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Abstract. Square grid circle patterns with prescribed intersection angles,
mimicking holomorphic maps zγ and log(z) are studied. It is shown that the corres-
ponding circle patterns are embedded and described by special separatrix solutions of
discrete Painlevé and Riccati equations. The general solution of this Riccati equation is
expressed in terms of the hypergeometric function. Global properties of these solutions,
as well as of the discrete zγ and log(z), are established.
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1. Introduction. The theory of circle patterns is a rich and fascinating area having
its origin in the classical theory of circle packings. Its fast development in recent years
has been caused by the mutual influence and interplay of ideas and concepts from
discrete geometry, complex analysis and the theory of integrable systems.

Progress in this area of investigation was initiated by Thurston’s idea [15, 20] about
approximating the Riemann mapping by circle packings. Classical circle packings
comprised of disjoint open disks were later generalized to circle patterns where the
disks may overlap (see for example [13]). Different underlying combinatorics were
considered. Schramm introduced a class of circle patterns with the combinatorics of
the square grid [19]; hexagonal circle patterns were studied in [6] and [7].

The striking analogy between circle patterns and classical analytic function theory
is underlined by such facts as the uniformization theorem concerning circle packing
realizations of cell complexes of a prescribed combinatorics [4], the discrete maximum
principle, Schwarz’s lemma [17], rigidity properties [13, 15], and the discrete Dirichlet
principle [19].

The convergence of discrete conformal maps represented by circle packings was
proven by Rodin and Sullivan [18]. For prescribed regular combinatorics this result was
refined. He and Schramm [12] showed that for hexagonal packings the convergence is
C∞. Uniform convergence for circle patterns with the combinatorics of the square grid
and orthogonal neighboring circles was established by Schramm [19].

The approximation issue naturally leads to the question about analogues to
standard holomorphic functions. Computer experiments give evidence for their
existence [11, 14]. However not very much is known. For circle packings with hexagonal
combinatorics the only explicitly described examples are Doyle spirals [3, 10] which are
discrete analogues of exponential maps and conformally symmetric packings, which
are analogues of a quotient of Airy functions [5]. For patterns with overlapping circles
more explicit examples are known: discrete versions of exp(z), erf(z) [19], zγ , log(z)
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2 S. I. AGAFONOV

[2] are constructed for patterns with underlying combinatorics of the square grid; zγ ,
log(z) are also described for hexagonal patterns [6, 7].

It turns out that an effective approach to the description of circle patterns with
overlapping circles is given by the theory of integrable systems (see [6, 7]). For example,
Schramm’s circle patterns are governed by a difference equation which is the stationary
Hirota equation (see [19, 21]). This approach proved to be especially useful for the
construction of discrete zγ and log(z) in [2, 6, 7] with the aid of an isomonodromy
problem. Another connection with the theory of discrete integrable equations was
revealed in [1, 2]: embedded circle patterns are described by special solutions of discrete
Painlevé II equations, thus giving a geometrical interpretation thereof.

This research was motivated by the attempt to carry the results of [1, 2] over to
square grid circle patterns with prescribed intersection angles giving Schramm patterns
as a special case. Namely, we prove that such circle patterns mimicking zγ and log(z) are
embedded. This turns out to be not straightforward and leads to assymptotic analysis
of solutions to discrete Riccati equation. As the Riccati differential equation possesses
the Painlevé property we are tempted to conclude that circle patterns are described
by discrete equations with the Painlevé property though there is no satisfactory
generalization thereof to discrete equations.

We use the following definition for square grid circle patterns, which is slightly
modified version of one from [19].

