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W. Feit [1], N. Ito [2] and M. Suzuki [3] have determined all doubly
transitive groups with the property that only the identity fixes three sym-

xbols. It is of interest to the theory of projective planes to determine whether
any of these groups contain a sharply doubly transitive subset (see Defini-
tion 1). It is found that if such a group G contains such a subset R then R
is a normal subgroup of G, i.e. R is a doubly transitive normal subgroup of
G in which only the identity fixes two symbols.

DEFINITION 1. If R is a set of permutations on a set 27 of n symbols,
then R is said to be sharply doubly transitive on 27 if the identity 1 is a mem-
ber of R, R contains n(n— 1) elements and R is doubly transitive on 27.

It should be noted that the definition implies that if (a, b) and (c, d)
are two pairs of symbols of 27 then there is exactly one reR with the prop-
erties r(a) = c, r(b) = d.

In the sequel, G is to be a doubly transitive group on a set 27 of n elements,
only the identity of G is to fix three symbols of 27 and G is to contain a sharp-

, fy doubly transitive subset R.
It is clear that the subset Ka of R which consists of those elements which

fix a e 27 contains w—1 elements. Also the subset R* of R which consists of
those elements of R which fix no symbol of 27 together with the identity
contains n elements.

Let Ga be the subgroup of G consisting of those elements of G which fix
the symbol a e 27.

LEMMA 1. / / a e27, then Ka is a subgroup of G and consists of all those
elements of G which fix a alone, together with the identity.

PROOF. Consider Ga as a group of permutations on the set 27' = 27—{a}.
Ga is transitive and only the identity fixes two symbols of 27'. Hence, by
Frobenius' Theorem, Ga contains n—2 elements which fix no symbol of
£', and these, together with the identity, form a normal subgroup of Ha.
It is clear that this subgroup consists of the elements of Ka.

LEMMA 2. / / r1, r2 e R*, then either rt = r2 or r^r2 fixes no symbol of 27.
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LEMMA 3. / / rlt r2eR, then either rx = r% or both r^r2 and rxr2
l fix

at most one symbol of Z.

LEMMA 4. Suppose a,beZ and a^b. If kaeKa, then there exists
exactly one kb sKb with the property: kakb fixes no symbol of Z.

PROOF. Suppose c eZ, c=£ a, c=£b. Then there exists kb e K with
the property k'1^) = kb(c). i.e. kakb(c) = c. If kakb{c) = kak'b{c) = c,
then kb(c) = k'b(c) so that kb = k'b. Hence there are n—2 elements kb oiKb

with the property kakb(c) = c for some c in Z.
Kb contains n— 1 elements which proves the theorem.

LEMMA 5. If aeZ then R = R*Ka.

PROOF. We show firstly that if r1k1 = r2k2, rteR*, k{eKa then
f\ = *%, « i = k2.

If rxkr = r2k2> then r^1r2 = k2k^. Now k2k^ eKa so that r^r2 fixes
a. Hence, by lemma 2, rx = r2 and therefore kx = k2.

Hence each element of R*Ka is represented uniquely in the form rk,
r e R*, k eKa, so that R*Ka contains «(«—1) elements.

R*QR*Ka asleKa.
If b eZ, it follows from lemma 3 that R*Ka contains n—\ elements

fixing b and no other symbol. Hence, by lemma 1, Kb Q R*Ka.
Hence R Q R*Ka and even R = R*Ka as both sets contain n(n — 1)

elements.

LEMMA 6. If a, b e Z, then KaKb Q R.

PROOF. If kakb eKaKb and kakb fixes a symbol of Z, then, by lemma
3, kakb fixes exactly one symbol of Z so that, by lemma 1, kakbe Kc for
some ceZ. Hence kakbeR.

Now, if ka is given, there exists unique kb sKb such that kakb fixes no
symbol of Z. But R = R*Kb so that there exists hb e Kb and r e R* with the
property ka = rh^1. Then r = kahb so that, because of the uniqueness of
kb we have hb = kb. Thus kakb = r e R.

Hence KaKb Q R.

LEMMA 7. / / aeZ, then RKa = R.

PROOF. R = 2?*Xa so that RKa = R*KaKa = R*Ka (as #„ is a sub-
group) = R.

LEMMA 8. If a=£b, r e R, r $KaKb, then r~xKar = Kb.

PROOF. If reKaKh, say r = kakb, then r^Kar = k^K^^Kb.
But «—1 elements r of R have the property r~xKar = Kb and .£„/£(

contains («— I)2 elements. The result follows.
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LEMMA 9. / / a, b, c are three different elements of E and r e R, then either
reKaKb or reKaKe.

PROOF. If r$KaKb and r <£KaKe, then by lemma 8, r~xKar = Kb and
r~xKar = Kc which is a contradiction.

LEMMA 10. / / a, b, c are three different elements of E, then R = KaKbKe.

PROOF. By lemma 6 KaKb Q R. Thus KaKbKc g RKe = R by lemma 7.
If r e R, then by lemma 9 either reKaKb QKaKbKe or reKaKc Q

KaKbKc.
Hence R = KaKbKt.
We can now prove

THEOREM 1. If G is a doubly transitive group on a setE, only the iden-
tity fixes three symbols of E, and G contains a sharply doubly transitive subset
R, then R is a normal subgroup of G.

PROOF. If E contains less than three symbols the theorem is obvious.
Suppose E contains three or more symbols and that a, b, c eE are all

different.
Then, by lemma 10, R = KaKiKe. Therefore

R2 = K aKbK CKaKbK c

Q RKcKaKbKc by lemma 6
= R by repeated application of lemma 7.

This proves the theorem.
The following application to projective planes is noted.

THEOREM 2. Let R be a ternary ring of a projective plane of order n.
Then the elements of R may be regarded as a set of permutations on a set E
of n elements and as such they form a sharply doubly transitive set. Let G{R)
be the permutation group generated by R. Then either G(R) = R or G{R)
'.ontains a permutation, not the identity, which fixes three symbols of E.
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