for all b ∈ Y ∗, f −1(b)∩ X ′ has at most k elements. Let Y ′ = Y \ Y ∗ be

a relatively definable subset of Y such that RMY (Y ′) = β ′ < β. By Case 1, X ′ ∩ f −1(Y ∗)
has relative Morley rank 6 β, whereby the relative Morley rank of X ′′ = X ′ ∩ f −1(Y ′) is

> αβ > α(β ′+ 1). This contradicts the induction hypothesis applied to f |X ′′ : X ′′→ Y ′.
(ii) is easier, and has the same inductive proof as in the definable (absolute) case,

bearing in mind that, because f is the restriction to X of a definable function on a

definable superset of X , the preimage under f of any relatively definable subset of Y is

a relatively definable subset of X .

If X = G is an ∧∧-definable group with relative Morley rank, then some of the general

theory of totally transcendental groups applies (as already mentioned inside Definition 4.0

of [16]). For example, we have the DCC (descending chain condition) on relatively

definable subgroups, yielding that G is connected-by-finite among other things. And

this is really all we will be using about groups of finite relative Morley rank.

We now consider an exact sequence of ∧∧-definable groups 1→ G1
h→ G2 → G3 → 1.

We can assume that G1 = Ker(h) ⊆ G2, as the relative Morley rank is preserved by

definable bijection, and note again that G1 is then a relatively definable (normal)

subgroup of G2. With this notation we have the following corollary, which follows

immediately from Lemma 2.19:

Corollary 2.20. Suppose that G1 and G3 have (finite) relative Morley rank. Then so does

G2.

We complete this section with some additional comments and examples. First, we

obtain the usual (absolute) Morley rank of a definable set Z ⊆ Mn by taking X to be Mn

in the definition at the beginning of this subsection. Of course the Morley rank can be

defined directly for complete types (over a saturated enough model M), by RM(p(x)) = α
if p(x) is isolated in the subspace of Sx (M) obtained by removing the set of types of

Morley rank < α. Here, the ambient space of types is Sx (M). We can make the analogous

definition for relative Morley rank RMX (p), by working in the space SX (M) of complete

types over M extending the type-definable set X . In any case it should be clear to the

reader that RMX (p) need not coincide with RM(p). For example, suppose that X is a

so-called minimal type-definable set: namely X is infinite and every relatively definable

subset of X is finite or cofinite (in X). Then there is a unique nonalgebraic complete type
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over M extending X , say p(x). Moreover, RMX (p) = 1. But RM(p) may be undefined

(i.e., ∞). This is precisely the case when M = K is a separably closed, nonalgebraically

closed field, and X = k =⋂n K pn
. X is type definable and minimal. For p(x) ∈ Sx (M) the

‘generic’ type of X as above, RMX (p) = 1, but RM(p) = ∞, because otherwise there would

be a formula in p of ordinal valued Morley rank, and there are no such (nonalgebraic)

formulas in the theory of separably closed fields.

3. The ] functor

Here, K will be either a separably closed field of characteristic p > 0 and finite degree

of imperfection, or a differentially closed field of characteristic 0 (so with distinguished

derivation ∂). We distinguish the cases by ‘characteristic p’, ‘characteristic 0’. In the

characteristic p case, we will take K to be say ω1-saturated, so as to be able to do model

theory, although this will not always be necessary. Definability will mean in the sense

of the structure K . In the characteristic 0 case, as DCF0 is ω-stable, we have DCC on

definable subgroups of a definable group, so any ∧∧-definable group is definable. In the

characteristic p case, by stability, any ∧∧-definable subgroup is an intersection of at most

countably many definable groups.

Definition 3.1. Let G be a semiabelian variety over K . Then G] is the smallest

∧∧-definable subgroup of G(K ) which is Zariski dense in G.

Various equivalent characterizations of p∞G(K ) were given in [8]. In particular, it was

shown ([8], Proposition 3.6) that p∞G(K ) is the unique divisible subgroup of G(K ) which

is Zariski dense in G. But the following one was omitted at the time.

Proposition 3.2. Suppose that char(K ) = p, and let G be a semiabelian variety over K .

Then p∞G(K ) is the smallest ∧∧-definable group of G(K ) which is Zariski dense in G;

hence p∞G(K ) = G].

Proof. Let H be any ∧∧-definable subgroup of G(K ), also Zariski dense in G. By stability,

H is a decreasing intersection of definable subgroups of G(K ), (Hi )i∈I . Certainly each Hi
is itself Zariski dense in G. By [7] Corollary 4.16, the connected component of Hi , Ci , is

also definable in G(K ) and has finite index in Hi . It follows that it is also Zariski dense

in G.

Now, for every r > 1 the (definable) subgroup [pr ]Ci is also Zariski dense in G. It

follows, by compactness and saturation, that
⋂

n>1[pn]Ci is also Zariski dense in G. But⋂
n>1[pn]Ci is a divisible group, and by the remark above, p∞G(K ) =⋂n>1[pn]Ci for

every i , and is hence contained in H .

In characteristic 0, G] is sometimes called the ‘Manin kernel’ (see [20]). Alternative

characterizations and key properties in arbitrary characteristic are given in the following

lemma.

Lemma 3.3. (i) G] can also be characterized as the smallest ∧∧-definable subgroup of

G(K ) which contains the (prime-to-p, in the char. p case) torsion of G.
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(ii) G] is connected (no relatively definable subgroup of finite index), and of finite

U -rank in char. p, and finite Morley rank in char. 0.

(iii) If G = (G0)K for some G0 over the constants C of K , then G] = G(C).

Proof. (i) Recall first that the (prime-to-p) torsion is contained in G(K ). In the

characteristic p case, G] = p∞G(K ) does contain the prime-to-p torsion. On the

other hand, as the prime-to-p torsion is Zariski dense in G, any subgroup of G
containing the prime-to-p torsion is Zariski dense. So the lemma is established

in characteristic p. The characteristic 0 case is well known and due originally to

Buium. See, for example, Lemma 4.2 of [28] where it is proved that any definable

Zariski-dense subgroup of a connected commutative algebraic group G contains

Tor(G).

(ii) G] is connected as any finite index subgroup of a Zariski-dense subgroup is also

Zariski dense. In the characteristic 0 case, Buium [10] showed that G] has finite

Morley rank. An account, using D-groups, appears in [6]. In the characteristic p
case, finite U -rank of G] was first shown by Hrushovski in [16], and can also be

seen to follow easily from Lemma 2.13.

(iii) In characteristic p, this is a direct consequence of Lemma 2.13 or of the fact that

G(C) is both divisible and Zariski dense in G. In characteristic 0, it can be seen

as follows. Assume G to be defined over C. Note that G(C) is definable in the

differentially closed field K . As C is algebraically closed, G(C) is Zariski dense in

G; hence G] ⊆ G(C). If G] ( G(C), G] = H(C) for some proper algebraic subgroup

H of G over C, and then H(C) could not be Zariski dense in G.

Lemma 3.4. Let G, H be semiabelian varieties over K , and let f : G → H be a (not

necessarily separable) rational K -homomorphism. Then the following hold.

(i) f (G]) ⊆ H ].

(ii) If f is dominant, then f (G]) = H ].

Proof. (i) Let Tor p′(G) be the prime-to-p torsion (so all the torsion in char. 0).

Note that f (Tor p′(G)) ⊆ Tor p′(H). If (i) fails, then D = f (G])∩ H ] is a proper

∧∧-definable subgroup of H(K ) which by Lemma 3.3 contains f (Tor p′(G)). But

then f −1(D)∩G(K ) is an ∧∧-definable subgroup of G(K ) which contains Tor p′(G)
and is properly contained in G], contradicting Lemma 3.3.

(ii) Note that f (G]) is ∧∧-definable (by ω1-saturation in characteristic p, since in this

case f (∩Gi ) = ∩ f (Gi )), and, since f is dominant, f (G]) must be Zariski dense in

H . By part (i), and the definition of H ], f (G]) = H ].

Remark 3.5 (Characteristic p). Let f : G → H be as in the hypothesis of Lemma 3.4(ii).

If f is separable (that is, induces a separable extension of function fields) then, as we

remarked in Fact 2.3, f|G(K ) : G(K )→ H(K ) is surjective. If f is not separable, f may

no longer be surjective at the level of K -rational points, but nevertheless Lemma 3.4(ii)

says it is surjective on the ]-points when K is ω1-saturated.
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Note however that, if f is an isogeny, f (p∞G(K )) = p∞H(K ) without any saturation

assumption (if f has degree of inseparability n, then [pn]H(K ) ⊆ f (G(K )), and one

concludes by König’s lemma).

By Lemma 3.4(i), we can consider ] as a functor from the category of semiabelian

varieties over K to the category of ∧∧-definable groups in K . It is natural to ask whether

] preserves exact sequences, and this is an important theme of the paper.

Recall that, by an exact sequence of algebraic groups defined over K , we mean that

the homomorphisms are not only over K but also separable. Consider two semiabelian

varieties G2,G3 over K , a separable surjective K -homomorphism f : G2 → G3, with

Ker( f ) = G1 connected and thus a semiabelian subvariety of G2 over K . Then, by

Fact 2.3, the sequence 0→ G1(K )→ G2(K )→ G3(K )→ 0 clearly remains exact (in

the category of definable groups in K ). By Lemma 3.4, the sequence

0→ G]
1 → G]

2 → G]
3 → 0

will be exact if and only if

G]
1 = G1(K )∩G]

2.

So the group (G1(K )∩G]
2)/G]

1 is the obstruction to exactness.

In the characteristic 0 case, this group, which is clearly of finite Morley rank, can be seen

to be connected and embeddable in a vector group. By Lemma 4.2 of [28], for example,

G1(K )/G]
1 (as a group definable in K by elimination of imaginaries) embeds definably

in (K ,+)n for some n. Hence (G1(K )∩G]
2)/G]

1 also embeds in (K ,+)n , and as such is a

(finite-dimensional) vector space over the field of constants of K . Hence (G1(K )∩G]
2)/G]

1
is connected. Note that, as G]

1 is also connected, it follows that G1(K )∩G]
2 itself is also

connected.

The characteristic p case is different in an interesting way. Note, first, that the group

(G1(K )∩G]
2)/G]

1 is not even infinitely definable; it is the quotient of two ∧∧-definable

groups. Such groups are usually called ‘hyperdefinable’.