DEFINITION 1. Let G be a subgraph of the 1-skeleton of the cell complex
with vertices Z + iZ = Z2 and 0 < α < π . A square grid circle pattern for G with
intersection angles α is an indexed collection of circles on the complex plane

{Cz : z ∈ V (G), Cz ∈ C}

that satisfy:

1) if z, z + i ∈ V (G) then the intersection angle of Cz and Cz+i is α,
2) if z, z + 1 ∈ V (G) then the intersection angle of Cz and Cz+1 is π − α,
3) if z, z + 1 + i ∈ V (G) (or z, z − 1 + i ∈ V (G)) then the disks, defined by Cz and

Cz+1+i (Cz and Cz−1+i respectively) are tangent and disjoint,
4) if z, z1, z2 ∈ V (G), |z1 − z2| = √

2, |z − z1| = |z − z2| = 1 (i.e. Cz1 , Cz2 are
tangent and Cz intersects Cz1 and Cz2 ) and z2 = z + i(z1 − z) (i.e. z2 is one
step counterclockwise from z1), then the circular order of the triplet of points
Cz ∩ Cz1 − Cz2 , Cz1 ∩ Cz2 , Cz ∩ Cz2 − Cz1 agrees with the orientation of Cz.

The intersection angle is the angle at the corner of the disc intersection domain
(Fig. 1).

To visualize the analogy between Schramm’s circle patterns and conformal maps,
consider regular patterns composed of unit circles and suppose that the radii are being
deformed to preserve the intersection angles of neighboring circles and the tangency of
half-neighboring ones. Discrete maps taking the intersection points and the centers of
the unit circles of the standard regular patterns to the respective points of the deformed
patterns mimic classical holomorphic functions, the deformed radii being analogous
to | f ′(z)| (see Fig. 2).

In section 2 we give a definition of discrete Zγ as a solution to some integrable
equation subject to a non-autonomous constraint. Its geometrical properties of
immersion and embeddedness are expressed in terms of solutions for radii of
corresponding circle patterns.
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α

Figure 1. Circles intersection angle

f

Figure 2. Schramm type circle patterns as a discrete conformal map. The discrete
version of the holomorphic mapping z3/2. The case tan α = 3

For this solution to be positive it is necessary that some discrete Riccati equation
has a positive solution. This equation is studied in section 3 where its general solution
is expressed through the hypergeometric function.

Section 4 completes the proof of embeddednes, discrete equations of Painlevé type
being the main tool. Possible generalizations for non-regular combinatorics and for
non-circular patterns are discussed in section 5.

2. Discrete Zγ and square grid circle patterns of Schramm type.

DEFINITION 2. The discrete map Zγ , 0 < γ < 2 is the solution f : Z2
+ → C of

q( fn,m, fn+1,m, fn+1,m+1, fn,m+1) = e−2iα (1)

γfn,m = 2n
( fn+1,m − fn,m)( fn,m − fn−1,m)

fn+1,m − fn−1,m
+ 2m

( fn,m+1 − fn,m)( fn,m − fn,m−1)
fn,m+1 − fn,m−1

,

(2)
with 0 < α < π and the initial conditions

f1,0 = 1, f0,1 = eiγα, (3)
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where q stands for the cross-ratio of elementary quadrilaterals:

q( f1, f2, f3, f4) = ( f1 − f2)( f3 − f4)
( f2 − f3)( f4 − f1)

.

This definition can be justified by the following properties:
� if one thinks of f as defined on the vertices of the cell complex with diamond-

shaped faces (see Fig. 2) then (1) means that f respects the cross-ratios of the faces and
therefore is “locally conformal”,

� the asymptotics of (2) as n, m → ∞ suggest that f approximates zγ .

REMARK. Equation (1) with α = π/2 was used in [8] to define discrete
conformal maps. The motivation was that f maps vertices of squares into vertices
of “conformal squares”. Consider the surface of these conformal squares glued along
the corresponding edges. This surface is locally flat but can have cone-like singularities
at vertices. If the map is an immersion then the corresponding surface does not have
such singularities. Therefore it is more consistent to define as discrete conformal an
immersion map on the vertices of the cell decomposition of C which preserves cross-
ratios of its faces.

PROPOSITION 1. [2, 7] Constraint (2) is compatible with (1).

Compatibility is understood as solvability of some Cauchy problem. In particular
a solution to (1), (2) in the subset Z2

+ is uniquely determined by its values f1,0, f0,1.
Indeed, constraint (2) gives f0,0 = 0 and defines z along the coordinate axis (n, 0), (0, m)
as a second-order difference equation. Then all other fk,m with (k, m) ∈ Z2

+ are
calculated through cross-ratios (1).

In this paper the more general initial conditions are considered:

f1,0 = 1, f0,1 = ei β (4)

with real β. For α = π/2 this map was studied in detail in [1, 2]. It defines a particular
circle pattern with square grid combinatorics introduced by Schramm in [19]. For any
0 < α < π the map is a generalization of Schramm circle patterns.

In what follows we say that the triangle (z1, z2, z3) has positive (negative) orienta-
tion if

z3 − z1

z2 − z1
=

∣∣∣∣z3 − z1

z2 − z1

∣∣∣∣ eiφ with 0 ≤ φ ≤ π (−π < φ < 0).

LEMMA 1. Let q(z1, z2, z3, z4) = e−2iα, 0 < α < π .
� If |z1 − z2| = |z1 − z4| and the triangle (z1, z2, z4) has positive orientation then

|z3 − z2| = |z3 − z4| and the angle between [z1, z2] and [z2, z3] is (π − α).
� If |z1 − z2| = |z1 − z4| and the triangle (z1, z2, z4) has negative orientation then

|z3 − z2| = |z3 − z4| and the angle between [z1, z2] and [z2, z3] is α.
� If the angle between [z1, z2] and [z1, z4] is α and the triangle (z1, z2, z4) has positive

orientation then |z3 − z2| = |z1 − z2| and |z3 − z4| = |z4 − z1|.
� If the angle between [z1, z2] and [z1, z4] is (π − α) and the triangle (z1, z2, z4) has

negative orientation then |z3 − z2| = |z1 − z2| and |z3 − z4| = |z4 − z1|.
Proof. straightforward. �
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DISCRETE RICCATI EQUATION 5

PROPOSITION 2. All the elementary quadrilaterals ( fn,m, fn+1,m, fn+1,m+1, fn,m+1) for
the solution of (1), (2) with initial (4) are of kite form: all edges at the vertex fn,m with
n + m = 0 (mod 2) are of the same length. Moreover, each elementary quadrilateral has
one of the forms enumerated in Lemma 1.

Proof. Given initial f0,1 and f1,0 constraint (2) allows one to compute fn,0 and f0,m

for all n, m ≥ 1. Induction gives the following equidistant property:

f2n,0 − f2n−1,0 = f2n+1,0 − f2n,0, f0,2m − f0,2m−1 = f0,2m+1 − f0,2m (5)

for any n ≥ 1, m ≥ 1. Now using (1) one can successively compute fn,m for any n, m ∈ N.
Lemma 1 completes the proof by induction . �

Proposition 2 implies that for n + m = 0 (mod 2) the points fn±1,m,fn,m±1 lie on
the circle with center at fn,m. For most β (namely for β 
= α) the behavior of the circle
pattern thus obtained is quite irregular: interiors of different elementary quadrilaterals
intersect.

DEFINITION 3. A discrete map fn,m is called an immersion if interiors of adjacent
elementary quadrilaterals ( fn,m, fn+1,m, fn+1,m+1, fn,m+1) are disjoint.

Consider the sublattice {n, m : n + m = 0 (mod 2)} and denote by V its quadrant

V = {z = N + iM : N, M ∈ Z2, M ≥ |N|},

where

N = (n − m)/2, M = (n + m)/2.

We use complex labels z = N + iM for this sublattice. Denote by C(z) the circle of
radius

Rz = |fn,m − fn+1,m| = |fn,m − fn,m+1| = |fn,m − fn−1,m| = |fn,m − fn,m−1| (6)

with center at fN+M,M−N = fn,m.

Let {C(z)}, z ∈ V be a square grid circle pattern on the complex plane. Define
fn,m : Z2

+ → C as follows:
a) if n + m = 0 (mod 2) then fn,m is the center of C( n − m

2 + i n + m
2 ),

b) if n + m = 1 (mod 2) then fn,m := C( n − m − 1
2 + i n + m − 1

2 ) ∩ C( n − m + 1
2 +

i n + m + 1
2 ) = C( n − m + 1

2 + i n + m − 1
2 ) ∩ C( n − m − 1

2 + i n + m + 1
2 ). Since all elementary quad-

rilaterals ( fn,m, fn+1,m, fn+1,m+1, fn,m+1) are of kite form equation (1) is satisfied
automatically. In what follows the function fn,m, defined as above by a) and b) is
called a discrete map corresponding to the circle pattern {C(z)} .