We will recall the (model-theoretic) definition of a connected component. First, if G is

an ∧∧-definable group in a stable theory, then we have DCC on intersections of uniformly

relatively definable subgroups (see [29] or [39]). What this means is that, if φ(x, y) is a

formula, then the intersection of any collection of subgroups of G relatively defined by

some instance of φ(x, y) is a finite subintersection. It follows that, working in a saturated

model, say, the intersection of all relatively definable subgroups of G of finite index is

the intersection of at most |L| many (where L is the language). We call this intersection,

G0, the connected component of G. It is normal, and type definable over the same set

of parameters that G is. Moreover, G/G0 is naturally a profinite group. In the ω-stable

case (or the relative finite Morley rank case as in § 2.3), by DCC on relatively definable

subgroups, G0 will itself be relatively definable and of finite index in G.

Lemma 3.6 (Characteristic p). Let G1 be a semiabelian subvariety of the semiabelian

variety G2, both defined over K . Then G]
1 is the connected component of G1(K )∩G]

2.
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Proof. First, by 3.4, G]
1 is a subgroup of G1(K )∩G]

2. By Lemma 3.3, G1(K )∩G]
2 is

∧∧-definable of finite U -rank. Hence, for any H ∧∧-definable subgroup of G1(K )∩G]
2,

classical U -rank inequalities for groups give us that U (H [n])+U ([n]H) = U (H). As for

each n the n-torsion of H is finite, U ([n]H) = U (H). It follows that H is connected if and

only if it is divisible: if H is connected, then any proper infinitely definable subgroup of

H has strictly smaller U -rank than H , so, for every n, [n]H = H , and H is divisible. But

G]
1 is the biggest divisible subgroup of G1(K ). Thus G]

1 must coincide with the connected

component of G1(K )∩G]
2.

Remark 3.7. By Lemma 3.6, the quotient (G1(K )∩G]
2)/G]

1 is a profinite group. If G]
2

had relative Morley rank, the quotient would have to be finite (as remarked above). We

will see in § 4 an example where the quotient is infinite, and give an explicit description

of this quotient in terms of suitable Tate modules.

For the record, we now mention cases (in characteristic p) where G] has (finite) relative

Morley rank.

Fact 3.8 (Characteristic p). Let G be a semiabelian variety over K . Then the following

hold.

(i) If G descends to K p∞ (in particular, if G is an algebraic torus), then G] has finite

relative Morley rank.

(ii) If G = A is an abelian variety, then A] has finite relative Morley rank.

Proof. (i) We may assume that G = (G0)K for some G0 over K p∞ . Then, by Lemma 2.13,

G] = p∞G(K ) = G(K p∞). As K p∞ is a ‘pure’ algebraically closed field inside K , G(K p∞)
has relative Morley rank equal to the (algebraic) dimension of G.

(ii) The abelian variety A is isogenous to a product of simple abelian varieties. So

we may reduce to the case where A is simple. In that case, A] has no proper infinite

definable subgroup (Lemma 2.16 in [16] or Corollary 3.8 in [8]). By stability, A] has no

proper infinite ∧∧-definable subgroup. We will now use an appropriate version of Zilber’s

indecomposability theorem to see that A] has finite relative Morley rank. As A] has finite

U -rank, there is some small submodel K0 (over which A] is defined) and a complete type

p(x) over K0 extending ‘x ∈ A]’, which has U -rank 1 (and is of course stationary). Let

Y ⊆ A] be the set of realizations of p. Then Y is an ∧∧-definable subset of A] which

is ‘minimal’, namely Y is infinite, and every relatively definable subset of Y is either

finite or cofinite. We claim that Y is ‘indecomposable’ in A], namely, for each relatively

definable subgroup H of A], |Y/H | is 1 or infinite. For, if not, then, as remarked earlier,

the intersection of all the images of H under automorphisms fixing K0 pointwise will be

a finite subintersection H0, now defined over K0, and we will have |Y/H0| > 1 and finite,

contradicting the stationarity (or even completeness) of p. Let now X be a translate

of Y which contains the identity 0. Then X is still a minimal ∧∧-definable subset of A].
Moreover, Theorem 3.6.11 of [39] or Theorem 6.10 of [29] applies to this situation, to yield

that the subgroup B say of A] which is generated by X is ∧∧-definable and moreover of
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the form X + X + · · ·+ X (m times) for some m. As noted above, it follows that B = A],
and so the function f : Xm → A] is a definable surjective function between ∧∧-definable

sets, in the sense of § 2.3. But, as X is minimal, clearly RMX (X) = 1 and RMXm (Xm) = m.

By Lemma 2.19(ii), A] has finite relative Morley rank too.

Let us remark that, in the context of the proof of (ii) above, when A is a simple

abelian variety over K which does not descend to the constants, then, via the dichotomy

theorem for minimal types in separably closed fields, A] is connected, of U -rank 1,

and hence has relative Morley rank 1. However, we wanted to avoid the appeal to the

dichotomy theorem, and hence above we use the proof involving a version of Zilber’s

indecomposability theorem.

4. Characteristic p

Here, we follow the ‘naive’ algebraic approach which works in a very simple way in

characteristic p. In order to highlight the uniformity with char. 0, we will, in the next

section, adopt a point of view closer to algebraic geometry.

We deal now with the characteristic p case. Let G be a semiabelian variety over any

model (K , ∂) of CHFp,1, that is, any separably closed field of degree of imperfection 1.

4.1. Torsion points, Tate modules, and descent

We make no saturation hypothesis for the moment.

Definition 4.1. We define G̃ as the inverse limit

G̃ := lim←
(

G
[p]←− G

[p]←− · · ·
)
.

In particular, for L an extension of K (we will mainly consider L = K or L = K ),

G̃(L) = {(xi )i∈N ∈ G(L)N : ∀i > 0, xi = [p]xi+1}.
Let πG be the projection onto the ‘left component’ G(L). The kernel of πG is precisely

TpG(L), where TpG is the Tate module of G.

Its L-points in an arbitrary algebraically closed extension L of K coincide with the

sequences of torsion points in K ,

TpG(K ) = {(xi )i∈N ∈ G(K )N : x0 = 0,∀i > 0, xi = [p]xi+1}.

By definition, G̃ is a proalgebraic group, i.e., an inverse limit of algebraic groups.

In § 5.2, G̃ will be viewed as a group scheme. Here, we adopt a more naive point of

view, closer to model theory. Objects such as G̃(K ) and TpG(K ) are what are called

‘∗-definable’ groups in K (projective limits of definable groups).

Let us note that, for a given g0 ∈ G(K ), g0 ∈ G] if and only if there is some (xi )i∈N ∈
G̃(K ) with g0 = x0; we deduce directly from this the relation between the Tate module

of G and G].

Lemma 4.2. The morphism πG induces an exact sequence of ∗-definable groups.

0→ TpG(K )→ G̃(K )
πG→ G]→ 0.
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In the case of ordinary semiabelian varieties, if the dimension of the abelian part

is a, TpG(K ) ' Za
p (see Fact 2.9). We relate now the part of the p∞-torsion lying in

K with issues of descent. Most of the following results are certainly well known; see,

for example, [38] for the description of the torsion of G for abelian schemes of maximal

Kodaira–Spencer rank. But we have found no systematic exposition which we could quote,

and, furthermore, we choose to give here very elementary proofs which are suitable for

our purpose.

Proposition 4.3. Let G be an ordinary semiabelian variety over K . Then, for every n,

G[pn](K ) = G[pn](K ) if and only if G descends to K pn
. In particular, G descends to

K p∞ if and only if G[p∞](K ) = G[p∞](K ) if and only if TpG(K ) = TpG(K ).

Proof. Let us fix n > 1. If G descends to K pn
, we may assume that G = (G0)K for

some G0 over K pn
. Since G0 is ordinary, Vn is separable, and the geometric points of the

kernel of Vn are K pn
-rational, and, since [pn] = Vn ◦ Fn , G0[pn](K ) = F−n(Ker(Vn)(K )) ⊆

G0(K ).
Conversely, assume that G[pn](K ) ⊆ G(K ). Since Vn is separable, G is isomorphic

to the quotient FnG/Ker(Vn). But Ker(Vn)(K ) = Fn(G[pn](K )) is a finite group of

K pn
-rational points; hence FnG/Ker(Vn) descends to K pn

. The ‘in particular’ statement

follows from Proposition 2.7.

Corollary 4.4. Let K0 be an algebraically closed field, and let K1 > K0 be a finitely

generated extension of K0. Let G be an ordinary semiabelian variety over K1. If

G[p∞](K1) = G[p∞](K1), then G descends to K0.

Proof. As K0 is algebraically closed, K1 is a separable extension of K0, and hence it is

contained in the separable closure of K0(t1, . . . , tn) for t1, . . . , tn algebraically independent.

Then (Fact 2.2) there is a separably closed field K of degree of imperfection 1, extending

K1, and such that K0 = K p∞ . We can now apply Proposition 4.3 to conclude that G
descends to K p∞ .

This yields easily the following result (compare with Fact 2.15; here f is no longer

separable but G is ordinary).

Corollary 4.5. Let G be an ordinary semiabelian variety over some algebraically closed

field K0. If H is any semiabelian variety over K1 > K0 such that there is an isogeny f
from G K1 onto H , then H descends to K0.

Proof. Let K2 < K1 be a finitely generated extension of K0 over which H and the isogeny

f from G to H are defined. We claim first that any point of p∞-torsion in H is the image

of a point of p∞-torsion in G: indeed, let h ∈ H [p∞](K2), i.e., for some m, [pm]h = 0. Let

g ∈ G(K2) be a preimage of h, f (g) = h. Then [pm]g ∈ Ker f . Let n > 1 be the order of

the finite group (Ker f )(K2). Then n = pr d, where d is prime to p. Write 1 = ud + vpm ,

u, v ∈ Z. Then g = [ud]g+ [vpm]g, so h = f (g) = f ([ud]g), with [pr+m][ud]g = 0.

Now, as K0 is algebraically closed, G[p∞](K2) = G[p∞](K0), and hence by the above

claim H [p∞](K2) ⊆ f (G[p∞](K2)) = f (G[p∞](K0)) ⊆ H [p∞](K2). We can now apply

Corollary 4.4.
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Corollary 4.6. Let K0 < K1 be an extension of fields with K0 algebraically closed, and let

0 −→ C −→ B −→ A −→ 0 be an exact sequence of ordinary abelian varieties over K1,

such that A and C descend to K0. Then B descends to K0.

Proof. By Poincaré’s reducibility theorem, B is isogenous to A×C , which descends to

K0, and we just have to apply Corollary 4.5.

Remark 4.7. See Remark 4.20 for a counterexample if one does not require the abelian

varieties to be ordinary.

We complete this section with some basic remarks about torsion in G(K )/G]

(= G(K )/p∞G(K )) in characteristic p which will immediately enable us to describe the

link between the question of relative Morley rank and that of preservation of exactness.

Lemma 4.8. Let G be a semiabelian variety over K .

(i) G[p∞](K ) is a direct sum of a divisible group and a finite group.

(ii) G(K )/p∞G(K ) has finite torsion.

(iii) If G descends to K p∞ , then G(K )/p∞G(K ) is torsion free.

(iv) If G(K ) has trivial p-torsion then G(K )/p∞G(K ) is torsion free.

Proof. (i) G[p∞](K ) is a subgroup of G[p∞](K ) which is a finite direct sum of copies of

the Prüfer group Zp∞ .

As p∞G(K ) is divisible, if g ∈ G(K ) and ng ∈ p∞G(K ), then there is h ∈ p∞G(K )
such that ng = nh, whereby n(g− h) = 0; so g is congruent mod p∞G(K ) to an element

of order n. We know that p∞G(K ) contains all the prime-to-p-torsion of G. On the other

hand, by (i), G[p∞](K )/p∞G(K ) is finite. This gives (ii) immediately.

Similarly, for cases (iii) and (iv), where p∞G(K ) contains all the torsion of G(K ).

Proposition 4.9. Suppose that K is ω1-saturated, and let G be a semiabelian variety over

K , 0→ T → G → A→ 0. Then the following are equivalent.

(i) G] has relative Morley rank.

(ii) The sequence 0→ T ]→ G]→ A]→ 0 is exact.

(iii) (T (K )∩G])/T ] is finite.

(iv) T (K )∩G] is divisible.

Proof. By the previous lemma, as T has no p-torsion, T (K )/T ] is torsion free. Also

note that T ] = T (C) is divisible and is the connected component of T (K )∩G] (3.6).

Hence (T (K )∩G])/T ] is finite if and only if it is trivial if and only if the sequence

0→ T ]→ G]→ A]→ 0 is exact. And, moreover, these conditions are equivalent to the

divisibility of T (K )∩G]. This gives the equivalence of (ii), (iii), and (iv).

On the other hand, if G] has finite relative Morley rank, then every relatively definable

subgroup is connected by finite, so (i) implies (iii). Conversely, we have seen (3.8) that

both T ] and A] have relative Morley rank. By 2.20, the exactness of the sequence implies
that G] also has relative Morley rank. Thus (ii) implies (i).
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4.2. Exactness and descent

We now assume that K is ω1-saturated.

Proposition 4.10. Let 0 −→ G1
h−→ G2

f−→ G3 −→ 0 be an exact sequence of

semiabelian varieties over K . Let f ω be the induced morphism of Zp-modules from

TpG2(K ) to TpG3(K ). Then there is an isomorphism

φ : (h(G1(K ))∩G]
2)/h(G]

1)−̃→TpG3(K )/ f ω(TpG2(K )).

Proof. Note that we may assume that h is the inclusion. We first define φ. Let g
be in G1(K )∩ p∞G2(K ). There exists an element (gi )i∈N in Tp(G2(K ), g) (the fibre

of G̃2(K ) over g), with g0 = g ∈ G1(K ). Hence f ω((gi )) ∈ TpG3(K ). We check that it

gives a well-defined map (even a group homomorphism) from G1(K )∩ p∞G2(K ) to

TpG3(K )/ f ω(TpG2(K )): if (g′i )i∈N is another element in Tp(G2(K ), g), then (gi )− (g′i ) ∈
TpG2(K ), and hence f ω((gi ))− f ω((g′i )) ∈ f ω(TpG2(K )). Let us prove now that the

kernel of this map is p∞G1(K ): if g ∈ p∞G1(K ), we can choose (gi ) ∈ Tp(G1(K ), g),
which is sent to 0 by f ω. Conversely, assume that, for some (gi ) ∈ Tp(G2(K ), g) and

some (hi ) ∈ TpG2(K ), f ω((gi )) = f ω((hi )). Then (gi − hi ) ∈ Tp(G1(K ), g), which gives

that g ∈ p∞G1(K ).
Hence we have obtained an embedding φ : (G1(K )∩ p∞G2(K ))/p∞G1(K ) ↪→

TpG3(K )/ f ω(TpG2(K )). It remains to prove that it is surjective. For (hi )i∈N ∈ TpG3(K ),
we can realize in K (which is ω1-saturated) the following type of length ω over K0((hi ))

(K0 is a countable subfield of definition):∧
i∈N
(xi ∈ G2 ∧ f (xi ) = hi ∧ xi = [p]xi+1).

(It can be realized for i 6 n by choosing some gn+1 ∈ G2(K ) such that f (gn+1) = hn+1,

and then defining gi = [pn+1−i ]gn+1.) For a realization (gi )i∈N of this type, we have

g0 ∈ G1(K ) (since f (g0) = h0 = 0) and (gi ) ∈ Tp(G2(K ), g0); hence g0 ∈ p∞G2(K ) and

f ω((gi )) = (hi ).

Remark 4.11. It follows in particular that the sequence 0→ G]
1 → G]

2 → G]
3 → 0 is exact

if and only if the map f ω : TpG2(K )→ TpG3(K ) is surjective.

Proposition 4.12. Let 0→ G1 → G2 → G3 → 0 be an exact sequence of ordinary

semiabelian varieties over K . Suppose that G1 and G3 descend to the constants of K .

Then, the sequence 0→ G]
1 → G]

2 → G]
3 → 0 remains exact if and only if G2 also

descends to the constants.

Proof. Here again we may assume that the map G1 → G2 is the inclusion. First, note

that the ] sequence is exact if and only if G1(K )∩G]
2 = G]

1, by Lemma 3.4.

Let K0 be a countable elementary submodel of K over which everything is defined. By

isomorphism, we can suppose that both G1 and G3 are actually defined over C ∩ K0, the

field of constants of K0 (precisely, Gi = (G ′i )K for some G ′i over C ∩ K0, i = 1, 3).
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If G2 descends to the constants, then, by isomorphism, we can suppose that G2 = (G ′2)K

for some G ′2 over the constants, so, for every i , Gi
] = G ′i (C). And then G1(K )∩G]

2 =
G ′1(K )∩G ′2(C) = G ′1(C) = G]

1.

For the converse, suppose that 0→ G1
]→ G2

]→ G3
]→ 0 is exact.

Our assumption that the Gi are ordinary ensures that, for each i , TpGi (K ) ∼= Zp
ai ,

where ai is the dimension of the abelian part of Gi . If G1 and G3 descend to C, then

TpG1(K ) = TpG1(C) = TpG1(K ) and TpG3(K ) = TpG3(C) = TpG3(K ). By Remark 4.11,

the sequence

0 −→ TpG1(K ) −→ TpG2(K ) −→ TpG3(K ) −→ 0

is exact. It follows that TpG2(K ) ∼= Zp
a1+a3 . As a1+ a3 = a2 (by exactness of 0 −→

G1 −→ G2 −→ G3 −→ 0), and as TpG2(K ) is a direct factor submodule of TpG2(K ),
it follows that TpG2(K ) = TpG2(K ), and, by Proposition 4.3, that G2 descends to the

constants.

Corollary 4.13. For any ordinary abelian variety A defined over the constants of K , there

exists an exact sequence over K ,

0 −→ Gm −→ H −→ AK −→ 0,

such that

0 −→ G]m −→ H ] −→ (AK )
] −→ 0

is not exact.

Proof. We use the fact that EXT(A,Gm) is parameterized (up to isomorphism) by the

dual abelian variety of A, say Â, which is also over the constants, as in Proposition 2.7.

Then H will descend to the constants C of K if and only if H corresponds to a C-rational

point of Â. So just pick some K -rational point of Â which is not C-rational.

We have established in Proposition 4.9 the connection between exactness and relative

Morley rank, and we can conclude that the following holds.

Corollary 4.14. There is an ordinary semiabelian variety G, such that G] does not have

relative Morley rank.

In fact, as above, for any ordinary abelian variety A defined over K p∞ , there is some

semiabelian variety G in EXT(A,Gm) such that G] does not have relative Morley rank.

We will finish this section with some direct corollaries of Proposition 4.10. Again,

0 −→ G1 −→ G2
f−→ G3 −→ 0 is an exact sequence of semiabelian varieties over K ,

with G1 → G2 the inclusion map. Recall from Proposition 4.10 that (G1(K )∩G]
2)/G]

1
∼=

TpG3(K )/ f ω(TpG2(K )).

Corollary 4.15. If G3[p∞](K ) is finite, then the ] sequence is exact.

Proof. Since G3[p∞](K ) is finite, TpG3(K ) = 0.

If we add the assumption that the semiabelian varieties have relative Morley rank, we

get the following characterization.
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Proposition 4.16. Let 0 −→ G1 −→ G2 −→ G3 −→ 0 be an exact sequence of

semiabelian varieties over K such that G]
2 has relative Morley rank. Then the following

are equivalent.

(1) The sequence 0 −→ G1
] −→ G2

] −→ G3
] −→ 0 is exact.

(2) G1[p∞](K )∩G2
] = G1[p∞](K )∩G1

].

In particular, the ] sequence will be exact when G1 descends to the constants, or, more

generally, when G1[p∞](K ) = G1[p∞](K ), and also when G1[p∞](K ) = 0.

Proof. Recall that Gi
] = p∞Gi (K ). We know that (1) holds if and only if G1

] = G1(K )∩
G2

]. So, trivially, (1) implies (2). We know that G1
] contains all the p′-torsion of G1(K ).

It follows that, if (2) holds, then (G1(K )∩G2
])/G1

] is torsion free. As by assumption

G2
] has relative Morley rank, this quotient must be finite; if it is torsion free, it is trivial.

If G1[p∞](K ) = G1[p∞](K ), then G1[p∞](K ) ⊂ G]
1, and the conclusion holds.

4.3. Further examples

We will see in § 5.3 that, in characteristic 0, the ] functor preserves exact sequences

of abelian varieties. This is not the case in characteristic p, even for ordinary abelian

varieties.

The examples of nonexactness for abelian varieties will have to be quite different from

the examples seen in the previous section for semiabelian varieties, as can be seen from

the following direct corollary of Proposition 4.16. Recall from Fact 3.8 that, for all abelian

varieties A, A] has finite relative Morley rank.

Corollary 4.17. We assume that K is ω1-saturated. Let 0 −→ C −→ B −→ A −→ 0 be

an exact sequence of abelian varieties over K . If C(K ) has no p-torsion, or if C descends

to the constants, then the sequence 0 −→ C] −→ B] −→ A] −→ 0 is exact.