PROPOSITION 3. Let the solution of (1), (2)with initial conditions (4) be an immersion,

then R(z) defined by (6) satisfies the following equations:

−MRzRz+1 + (N + 1)Rz+1Rz+1+i + (M + 1)Rz+1+iRz+i − NRz+iRz

= γ

2
(Rz + Rz+1+i)(Rz+1 + Rz+i) (7)

for z ∈ Vl := V ∪ {−N + i(N − 1)|N ∈ N} and
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Rz+1+i

Rz+1

fn,m

fn+1,m

Rz

Rz+i

fn,m+1

fn-1,m

fn-1,m-1
fn-2,m

fn-1,m+1

fn,m-1

fn,m

fn+1,m

fn+1,m-1

fn-1,m-1

fn,m-1

fn,m-2

fn+2,m
fn+1,m+1

Rz-i

Rz

Rz+i

Rz+1

Figure 3. Kite-quadrilaterals of circle pattern

(N + M)(Rz+i + Rz+1)
(
R2

z − Rz+1Rz−i + cos αRz(Rz−i − Rz+1)
)

+ (M − N)(Rz−i + Rz+1)
(
R2

z − Rz+1Rz+i + cos αRz(Rz+i − Rz+1)
) = 0, (8)

for z ∈ Vrint := V\{±N + iN|N ∈ N}.
Conversely let R(z) : V → R+ satisfy (7) for z ∈ Vl and (8) for z ∈ Vrint. Then R(z)

define a square grid circle patterns with intersection angles α, the corresponding discrete
map fn,m is an immersion and satisfies (1), (2).

Proof. A circle pattern is immersed if and only if all triangles ( fn,m, fn+1,m, fn,m+1)
of elementary quadrilaterals of the map fn,m have the same orientation (for brevity we
call it orientation of quadrilaterals). Suppose that the quadrilateral ( f0,0, f1,0, f1,1, f0,1)
has positive orientation. Let the circle pattern fn,m be an immersion. For n + m ≡
1 (mod 2) points fn,m, fn−1,m+1, fn−2,m, fn−1,m−1 lie on a circle with center at fn−1,m

and radius Rz, where z = (n − m − 1)/2 + i(n + m − 1)/2 (See the left part of Fig. 3).
Using equation (1) one can compute fn,m+1 and fn,m−1. Lemma 1 and proposition 2
imply that fn+1,m is in line with fn−1,m, fn,m and that the points fn,m+1, fn,m, fn,m−1 are
collinear. Denote by Rz+1, Rz+i the radii of the circle at fn,m−1 and fn,m+1 respectively and
Rz+1+i = Rz

( fn + 1,m − fn,m)
( fn,m − fn − 1,m) . Let (2) be satisfied at (n − 1, m). Then (2) at (n, m) is equivalent

to (7), Rz+1+i being positive iff the quadrilaterals ( fn,m, fn+1,m, fn+1,m+1, fn,m+1) and
( fn,m−1, fn+1,m−1, fn+1,m, fn,m) have positive orientation.

Similarly starting with (2) at (n, m − 1), where n + m ≡ 0 (mod 2) (see the
right part of Fig. 3) one can determine evolution of the cross-like figure formed
by fn,m−1, fn+1,m−1, fn,m, fn−1,m−1, fn,m−2 into fn+1,m, fn+2,m, fn+1,m+1, fn,m, fn+1,m−1.
Equation (2) at (n + 1, m) is equivalent to (7) and (8) at z = (n − m)/2 + i(n + m)/2.
Rz+1 is positive only for an immersed circle pattern.