Remark 4.18. From Corollary 4.17 and the example given in Remark 4.20, we see that

Proposition 4.12 does not hold for nonordinary (semi)abelian varieties.

There are still cases, not covered by Corollary 4.17, where one obtains nonexactness,

even in the ordinary case.

Proposition 4.19. There is an exact sequence of (ordinary) abelian varieties such that the

induced ] sequence is not exact.

Proof. Let A be an ordinary elliptic curve, defined over K p, which does not descend

to K p∞ , and let C be an ordinary elliptic curve defined over K p∞ . Then we know

by Proposition 4.3 that A[p](K ) ∼= Z/pZ ∼= C[p](K ) but A[p∞](K ) is finite. Pick an

isomorphism f between A[p](K ) and C[p](K ).
Let H ⊂ A[p](K )×C[p](K ) := {(a,− f (a)) : a ∈ A|p][K )}, and B := (AK ×CK )/H .

Then AK is isomorphic to A1 := (AK × 0+ H)/H ⊂ B. Consider the exact sequence

0 −→ A1 −→ B
g−→ B/A1 −→ 0.

Note that C1 := B/A1 is isogenous to CK ; hence, by 2.17 or 4.5, it descends to K p∞ .
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One can check that the p∞ sequence is no longer exact: more precisely, that p∞A1(K ) 6=
A1(K )∩ p∞B(K ).

Furthermore, if K is ω1-saturated, by applying Proposition 4.10, one sees that (A1(K )∩
p∞B(K ))/p∞A1(K ) is isomorphic to Z/pZ.

Remark 4.20. The following example illustrates the necessity of the separable hypothesis

in Facts 2.15 and 2.16, and of the ordinary hypothesis in Corollary 4.6 and

Proposition 4.12.

Let E be a supersingular elliptic curve over K (ω1-saturated), necessarily descending to

Fp. For any abelian variety A there is a one-to-one correspondence between (isomorphism

classes of) purely inseparable isogenies and sub p-Lie algebras of Lie A (see [33] or [26]).

It follows that there is an abelian variety A over K , isogenous to E × E , which cannot

be isomorphic to any abelian variety defined over Fp.

Furthermore, for such an A, it is easily seen that A lies in EXT(E1, E2) for some elliptic

curves E1 and E2 descending to Fp, and in this case 0→ E]1 → A]→ E]2 → 0 is exact

by Corollary 4.17.

We thank A. Chambert-Loir and L. Moret-Bailly for pointing out these arguments

to us.

We finish this section with a summary in the case of semiabelian varieties over K
(ω1-saturated)

0 −→ T −→ G −→ E −→ 0,

with E an elliptic curve.

Proposition 4.21. Let G be as above.

(i) If E is supersingular, then the ] sequence remains exact, and G] has relative Morley

rank.

(ii) If E is ordinary and does not descend to the constants, then the ] sequence remains

exact, and G] has relative Morley rank.

(iii) If E is ordinary and descends to the constants, the following are equivalent.

– The ] sequence is exact.

– G descends to the constants.

– G] has relative Morley rank.

– G[p∞](K ) is infinite.

In the case when G does not descend to the constants, then (T (K )∩G])/T ] is

isomorphic to the profinite group Zp.

Proof. Recall first that Proposition 4.9 says that in the present context G] has relative

Morley rank if and only if the ] sequence is exact.

(i) If E is supersingular, it has no p-torsion, and Corollary 4.15 applies.

(ii) If E does not descend to the constants, Corollary 4.15 applies.
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(iii) If E is ordinary and descends to K p∞ , by Proposition 4.12, the ] sequence will

be exact if and only if G descends to K p∞ . As T has no p-torsion, G[p∞](K ) ∼=
E[p∞](K ) ∼= Zp∞ . So, if G descends to the constants, then G[p∞](K ) = G[p∞](K ),
and so is infinite.

If G does not descend to K p∞ , using Proposition 4.3, there is some n > 1 such that

G[p∞](K ) = G[pn](K ), and hence is finite.

In particular, in this case, TpG(K ) = {0}. By Proposition 4.10, (T (K )∩G])/T ] is

isomorphic to Tp E(K )/ f̃ ω(TpG(K )) ∼= Tp E(K ) ∼= Zp, completing the proof of (iii).

5. Uniform results in all characteristics

In order to prove the analogues of Proposition 4.12 and Corollary 4.13 in characteristic 0,

we need to use more differential algebraic methods, and in particular D-structures. But in

fact the elementary proofs we gave in the previous section for the characteristic p case can

also be seen as involving D-structures and being similar to the characteristic 0 case. This

was just ‘hidden’ by the fact that the objects manipulated have, in characteristic p, an

easy algebraic description. We believe it is interesting though to explain this uniformity

precisely, and in order to do this we will need to introduce D-structures on group schemes.

But before we launch into this slightly dry exposition, let us point out that most of the

‘uniform’ results can in fact be read at the ‘analogy’ level, without actually understanding

the D-structure in the characteristic p case. This will be briefly explained at the beginning

of § 5.2.

For the whole of this section, (K , ∂) will be a model of DCF0 or CHFp,1, where in the

latter case we assume ω1-saturation.

5.1. D-structures and descent

A good exposition of notions presented here can be found in [18]; one can also look at [3].

Definition 5.1. 1. An (iterative) Hasse D-structure on a scheme X over K is an

(iterative) Hasse derivation ∂ on the structure sheaf OX , which means that, for

each open subset U ⊂ X , we have an (iterative) Hasse derivation ∂U : OX (U )→
OX (U ), such that the structure homomorphism K → OX (U ) and the restriction

homomorphisms OX (U ′)→ OX (U ) preserve the Hasse derivations.

2. A morphism of schemes with (iterative) D-structure (X, ∂X )→ (Y, ∂Y ) is a

morphism of schemes X → Y such that the corresponding morphism of sheaves

preserves the Hasse derivations.

3. In particular, for (R, ∂) an (iterative) Hasse differential algebra over (K , ∂),
(Spec(R), ∂) is a scheme with an (iterative) D-structure, and a D-point of (X, ∂X )

with value in R is by definition a morphism of schemes with (iterative) D-structure

(Spec(R), ∂)→ (X, ∂X ). We denote this set of D-points by (X, ∂X )
∂(R).

4. If (X, ∂X ) is a scheme with an (iterative) D-structure and Y is a closed subscheme of

X , we say that Y is an (iterative) D-subscheme of (X, ∂X ) if ∂X induces an (iterative)

Hasse derivation on OY , or, equivalently, if the sheaf of ideals IY ⊂ OX is a sheaf

https://doi.org/10.1017/S147474801400022X Published online by Cambridge University Press

https://doi.org/10.1017/S147474801400022X


52 F. Benoist et al.

of D-ideals (i.e., for each open subset U ⊂ X , IY (U ) is an ideal of OX (U ) stable

by ∂U ).

5. We say that (G, ∂) is a group scheme with an (iterative) Hasse derivation if G is

a group scheme over K , with an (iterative) D-structure ∂, such that the identity

element is a D-point with value in K , and such that the inverse map and the

multiplication map are morphisms of schemes over K with (iterative) D-structure.

Remark 5.2. For this last point, we have used the fact that, if (X, ∂X ) and (Y, ∂Y ) are

schemes with an (iterative) Hasse derivation over K , X ×K Y can be endowed in a unique

way with an (iterative) Hasse derivation such that the projection maps are morphisms in

this category. This is a straightforward consequence of the existence of tensor products

in the category of (iterative) Hasse differential algebras over K .

In the case of algebraic groups over K , we can give another description of (iterative)

D-structures, which uses the notion of prolongations. The two approaches coincide; see [1]

or [18].

We first recall the description of the prolongations for Hasse derivations, given in the

greatest generality in [25] (see also [11] or [37]).

If V is a smooth irreducible algebraic variety over K , the nth prolongation of V is an

algebraic variety 1n V over K characterized as follows. For any K -algebra φ : K → R,

the set of R-points of 1n V is 1n V (R) = V (R(n)), where R(n) = R[X ]/(Xn+1) is endowed

with the structure of a K -algebra by the Taylor map K → R(n), a 7→∑n
i=0 φ(∂i (a))X i .

For example, if V ⊆ An is a smooth irreducible affine variety, then1n V can be described

as the Zariski closure of the image of V (K ) by ∂6n := (∂0, . . . , ∂n),

1n V := {∂6n(x) : x ∈ V (K )} ⊆ Amn+1.

In general, using the Taylor map K → K (n), we get a (definable) map ∂6n : V (K ) −→
1n V (K ), having Zariski-dense image. For m > n > 0, we have a natural projection

morphism πm,n : 1m V −→ 1n V such that πm,n ◦ ∂6m = ∂6n .

These constructions are functorial, and, in the case where V = G is a connected

algebraic group, each 1nG has a natural structure of an algebraic group, and the maps

∂6n , πm,n are homomorphisms.

Fact 5.3. Let G be a connected algebraic group over K . There is a bijective correspondence

between the D-structures on the group scheme G and the sequences of homomorphic

regular sections s = (sn)n∈N for the projective system (πm,n : 1m G −→ 1nG)m>n>0 (i.e.,

we require that each sn : G −→ 1nG is a regular homomorphism over K , and that these

homomorphisms satisfy πm,n ◦ sm = sn and s0 = idG).

The condition for a D-structure to be iterative translates into obvious, but laborious to

write out, conditions on the corresponding sequence of sections (see [1] or [18]).

For (G, ∂) a connected algebraic group with a D-structure s over K , the corresponding

sequence of sections, and (L , ∂) an extension of K , the set of D-points can be described
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as the ∧∧-definable subgroup of G(L):

(G, ∂)∂(L) = {x ∈ G(L) : ∂6n(x) = sn(x) for all n > 0}.
Moreover, if L is a model (ω1-saturated in characteristic p), then (G, ∂)∂(L) is Zariski

dense in G, and it has transcendence degree equal to the dimension of G.

Remark 5.4. Let G be a semiabelian variety over K . In order to define an iterative

D-structure on G, it suffices that, for some (any) generic point g of G](L) over K
(L an elementary extension of K ), for any n > 0, ∂n(g) ∈ K (g). Indeed, because G]

is Zariski dense in G, the existence of such a point g induces a rational map from

G(L) to 1nG(L), which can be extended to a homomorphism sn by a classical stability

argument. We obtain in this way a D-structure on G because sn coincides with ∂6n on

the Zariski-dense subgroup G], and the ∂6n give a sequence of definable sections by

definition. The iterativity comes from the iterativity of ∂, because, on an affine open

subset U , the Hasse derivation given by (sn) is such that (Frac(OG(U )), D) is isomorphic

to (K (g), ∂), which is an iterative Hasse field.

In particular, if G is defined over the constants C, for each g ∈ G] = G(C), ∂n(g) = 0
for n > 1; hence we can define a natural iterative D-structure on G. The two following

results are a converse of this observation.

Fact 5.5. Let G be a connected algebraic group over K . Then, for each n > 0, the

kernel of πn,0 : 1nG −→ G is a unipotent group (see [28] in characteristic 0 or [1]

in arbitrary characteristic). It follows that a semiabelian variety G over K admits at

most one D-structure, since the difference between two sections is a homomorphism

G −→ Ker(πn,0), and hence zero.

Proposition 5.6. Let G be a semiabelian variety over K with an iterative D-structure.

Then G descends to the constants.

Proof. In the characteristic 0 case, this result appears implicitly in [10]; see Lemma 3.4

in [6] for more explanations.

In the characteristic p case, it is proved in [4] (Proof of Theorem 4.4) that such a

semiabelian variety G descends to K pn
for every n. Then Proposition 2.7 applies.

Note that, in characteristic 0, since an iterative Hasse derivation satisfies ∂i = 1
i !∂1, it

suffices to have a usual derivation D1 on OG , or equivalently a section s = s1 : G −→ 11G
in order to define an iterative D-structure; 11G is also known as the twisted tangent

bundle of G.

We will now state the criteria for descent which we will be using.

In the characteristic 0 case we quote from [6], § 3.1, and, in characteristic p, this is the

object of § 5.2.

(Characteristic 0) Let G be a semiabelian variety over K , and let G̃ denote the universal

extension of G by a vector group (as defined in [31]). Let us write G̃ as

0 −→ WG −→ G̃ −→ G −→ 0,

where WG is a vector group.
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Fact 5.7. 1. G̃ admits a unique iterative D-structure.

2. Consider UG , the maximal subgroup of WG , which is a D-subgroup of (G̃, ∂). We

still denote by ∂ the D-structure induced on G̃/UG . Then G] is isomorphic to

(G̃/UG , ∂)
∂(K ).

3. It follows from Proposition 5.6 that G descends to the constants if and only if G '
G̃/WG has a D-structure if and only if UG = WG (since in this case the projection

G̃ → G̃/WG must preserve the D-structures; see Corollary 3.6 in [6]).

4. Furthermore, the functor of D-points is exact on the class of algebraic D-groups [17].

In particular, (G̃/UG , ∂)
∂
(K ) ∼= (G̃, ∂)∂(K )/(UG , ∂)

∂(K ).

5.2. D-structure on G̃ in characteristic p

In this section, char(K ) = p.

In characteristic p, the universal extension of G by a vector group does not in general

have an iterative D-structure. Indeed, if G is an arbitrary semiabelian variety, (H, D) any

connected algebraic K -group with an iterative D-structure, and f a separable morphism

from H onto G, then G must be isogenous to (G0)K for some G0 semiabelian variety

over the constants: f maps (H, D)∂(L) onto G](L) by density (L a sufficiently saturated

extension of K ), and it follows that K ({g}) is finitely generated over K as a field where

g is a generic point of G](L), which implies the conclusion by an argument given in [4]

(compare with Remark 5.4 and Proposition 5.6). This explains why the introduction

of group schemes (or proalgebraic groups) with D-structures will be unavoidable in a

uniform treatment of both characteristics.

The construction we describe below is, as we mentioned before, the D-structure

argument which lies behind the simple algebraic treatment we gave in § 4.2. But, as also

mentioned at the beginning of § 5, most of the ‘uniform’ results can in fact be read at

the ‘analogy’ level, without actually understanding the D-structure in the characteristic

p case.

More precisely:

Recall from § 4 that, if G is a semiabelian variety over K ,

G̃ := lim←
(

G0
[p]←− G1

[p]←− · · ·
)
.

Denote TpG by WG , TpG(K ) by (UG , ∂)
∂(K ), and G̃(K ) by (G̃, ∂)∂(K ). These are

∗-definable groups in K . From § 4, we know that

G] is isomorphic to (G̃, ∂)∂(K )/(UG , ∂)
∂(K ).

Then one can more or less jump to § 5.3 and read the statements and proofs of

Lemma 5.19 and Proposition 5.20, as they are, with the above definitions for the

characteristic p case. Except for condition (iv) in Proposition 5.20, which then makes

sense only in characteristic 0.

We will now begin the real construction.

We have G and G̃ as above. The (scheme-theoretic) kernel of the projection π : G̃ → G0
is the Tate module TpG. From now on, it is important to consider G̃ and TpG as group
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schemes. We will denote by X0 a system of coordinates for G0 (for a fixed affine covering

say), such that X0 generates the maximal ideal of the identity element of G0, and by X i
its image in OGi by the identity isomorphism. It follows that the sections of the sheaf

OG̃ = lim→
(
OG0

[p]∗→ OG1 · · ·
)

are generated over K by (X i )i∈N.

Here are some definitions which will play a role in the construction of the D-structure

on G̃ in the proof of Proposition 5.8. The map [p]∗ induced by [p] on OG̃ is

given by [p]∗(X0) = [p]∗G0
(X0) and [p]∗(X i ) = X i−1 for i > 1. We can define a ‘shift’

homomorphism s on G̃ characterized by s∗(X i ) = X i+1. It is clear that s ◦ [p] = idG̃ , and

that s and [p] commute.

At the level of points, for (g0, g1, g2, . . .) ∈ G̃(L), L an extension of K , s(g0, g1, g2, . . .)

= (g1, g2, g3, . . .) and [p](g0, g1, g2, . . .) = ([p]g0, g0, g1, . . .).

Now, for each n, we have [pn]G̃ = Vn ◦ Fn , where Fn : G̃ → G̃(pn) is the power of the

Frobenius homomorphism and Vn : G̃(pn)→ G̃ the nth Verschiebung (induced by the

Verschiebung on each Gi ).

Proposition 5.8. There exists an iterative D-structure on G̃. Moreover, this D-structure

is unique ‘in a strong sense’.

Proof. We first state the uniqueness in a strong sense: for any homomorphism of

K-algebras D0 : OG̃ → A (strictly speaking, we should replace OG̃ by its ring of sections

for some open set), there is at most one (noniterative) Hasse derivation from OG̃ to A over

K extending D0. By this we only mean a sequence of additive maps (Di : OG̃ → A)i∈N
satisfying the generalized Leibniz rule and agreeing with ∂ on K (we cannot require

iterativity at this level of generality since A 6= OG̃).

We assume that we have such a Hasse derivation (Di )i∈N, and we consider some

f ∈ OG̃ and some index i < pn . Because of the previous equalities, we must have

Di ( f ) = Di (Fn∗ ◦ V ∗n ◦ sn∗( f )). But Fn∗(V ∗n ◦ sn∗( f )) can be represented locally as a

rational function of the variables X pn

j , and hence there is a unique possible value for

Di ( f ) because, if P is a polynomial with coefficients in K , Di (P(X pn
)) = P∂i (D0(X)pn

),

where P∂i is obtained by applying ∂i to the coefficients of P.

Now, we start to define a truncated Hasse derivation on OG̃ . Since G̃(pn) descends to

K pn
, on which ∂<pn is trivial, we obtain a truncated Hasse derivation D′<pn on OG̃(pn ) =

OG ′ ⊗K pn K (G ′ is a model of G̃(pn) over K pn
) by putting the trivial truncated Hasse

derivation on OG ′ . Now, we define

D<pn = Fn∗ ◦ D′<pn ◦ V ∗n ◦ sn∗.

It is clear that D′<pn preserves the comultiplication and coinverse of G ′ because these

are K pn
-morphisms; hence D<pn preserves the group structure of G̃. And, because of the

uniqueness that we have noticed before, the D<pn for different values of n are compatible,

and hence we have defined a (the unique) D-structure D on G̃. It is actually iterative
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since the D′<pn are (as tensor products of the trivial iterative derivation and ∂) and since

V ∗n ◦ sn∗ ◦ Fn∗ = id (because Fn ◦ sn ◦ Vn = Fn(sn) ◦ Fn ◦ Vn = Fn(sn ◦ [pn]G̃) = id).

Remark 5.9. Let us give a slightly informal description of this D-structure in terms of

sections sn : G̃ → 1nG̃. For instance, s1 : G̃ → 11G̃ = lim← 11Gi is given by the sequence

of homomorphisms (s1i )i :

11G0 11G1 11G2
. . .

G0 G1 G2
. . .

11[p] 11[p]

[p] [p]

π0 π1 π2s11 s12

where, if xi ∈ Gi (K ) (i 6 1),

s1i (xi ) = ([p]xi , V ∂1 ◦ F(xi )) ∈ 11Gi−1(K ).

As in the proof of Proposition 5.8, V ∂1 is defined so that, for K -rational points,

V ∂1(F(x)) = ∂1(V (F(x))) (recall that F(x) is a constant for ∂1), which corresponds

to applying ∂1 to the coefficients of V when V is a polynomial, with the obvious

generalization for rational functions. Let us remark that, for every (ai )i∈N ∈ G̃(K ),
((ai )i , (∂1(ai ))i ) = s1((ai )i ); it is actually a general fact, proved in Lemma 5.11.

Remark 5.10. It follows from the uniqueness in the strong sense that, if (X, ∂X ) is a

scheme with a D-structure, and f : X → G̃ a morphism of schemes, it is automatically a

morphism of schemes with a D-structure: for any open subset U ⊆ G̃, the corresponding

homomorphism f ∗U : OG̃(U )→ OX ( f −1(U )) is such that ∂X ◦ f ∗U and f ∗U ◦ ∂G̃ are two

Hasse derivations extending f ∗U , and hence must coincide, which means that f ∗U is a

D-homomorphism.

We now focus on the D-points of (G̃, D).

Lemma 5.11. Let (R, ∂) be an iterative Hasse differential K -algebra. Then (G̃, D)∂(R) =
G̃(R). Of course this is still true for every D-subscheme of (G̃, D).

Proof. The proof is simply Remark 5.10 for the particular case (X, ∂X ) = (Spec R, ∂).

In Fact 5.7, we defined, in characteristic 0, UG to be the maximal subgroup of WG
which is a D-subgroup of (G̃, D). Here is the characteristic p version.