Now let Rz be some positive solution to (7), (8). We can rescale it so that R0 = 1.
This solution is completely defined by R0, Ri. Consider solution fn,m of (1), (2) with
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initial data (4) where β is chosen so that the quadrilateral ( f0,0, f1,0, f1,1, f0,1) has positive
orientation and satisfies the conditions R0 = 1 = |f0,0 − f1,0| and Ri = |f1,1 − f1,0|. The
map fn,m defines circle pattern due to proposition 2. It can be uniquely computed from
these equations. To this end one has to resolve (7) with respect to Rz+i+1 and use it
to find fn+1,m from Rz+1+i = Rz( fn + 1,m − fn,m)

( fn,m − fn − 1,m
) and to resolve (8) for Rz+i to find fn+1,m+1

from Rz+i = Rz+1
( fn + 1,m + 1 − fn + 1,m)

( fn+1,m−fn+1,m−1) . One can reverse the argument used in the derivation
of (7), (8) to show that f satisfies (1), (2). Moreover, since Rz is positive, at each step
we get positively orientated quadrilaterals. �

Note that initial data (4) for fn,m imply initial data for Rz:

R0 = 1, Ri = sin β

2

sin
(
α − β

2

) . (9)

DEFINITION 4. A discrete map fn,m is called embedded if interiors of different
elementary quadrilaterals ( fn,m, fn+1,m, fn+1,m+1, fn,m+1) do not intersect.

THEOREM 1. If for a solution Rz of (7), (8) with γ 
= 1 and initial conditions (9) it
holds that

Rz > 0, (γ − 1)
(
R2

z − Rz+1Rz−i + cos αRz(Rz−i − Rz+1)
) ≥ 0 (10)

in Vint, then the corresponding discrete map is embedded.

The proof of this theorem for the case α = π/2 is given in [1]). For generic α it is
the same with obvious modifications.

3. Discrete Riccati equation and hypergeometric functions. Let rn and Rn be radii
of circles with centers at f2n,0, f2n+1,1 respectively (see Fig. 4).

f2n,0 f2n+2,0

f2n+1,1

Rn

rn+1

rn

Figure 4. Circles on the border
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8 S. I. AGAFONOV

Constraint (2) and property (5) give

rn+1 = 2n + γ

2(n + 1) − γ
rn.

From elementary geometric considerations one gets

Rn+1 = rn+1 − Rn cos α

Rn − rn+1 cos α
rn+1

Define

pn = Rn

rn
, gn(γ ) = 2n + γ

2(n + 1) − γ

and denote t = cos α for brevity. Now the equation for radii R, r takes the form:

pn+1 = gn(γ ) − tpn

pn − tgn(γ )
. (11)

REMARK. Equation (11) is a discrete version of the Riccati equation. This
nomenclature is motivated by the following properties:

� the cross-ratio of each four-tuple of its solutions is constant since pn+1 is a Möbius
transform of pn,

� the general solution is expressed in terms of the solution of some linear equation
(see this linearisation below).

Below we call (11) the d-Riccati equation.

THEOREM 2. The solution of the discrete Riccati equation (11) is positive for n ≥ 0
if and only if

p0 = sin γα

2

sin (2 − γ )α
2

. (12)

The proof is based on the closed form of the general solution of the d-Riccati
linearisation. It is linearised by the standard Ansatz

pn = yn+1

yn
+ tgn(γ ), (13)

which transforms it into

yn+2 + t(gn+1(γ ) + 1)yn+1 + (t2 − 1)gn(γ )yn = 0. (14)

One can guess that there is only one initial value p0 giving a positive d-Riccati solution
from the following consideration: gn(γ ) → 1 as n → ∞, and the general solution of
equation (14) with limit values of the coefficients is yn = c1(−1)n(1 + t)n + c2(1 − t)n.
So pn = yn+1

yn
+ tgn(γ ) → −1 for c1 
= 0. However c1, c2 define only asymptotics of a

solution. To relate it to initial values one needs some kind of connection formulas.
Fortunately it is possible to find the general solution to (14).
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DISCRETE RICCATI EQUATION 9

PROPOSITION 4. The general solution to (14) is

yn = �
(
n + 1

2

)
�

(
n + 1 − γ

2

)
(

c1λ
n+1−γ /2
1 F

(
3 − γ

2
,
γ − 1

2
,

1
2

− n, z1

)
(15)

+ c2λ
n+1−γ /2
2 F

(
3 − γ

2
,
γ − 1

2
,

1
2

− n, z2

))

where λ1 = −t − 1, λ2 = 1 − t, z1 = (t − 1)/2, z2 = −(1 + t)/2 and F stands for the
hypergeometric function.