Definition 5.12. We define UG as the maximal closed subscheme of WG := TpG which is

a D-subscheme of (G̃, D). If we have chosen X0 such that it generates the maximal ideal

of the identity element of G0, UG is the D-subscheme of (G̃, D) defined by the sheaf of

D-ideals IU of (OG̃ , D) generated by X0. We see that UG is actually a group D-subscheme
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of (G̃, D) because D preserves the group structure, which implies that ι(IU ) ⊆ IU and

µ(IU ) ⊆ IU ⊗ IU .

As in characteristic 0, we obtain the following.

Lemma 5.13. G descends to the constants if and only if TpG(= WG) = UG .

Proof. The argument is standard. We know that G descends to the constants if and only

if it admits an iterative D-structure (see § 5.1). If TpG = UG , TpG is a D-subgroup of

G̃; hence there is an iterative D-structure on the quotient G̃/TpG ' G (this is done in

the characteristic 0 case in [17]; details in characteristic p are worked out in [3]). For the

converse, if G descends to the constants, then, up to isomorphism, each Gi is endowed

with the trivial iterative D-structure, and each [p] map is a D-morphism. It follows that

the unique (iterative) D-structure on G̃ is the trivial one, for which TpG is a D-subgroup

of G̃, and hence is equal to UG .

Lemma 5.14. UG(K ) = (UG , D)∂(K ) = TpG(K ).

Proof. By Lemma 5.11, each point in TpG(K ) is a D-point of (G̃, D). It follows that the

corresponding closed point of TpG is a maximal D-ideal of (OG̃ , D) containing X0, and

hence it is in UG . Conversely, we have UG(K ) ⊆ TpG(K ).

Lemma 5.15. UG(K ) = UG(K ).

Proof. Let IU be the sheaf of D-ideals defining UG (in fact, we consider its sections on

an affine open set). The reduced scheme (UG)red is defined by
√
IU . It is well known

that
√
IU is the intersection of all the prime ideals containing IU . But, since IU is a

differential ideal,
√
IU is also the intersection of all the prime D-ideals containing IU

(see [1], for example).

Now consider M , any maximal ideal of OG̃ containing IU . We want to show that

M is a D-ideal. Let f be in M ; it is in OGi ⊆ OG̃ for some i . Let j < pn be some

index. From the first remark,
⋂

P ⊆ M , where P runs over the prime D-ideals of OG̃
containing IU . In particular,

⋂
(P ∩OGi+n ) ⊆ M ∩OGi+n , but the first one is the ideal

defining (πi+n(UG))red, a finite scheme (here, πi+n is the projection of G̃ onto Gi+n). It

follows that M ∩OGi+n = P ∩OGi+n for some D-ideal P containing IU (which may depend

on i and n). But now we have D j ( f ) = Fn∗ ◦ D′j ◦ V ∗n ◦ sn∗( f ), with sn∗( f ) ∈ OGi+n by

definition and D j ( f ) as well, because OGi+n is stable under Fn∗ ◦ D′j ◦ V ∗n . As P is a

D-ideal, we have D j ( f ) ∈ (P ∩OGi+n ) ⊆ M . That is, M is a D-ideal.

Now we can conclude that, for any point x ∈ UG(K ), the corresponding maximal ideal

M of OG̃ is a D-ideal; hence the residue field K (x) is an algebraic D-extension of K . But

we know that any algebraic D-extension of K is trivial because K is existentially closed

(see [41], for example); hence x ∈ UG(K ).

In order to deal with a big chunk of the nonreduced part of TpG, we introduce the

following morphism of group schemes F̃ : G̃ → ˜̃G, for F̃ and ˜̃G defined as follows (recall

that F i is the Frobenius homomorphism G → G(pi )):
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G̃ = lim
← G0 G1 G2

. . .

˜̃
G = lim

← G0 G
(p)

1 G
(p2)

2

. . .

[p] [p]

VG VG(p)

F̃ id F F2

This is well defined since, for all i , F i ◦ [p] = [p] ◦ F i = VG(pi ) ◦ F i+1.

For each i , we will denote by Yi a system of coordinates of G(pi )
i such that F i∗(Yi ) = X pi

i ;

Yi generates the maximal ideal of the identity element in G(pi )
i .

Lemma 5.16. Ker(F̃) is a D-subscheme of G̃. In particular, Ker(F̃) ⊆ UG .

Proof. The sheaf of ideals I of the kernel is generated by the F i∗(Yi ), that is, by the

X pi

i . If pi does not divide j , D j (X
pi

i ) = 0; and if j = hpi for some h < pn , we have

D j (X
pi

i ) = (Dh(X i ))
pi

, with

Dh(X i ) = Fn∗ ◦ D′h ◦ V ∗n (X i+n).

Here, the map Vn : G̃(pn)→ G̃ comes from the homomorphisms Vn : G(pn)
k → Gk , k > 0. It

follows that V ∗n (X i+n) ∈M, the maximal ideal of the identity element in O
G(pn )

i+n
. Since the

identity element of G(pn)
i+n is a D<pn -point for the trivial truncated D-structure on G(pn)

i+n ,

D′h(M) ⊆M. Hence Dh(X i ) ∈ (Fn∗(M)) ⊆ (X pn

i+n), and D j (X
pi

i ) ∈ (X pi+n

i+n ) ⊆ I.

We now need G to be ordinary. We will use here the structure theorems for affine

commutative group schemes over a field L (note that Ker(F̃), UG , and TpG are objects

of this category since they are commutative profinite), for which our reference is [13]

(Chapter III, § 3 and Chapter V, § 3). Let us recall that, if H is a profinite commutative

group scheme over L, the connected component H◦ of the neutral element is an

infinitesimal group subscheme, namely, it satisfies H◦(L) = {0}. Moreover, the quotient

H/H◦ is proétale (that is, a projective limit of finite étale groups), and H◦ is the unique

connected group subscheme of H with this property. Furthermore, if we assume L to be

algebraically closed, the reduced subscheme Hred is isomorphic to H/H◦ via the projection

map (it is in particular a group subscheme of H), and H is isomorphic to the direct

product Hred× H◦. Note finally that taking the connected component H◦ commutes

with a base change of fields, and the same is true for taking the quotient H/H◦.

Lemma 5.17. Suppose that G is ordinary. Then (TpG)◦ = U ◦G = Ker(F̃).

Proof. We have seen that Ker(F̃) ⊆ UG ⊆ TpG (as closed group subschemes). But

TpG/Ker(F̃) is a group subscheme of the projective limit

lim←
(

0
VG←− Ker(V1)

VG(p)←− Ker(V2) · · ·
)
,
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which is a proétale group scheme since each Ker(Vn) is étale (Vn is separable since G
is ordinary). It follows that TpG/Ker(F̃) and UG/Ker(F̃) are themselves proétale (this

category is closed under subobjects). Since obviously Ker(F̃)(K ) = {0}, the lemma is

proved.

By combining the previous lemmas, we obtain a new proof of the Proposition 4.3 with

a ‘D-structure flavour’. Note that, for any profinite group scheme X over K , Xred is the

unique reduced closed subscheme of X such that X (K ) = Xred(K ).

Proposition 5.18. Let G be an ordinary semiabelian variety over K . Then G descends to

the constants if and only if TpG(K ) = UG(K ) if and only if TpG(K ) = TpG(K ).

Proof. We have obtained that G descends to the constants if and only if TpG = UG
(5.13). But TpG = UG if and only if (TpG)K = (UG)K (since field extensions are obviously

faithfully flat), and, by the direct sum decomposition, (TpG)K = (UG)K if and only

if ((TpG)K )red = ((UG)K )red and (TpG)◦
K
= (UG)

◦
K

. But, by 5.17, (TpG)◦ = U ◦G ; hence

TpG = UG if and only if TpG(K ) = UG(K ). Since UG(K ) = UG(K ) = TpG(K ) (5.14 and

5.15), we have the result.

5.3. Uniform statements and proofs

We will consider G a semiabelian variety over K . Recall that, in characteristic 0, G̃ is the

universal extension of G by a vector group, and that WG and UG are defined as described

in Fact 5.7. In characteristic p, G̃, UG , and WG = TpG have been defined in § 5.2.

In all characteristics, we know from Fact 5.7 in characteristic 0, and from Lemmas 4.2

and 5.14 in characteristic p, that

G] is isomorphic to (G̃, ∂)∂(K )/(UG , ∂)
∂(K ),

where, of course, by isomorphic here we mean isomorphic as ∗-definable subgroups.

Notation. If f : G −→ H is a morphism of semiabelian varieties over K , we denote by f̃
the induced morphism from G̃ to H̃ .

In the following, we will often drop the ∂ for a scheme (X, ∂) with a D-structure when

no ambiguity arises.

If H1, H2 are proalgebraic groups over K with a D-structure, and h : H1 −→ H2 is

a morphism of proalgebraic groups with a D-structure, we denote by h∂ the induced

∗-definable homomorphism from H1
∂(K ) to H2

∂(K ). When G, H are semiabelian

varieties, G̃ and H̃ have unique D-structures, and so, for any f : G → H , f̃ respects

the D-structures (see Remark 5.10 in characteristic p, and Corollary 3.6 from [6] in

characteristic 0), whereby f̃ ∂ is defined. For the same reason, f̃ induces the maps

f̃U : UG → UH and ( f̃U )
∂ : U ∂

G(K )→ U ∂
H (K ) (see §§ 5.1 and 5.2).

Lemma 5.19. Let 0 −→ G1 −→ G2
f−→ G3 −→ 0 be an exact sequence of semiabelian

varieties over K . Then the sequence 0 −→ (G̃1)
∂(K ) −→ (G̃2)

∂(K )
f̃ ∂−→ (G̃3)

∂(K ) −→ 0
is also exact.

https://doi.org/10.1017/S147474801400022X Published online by Cambridge University Press

https://doi.org/10.1017/S147474801400022X


60 F. Benoist et al.

Proof. In characteristic 0, G̃i is the universal vectorial extension of Gi , and the sequence

0 −→ G̃1 −→ G̃2
f̃−→ G̃3 −→ 0

is also exact (see Appendix B). Each G̃i admits a (unique) D-structure, and the functor

H 7→ H ∂(K ) preserves exact sequences from the category of algebraic groups with a

D-structure to the category of definable groups (see [17]). In characteristic p, the

sequence 0→ G1(K )→ G2(K )→ G3(K )→ 0 is exact because K is separably closed;

hence, passing to the projective limit in the category of ∗-definable groups,

0 −→ G̃1(K ) −→ G̃2(K )
f̃−→ G̃3(K )

is also exact. The fact that f̃ : G̃2(K )→ G̃3(K ) is surjective follows from the surjectivity

of f : G2(K )→ G3(K ) and from the ω1-saturation of K .

The next proposition gives us a very useful equivalent to the exactness of the ] functor.

It should be noted that there is no assumption that any of the U ∂
Gi

, or any of the UGi ,

are nontrivial.

Given the exact sequence 0 −→ G1 −→ G2
f−→ G3 −→ 0, f̃ , ( f̃ )∂ , f̃U , and ( f̃U )

∂ are

the induced maps as above, and f̃π denotes the induced map from G]
2 to G]

3, when we

identify G]
i with (G̃i )

∂(K )/(UGi )
∂(K ).

Proposition 5.20. Let 0 −→ G1 −→ G2
f−→ G3 −→ 0 be an exact sequence of

semiabelian varieties over K . For convenience, we assume that G1 is a semiabelian

subvariety of G2. Then the following are equivalent.

(i) 0 −→ G1
] −→ G2

] fπ−→ G3
] −→ 0 is exact.

(ii) 0 −→ (UG1)
∂(K ) −→ (UG2)

∂(K )
( f̃U )∂−→ (UG3)

∂(K ) −→ 0 is exact.

(iii) ( f̃U )
∂ : (UG2)

∂(K ) −→ (UG3)
∂(K ) is surjective.

(iv) 0 −→ UG1(K ) −→ UG2(K )
f̃U−→ UG3(K ) −→ 0 is exact.

Furthermore, (G1(K )∩G2
])/G1

] −̃→ (UG3)
∂(K )/( f̃U )

∂
((UG2)

∂(K )).
Proof. From Lemma 5.19, one obtains the following commutative diagram of exact

sequences (*):

0

0 (UG3
)∂(K ) (G̃3)

∂(K ) (G3)
♯

0

0 (UG2
)∂(K ) (G̃2)

∂(K ) (G2)
♯

0

(G̃1)
∂(K )

0

π3

π2

( f̃U )∂ ( f̃ )∂ f̃π
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Claim. Ker( f̃U )
∂ = (UG1)

∂(K ).

First, note that (UGi )
∂(K ) = (G̃i )

∂(K )∩Wi , since it is the kernel of the restriction

of πi to (G̃i )
∂(K ), and W2 ∩ G̃1 = W1, since Wi is the kernel of πi : G̃i → Gi .

It follows that (UG1)
∂(K ) = (G̃1)

∂(K )∩W1 = (G̃1)
∂(K )∩W2 = (G̃1)

∂(K )∩ (G̃2)
∂(K )∩

W2 = Ker(( f̃ )∂)∩ (UG2)
∂(K ) = Ker( f̃U )

∂ .

Let S := (UG3)
∂(K )/( f̃U )

∂((UG2)
∂(K )) (the cokernel of ( f̃U )

∂). Then the classical Snake

Lemma applied to diagram (*) gives the existence of a homomorphism d from Ker( f̃π )

to S, such that the sequence 0 −→ (UG1)
∂ −→ (G̃1)

∂ −→ Ker( f̃π )
d−→ S −→ 0 −→ 0 is

exact in the following commutative diagram:

S 0

0

0

(UG3
)∂(K ) (G̃3)

∂(K ) G3
♯

0

0 (UG2
)∂(K ) (G̃2)

∂(K ) G2
♯

0

(UG1
)∂(K ) (G̃1)

∂(K ) Ker( f̃π )

0

0

0 0

π3

π2

π1

( f̃U )∂ ( f̃ )∂ f̃π

This says exactly that

S = (UG3)
∂(K )/( f̃U )

∂((UG2)
∂(K )) is isomorphic to Ker( f̃π )/π1((G̃1)

∂(K )/(UG1)
∂(K )),

that is, to (G1(K )∩G2
])/G1

].

It follows in particular that

0 −→ G1
] −→ G2

] fπ−→ G3
] −→ 0 is exact

if and only if

0 −→ (UG1)
∂(K ) −→ (UG2)

∂(K )
( f̃U )∂−→ (UG3)

∂(K ) −→ 0 is exact

if and only if ( f̃U )
∂ is surjective.

This is also equivalent to the exactness of the sequence 0 −→ UG1(K ) −→ UG2(K )
( f̃U )−→

UG3(K ) −→ 0. In characteristic 0, one direction follows from the exactness of the ∂

functor on groups with a D-structure. For the other direction, suppose that the sequence

of the (UGi )
∂(K ) is exact. For each i , U ∂

Gi
(K ) has transcendence degree equal to the

dimension of the algebraic group UGi (Fact 5.3). It follows that dim UG1 + dim UG3 =
dim UG2 (by additivity of the transcendence degree). Being vector groups, the sequence

of the UGi is exact. In characteristic p, this is a direct consequence of Lemmas 5.14

and 5.15.

We can now give a uniform proof of the main result which relates exactness of the ]

functor to questions of descent, restricted, in char. p to the class of ordinary semiabelian

varieties. It is the uniform version of Proposition 4.12.
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Proposition 5.21. Let 0→ G1 → G2 → G3 → 0 be an exact sequence of (ordinary in

char. p) semiabelian varieties defined over K . Suppose that G1 and G3 descend to the

constants of K .

Then the sequence 0→ G]
1 → G]

2 → G]
3 → 0 remains exact if and only if G2 also

descends to the constants.

Proof. Without loss of generality, we can suppose that G1 is a semiabelian subvariety of

G2, and that G1 = (G ′1)K and G3 = (G ′3)K , where G ′1 and G ′3 are semiabelian varieties

over C, the field of constants of K .

If G2 descends to the constants, then, up to isomorphism, we can suppose that G2 =
(G ′2)K for some G ′2 over the constants, so, for every i , Gi

] = G ′i (C). And then G1(K )∩
G]

2 = G1(K )∩G2(C) = G1(C) = G]
1.

For the converse, suppose that 0→ G1
](K )→ G2

](K )→ G3
](K )→ 0 is exact.

By Proposition 5.20, 0→ UG1(K )→ UG2(K )→ UG3(K )→ 0 is also exact. We know

that (see Fact 5.7 in characteristic 0 and Proposition 5.18 in characteristic p), as G1
and G3 descend to the constants, UG1(K ) = W1(K ) and UG3(K ) = W3(K ). Consider the

dimensions, as vector spaces in characteristic 0 or as free Zp-modules in characteristic

p, of the UGi (K ). By exactness, dim(UG2(K )) = dim(UG1(K ))+ dim(UG3(K )). But we

also have that dim W2(K ) = dim W1(K )+ dim W3(K ) (this follows from exactness of the

functor G 7→ G̃, which is clear in characteristic p, and proved in Appendix B for

characteristic 0). So dim UG2(K ) = dim W2(K ), and hence UG2(K ) = W2(K ); that is, again

by Fact 5.7 in characteristic 0 and Proposition 5.18 in characteristic p, G2 descends to

the constants.

Hence we obtain in arbitrary characteristic the analogue of Corollary 4.13, with the

same proof.

Corollary 5.22. For any ordinary abelian variety A defined over the constants of K , there

exists an exact sequence over K ,

0 −→ Gm −→ H −→ AK −→ 0,

such that

0 −→ G]m −→ H ] −→ (AK )
] −→ 0

is not exact.

We have given some examples of nonexactness in characteristic p in § 4.3, even

for abelian varieties. In characteristic 0, the situation is completely different for

abelian varieties, as shown in the next Proposition, which is a direct consequence of

Proposition 5.20.

Proposition 5.23 (Characteristic 0). Let 0 −→ A −→ B −→ C −→ 0 be an exact

sequence of abelian varieties over K . Then the induced sequence 0 −→ A] −→ B] −→
C] −→ 0 is also exact.

Proof. By Poincaré complete reducibility, A×C is isogenous to B, inducing an isogeny

of Ã×C = Ã× C̃ with B̃. As this is also an isogeny of D-groups, it induces an isogeny
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between UA×C = UA×UC and UB . As these are vector groups, it follows that the induced

sequence 0 −→ UA −→ UB −→ UC −→ 0 is exact. Hence, by Proposition 5.20, so is

0 −→ A] −→ B] −→ C] −→ 0.

6. Additional remarks and questions

(1) In characteristic p, the counterexamples to exactness of the induced ] sequence

arise from the following situation: we have two connected commutative definable

groups G1 < G2 which are not divisible. We consider D2, the biggest divisible

subgroup (which is infinitely definable) of G2. The counterexamples are exactly the

cases when G1 ∩ D2 is not divisible. One can ask the same question also for other

classes of groups, in particular for commutative algebraic groups. Given G1 < G2
two commutative connected algebraic groups defined over some algebraically closed

field K of characteristic p, consider D < G2, the biggest divisible subgroup of G2.

It is easy to check that D is a closed subgroup of G2, also defined over K .

Using the characterizations of the groups p∞G(K ), given in terms of the Weil

restrictions 5K/K pn G in [4], one can deduce easily from our examples that the same

phenomenon occurs for commutative algebraic groups.

(2) In previous drafts of this paper, we had mentioned an open question which we

found quite intriguing. Let A be an abelian variety defined over Fp(t), and let K0
denote the separable closure of Fp(t). We can consider A(K0) and p∞A(K0). As we

recalled in § 3, p∞A(K0) is the biggest divisible subgroup of A(K0), and it contains

all the torsion of A which is prime to p. The question was whether p∞A(K0) could

contain any nontorsion element. Note that, if A is defined over K0
p∞ = Fp, then

p∞A(K0) = A(Fp), where indeed every element is torsion. Note also that, from the

beginning of § 3, in characteristic p, when dealing with A] = p∞A(K ), we suppose

that K is ω1-saturated, which ensures that A] contains elements which are not

torsion. This question was answered in some particular cases in [2], and in full

generality by D. Rössler, who showed in [32] that p∞A(K0) contains only torsion

points.

In characteristic 0 there are results along these lines, sometimes going under

the expression ‘Manin’s theorem of the kernel’. A formal statement and proof

(depending on results of Manin, Chai and others) appears in [6] (Corollary K.3 of

the Appendix), and says that, if A is an abelian variety over the algebraic closure

K0 say of C(t), equipped with a derivation with field of constants C, and A has

C-trace 0, then A](K0) is precisely the group of torsion points of A. This, together

with the fact (see [6], § 6 and [22], Lemma 2.2) that A](K0) = A](K0
di f f ), shows

that A](K0
di f f ) is the group of torsion points of A.