Proof. Solutions are found by a slightly modified symbolic method (see [9] for the
method’s description). The substitution

yn = uxλ
x, x = n + 1 − γ /2 (16)

transforms (14) into

λ2(x + 1)xux+2 + 2t
(

x + γ + 1
2

)
xux+1 + (t2 − 1)(x + γ − 1)(x + 1)ux = 0. (17)

We are looking for a solution in the form

ux =
∞∑

m=−∞
amvx,m, (18)

where vx,m satisfies

(x + m)vx,m = vx,m+1, xvx+1,m = vx,m+1. (19)

REMARK. Note that the label m in (18) augments by 1 but is not necessarily
an integer and therefore vx,m is a straightforward generalization of x(m) =
(x + m − 1)(x + m − 2) . . . (x + 1)x playing the role of xm in the calculus of finite
differences. The general solution to (19) is expressed in terms of the �-function:

vx,m = c
�(x + m)

�(x)
(20)

The Stirling formula for large x

�(x) 

√

2πe−xxx− 1
2 (21)

gives the asymptotics for vx,m :

vx,m 
 cxm for x → ∞. (22)

Substituting (18) into (17), making use of (19) and collecting similar terms one
gets the following equation for the coefficients:

(λ2 + 2tλ + t2 − 1)am−2 + 2
(

1 + γ

2
− m

)
(tλ + t2 − 1)am−1

+ (t2 − 1)(1 − m)(γ − 1 − m)am = 0 (23)
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Choosing λ1 = −t − 1 or λ2 = 1 − t kills the term containing am−2. To make the
series (18) convergent we can use the freedom in m to truncate (18) on one side. The
choice m ∈ Z or m ∈ γ + Z leads to divergent series. For m ∈ γ + 1

2 + Z equation (23)
gives a γ + 1

2 +k = 0 for all non-negative integer k and

a γ+1
2 −k−1 = 1 − t2

tλ + t2 − 1

(
k − γ − 1

2

)(
k − 1 + γ − 1

2

)
2k

a γ + 1
2 −k (24)

where λ = λ1, λ2. Substitution of the solution of this recurrent relation in terms of the
�-functions and (20) yields

yx = λx
∞∑

k=1

(
1 − t2

2(tλ + t2 − 1)

)k
�

(
k − γ − 1

2

)
�

(
k − 1 + γ − 1

2

)
�

(
x + γ + 1

2 − k
)

�(k)�(x)
(25)

LEMMA 2. For both λ = −t − 1, 1 − t the series (25) converges for all x.

Proof of Lemma 2. Since z = 1 − t2

2(tλ + t2 − 1) = (t − 1)/2,−(1 + t)/2 for λ1, λ2

respectively and t = cos α < 1 the convergence of (25) depends on the behavior of
�(k − γ − 1

2 )�(k − 1+ γ − 1
2 )�(x + γ + 1

2 − k)
�(k) . Stirling’s formula (21) ensures that this expression is

bounded by ckφ(x,γ ) for some c and φ(x, γ ) which gives convergence. �
Series (25) is expressed in terms of hypergeometric functions:

yx = λx �
(
x + γ − 1

2

)
�

(
1 − γ − 1

2

)
�

(
γ − 1

2

)
�(x)

F
(

1 − γ − 1
2

,
γ − 1

2
, 1 −

(
x + γ − 1

2

)
, z

)

where

F
(

1 − γ − 1
2

,
γ − 1

2
, 1 −

(
x + γ − 1

2

)
, z

)
= 1 + z

(
1 − γ − 1

2

)(
γ − 1

2

)
(
1 − (

x + γ − 1
2

)) + · · ·

(26)