A. Appendix

Here is a proof of Fact 2.3. Let G and H be two connected algebraic groups defined over K ,

and let f be a dominant separable homomorphism from G to H (equivalently a surjective

separable homomorphism from G(K ) to H(K )). Then f takes G(K ) surjectively onto

H(K ).
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Proof. Note first that we can suppose without loss of generality that K is sufficiently

saturated. Let K0 be a small field over which everything is defined. Let h ∈ H(K )
be a generic point of H over K0 (in the sense of algebraic geometry). As f is

dominant, there is some generic g of G(K ) such that f (g) = h. Separability of f means

that K0(g) is a separable extension of K0(h), and hence is contained in a separable

closure of K0(h)(a1, . . . , an) for some ai which are algebraically independent over K0(h).
Choosing, by saturation of K , b1, . . . , bn ∈ K , algebraically independent over K0(h), and

an isomorphism taking the separable closure of K0(h)(a1, . . . , an) to the separable closure

of K0(h)(b1, . . . , bn), we find g′ ∈ G(K ) such that f (g′) = h.

B. Appendix

In this appendix, we give a detailed proof of the fact used in Lemma 5.19, namely that the

functor ‘universal extension’, on the category of semiabelian varieties in characteristic 0,

is exact. As we could not find any references for this fact, which is possibly well known,

we give the details here, thanks to the help of D. Bertrand. We refer to [5] for discussion

about related questions. Note also that the point of view of rigidified extensions used in

[23] should give this result more directly, but we keep here a point of view which model

theorists are probably more familiar with.

Everything here is over an algebraically closed field K of characteristic 0, and every

algebraic group is commutative.

Recall that the universal extension of an algebraic group A by a vector group (when it

exists) is an extension

0→ WA → Ã
πA→ A→ 0,

where WA is a vector group, characterized by the following universal property: for every

extension f : G → A of A by a vector group, there exists a unique homomorphism of

algebraic groups g : Ã→ G such that πA = f ◦ g.

It follows from [31] that abelian varieties admit such universal extension. If S is a

semiabelian variety, with abelian part A, S admits a universal extension by a vector

group, which is given by S̃ = S×A Ã (see [6]); note that WS = WA.

We should now explain how ˜ is defined as a functor on the category of semiabelian

varieties.

First, recall some notation and constructions from [34], Chapter 7. For algebraic groups

A and B, Ext(A, B) is the set of extensions 0→ B → C → A→ 0 of A by B, up to

isomorphism of extensions. It is equipped with a structure of a group.

If C ∈ Ext(A, B), and g : B → B ′, g∗(C) is the unique element C ′ ∈ Ext(A, B ′) such

that there is some G : C → C ′ such that the following diagram commutes (actually it

does not depend only on C , but on C as an extension of A by B):

0 B C A 0

0 B ′ C ′ A 0

π

g G id
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Note that such a G does not need to be unique. By diagram chasing, we see that G ′ :
C → C ′ satisfies the same property as G if and only if it can be written as G ′ = G+1 ◦π
for some 1 ∈ Hom(A, B ′).

Similarly, if C ∈ Ext(A, B), and f : A′→ A, f ∗(C) is the unique element C ′ ∈
Ext(A′, B) such that there is some F : C ′→ C such that the following diagram commutes:

0 B C A 0

0 B C ′ A′ 0

π

id F f

As before, F ′ : C ′→ C satisfies the same property as F if and only if F ′ = F +1 ◦π for

some 1 ∈ Hom(A′, B).
We can give an explicit description of f ∗(C): it is (isomorphic to) C ×A A′, viewed

as an extension of A′ via the second projection, and with map to C given by the first

projection.

An important result is Proposition 2 of Chapter 7 in [34]. An exact sequence 0→
A1

f→ A2
g→ A3 → 0 and an algebraic group H induce an exact sequence (*):

0 → Hom(A3, H)
·◦g→ Hom(A2, H)

·◦ f→ Hom(A1, H)
d→ Ext(A3, H)

g∗→ Ext(A2, H)
f ∗→ Ext(A1, H),

where d(φ) = φ∗(A2) ∈ Ext(A3, H) for φ ∈ Hom(A1, H).
Note that in the following situation

0 WA Ã A 0

0 W G A 0

πA

F id

where A is a semiabelian variety, G an extension of A by a vector group W , and F
given by the universal property, F must map the unipotent part WA of Ã into the

unipotent part W of G. Hence, by definition, the restriction FW : WA → W is such that

G = (FW )∗( Ã). Furthermore, since Hom(A,W ) = 0, FW completely determines F . Hence

finding F as in the universal property is equivalent to finding the unique f : WA → W
such that f∗( Ã) = G.

We will now use this characterization in order to build f̃ : Ã→ B̃ for f : A→
B an homomorphism of semiabelian varieties. For such an f , define T f as the

unique T f : WA → WB such that (T f )∗( Ã) = f ∗(B̃). Because of the definitions, we get

homomorphisms G : Ã→ (T f )∗( Ã) and F : f ∗(B̃)→ B̃ making the following diagram

commutative:

0 WB B̃ B 0

0 WB f ∗(B̃) = (T f )∗( Ã) A 0

0 WA Ã A 0

πB

id F f

πA

T f G id
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Now we define f̃ = F ◦G; it makes the following diagram commutative:

0 WB B̃ B 0

0 WB Ã A 0

πB

πA

T f f̃ f

and it is the unique such (once again using that Hom(A,WB) = 0).

With these characterizations, it is easy to show that, for homomorphisms of semiabelian

varieties A
f→ B

g→ C , g̃ f = g̃ f̃ : the calculation (g f )∗(C̃) = f ∗g∗(C̃) = f ∗(T g)∗(B̃) =
(T g)∗ f ∗(B̃) = (T g)∗(T f )∗( Ã) = (T gT f )∗( Ã) shows that T (g f ) = T gT f , and the result

follows (the basic results that we use here about f ∗ and g∗ can be found in [31] or [34]).

Now we prove exactness.

We will use the natural identification of WA with the dual of Ext(A,Ga). More precisely,

if A is an abelian variety, the map

Hom(WA,Ga) → Ext(A,Ga)

φ 7→ φ∗ Ã

is an isomorphism (see [31], Prop. 11).

The same result is valid for a semiabelian variety 0→ T → S
f→ A→ 0 instead of

A. Indeed, since Hom(T,Ga) = Ext(T,Ga) = 0, it follows from the exact sequence (*)

that f ∗ : Ext(A,Ga)→ Ext(S,Ga) is an isomorphism. But, by construction, S̃ = f ∗ Ã ∈
Ext(S,WA), and, for φ ∈ Hom(WA,Ga), φ∗ S̃ = φ∗ f ∗ Ã = f ∗φ∗ Ã; hence the result comes

from the case of abelian varieties.

Claim B.1. For f : A→ B an homomorphism of semiabelian varieties, the following

diagram commutes:

Hom(WA,Ga) Ext(A,Ga)

Hom(WB,Ga) Ext(B,Ga)

≃

≃

· ◦ T f f ∗

Indeed, for φ ∈ Hom(WB,Ga), (φ ◦ T f )∗ Ã = φ∗(T f )∗ Ã = φ∗ f ∗ B̃ = f ∗φ∗ B̃.

Now we consider an exact sequence of semiabelian varieties

0→ A
f→ B

g→ C → 0.

Claim B.2. The induced sequence is exact:

0→ Ext(C,Ga)
g∗→ Ext(B,Ga)

f ∗→ Ext(A,Ga)→ 0.
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We use the exact sequence (*) and the fact that Hom(A,Ga) = 0 to get the exactness

on the left and on the middle. For the surjectivity, we just have to use the dimensions and

connectedness of these groups, since the dimension of Ext(A,Ga) equals the dimension

of the abelian part of A.

Proposition B.3. The induced sequence is exact:

0→ Ã
f̃→ B̃

g̃→ C̃ → 0.

Proof. In the following commutative diagram

0 WA WB WC 0

0 Ã B̃ C̃ 0

0 A B C 0

0 0 0

0 0 0

T f T g

f̃ g̃

f g

the columns and the bottom row are exact. The top row is exact by the two claims and

duality. It follows that the middle row is exact.
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14. M. M. Erimbetov, Complete theories with 1-cardinal formulas, Algebra Logika 14 (1975),

245–257.

15. A. Grothendieck and M. Raynaud, Revêtements étales et groupe fondamental, in

Séminaire de géométrie algébrique du Bois Marie (SGA1), 1960–61, Lecture Notes in

Mathematics, Volume 224 (Springer-Verlag, 1971).

16. E. Hrushovski, The Mordell–Lang conjecture for function fields, J. Amer. Math. Soc. 9

(1996), 667–690.

17. P. Kowalski and A. Pillay, Quantifier elimination for algebraic D-groups, Trans. Amer.

Math. Soc. 358 (2006), 167–181.

18. P. Kowalski and A. Pillay, On the isotriviality of projective iterative ∂-varieties,

J. Pure Appl. Algebra 216 (2012), 20–37.

19. S. Lang, Abelian Varieties (Interscience, London, 1959).

20. D. Marker, Manin kernels, Quaderni Math., Volume 6, pp. 1–21 (Napoli, 2000).

21. D. Marker, Model theory of differential fields, in Model Theory of Fields, second edition,

Lecture Notes in Logic (ASL, AK Peters, 2006).

22. D. Marker and A. Pillay, Differential Galois Theory III: Some inverse problems,

Illinois J. Math. 41 (1997), 453–461.

23. B. Mazur and W. Messing, Universal extensions and one dimensional crystalline

cohomology, Lecture Notes in Mathematics, Volume 370 (Springer, 1974).

24. J. S. Milne, Etale cohomology (Princeton University Press, 1980).

25. R. Moosa and T. Scanlon, Jet and prolongations spaces, J. Inst. Math. Jussieu 9

(2010), 391–430.

26. D. Mumford, Abelian varieties (Oxford University Press, 1985). Published for the Tata

Institute of Fundamental Research, Bombay.

27. D. Mumford and J. Fogarty, Geometric invariant theory, 2nd enlarged edition

(Springer, 1982).

28. A. Pillay, Differential algebraic groups and the number of countable differentially closed

fields, in Model Theory of Fields, cited above.

29. B. Poizat, Stable groups, Mathematical Surveys and Monographs (American

Mathematical Society, 2001).

30. M. Rosenlicht, Some basic theorems on algebraic groups, Amer. J. Math. 76 (1956),

401–443.

31. M. Rosenlicht, Extensions of vector groups by abelian varieties, Amer. J. Math. 80

(1958), 685–714.

https://doi.org/10.1017/S147474801400022X Published online by Cambridge University Press

https://doi.org/10.1017/S147474801400022X


Semiabelian varieties over separably closed fields 69

32. D. Rössler, Infinitely p-divisible points on abelian varieties defined over function fields

of characteristic p > 0, Notre Dame J. Formal Logic 54 (2013), 579–589.
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