+ zk

[(
1 − γ − 1

2

)(
2 − γ − 1

2

) · · · (k − γ − 1
2

)][(
γ − 1

2

)(
1 + γ − 1

2

) · · · (k − 1 + γ − 1
2

)]
(
1 − (

x + γ − 1
2

)) · · · (k − (
x + γ − 1

2

)) + · · ·

Here the standard designation F(a, b, c, z) for the hypergeometric function as a solution
holomorphic at z = 0 for the equation

z(1 − z)Fzz + [c − (a + b + 1)z]Fz − abF = 0 (27)

is used.
Now we can complete the proof of Proposition 4. Due to linearity the general

solution of (14) is given by superposition of any two linearly independent solutions.
As was shown each summond in (15) satisfies the equation (14). To finish the proof
of Proposition 4 one has to show that the particular solutions with c1 = 0, c2 
= 0
and c1 
= 0, c2 = 0 are linearly independent, which follows from the following
Lemma. �

LEMMA 3. As n → ∞ function (15) has the asymtotics

yn 
 (n + 1 − γ /2)
γ − 1

2
(
c1λ

n+1−γ /2
1 + c2λ

n+1−γ /2
2

)
(28)
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Proof. For n → ∞ the series representation (26) gives F( 3 − γ

2 ,
γ − 1

2 , 1
2 − n, z1) 
 1.

Stirling’s formula (21) defines the asymptotics of the factor �(n + 1
2 )

�(n + 1 − γ

2 ) (compare with

(22)). �
Proof of Theorem 2: For positive pn it is necessary that c1 = 0. This follows from

asymptotics (28) substituted into (13). Let us define

s(z) = 1 + z

(
1 − γ − 1

2

)(
γ − 1

2

)
1
2

+ · · ·

+ zk

(
k − γ − 1

2

) · · · (1 − γ − 1
2

)(
γ − 1

2

)(
k − 1 + γ − 1

2

)
k!

(
k − 1

2

) · · · 1
2

· · · (29)

This is the hypergeometric function F( 3 − γ

2 ,
γ − 1

2 , 1
2 − n, z) with n = 0. A straight-

forward manipulation with series shows that

p0 = 1 + 2(γ − 1)
2 − γ

z + 4z(z − 1)
2 − γ

s′(z)
s(z)

(30)

where z = 1 + t
2 . Note that p0 as a function of z satisfies an ordinary differential

equation of first order since s′(z)
s(z) satisfies Riccati equation obtained by reduction of

(27). Computation shows that sin γ α

2

sin (2−γ )α
2

satisfies the same ODE. Since both expression

(30) and (12) are equal to 1 for z = 0 they coincide everywhere. �

COROLLARY 1. If there exists immersed fn,m satisfying (1), (2), (4) it is defined by
initial data (3).

4. Embedded circle patterns and discrete Painlevé equations. Let Rz be a solution
of (7) and (8) with initial condition (9). For z ∈ Vint define PN,M = Pz = Rz+1

Rz−i
, QN,M =

Qz = Rz
Rz−i

. Then (8) and (7) are rewritten as follows

QN,M+1 = (N − M)QN,M(1 + PN,M)(QN,M − PN,M cos α) − (M + N)PN,MSN,M

QN,M [(M + N)SN,M − (M − N)(1 + PN,M)(PN,M − QN,M cos α)]
,

(31)

PN,M+1 = (2M + γ )PN,M + (2N + γ )QN,MQN,M+1

(2(N + 1) − γ )PN,M + (2(M + 1) − γ )QN,MQN,M+1
, (32)

where

SN,M = Q2
N,M − PN,M + QN,M(1 − PN,M) cos α.

Property (10) for (31), (32) reads as

(γ − 1)
(
Q2

N,M − PN,M + QN,M(1 − PN,M) cos α
) ≥ 0, QN,M > 0, PN,M > 0. (33)

Equations (31), (32) can be considered as a dynamical system in the variable M.

THEOREM 3. There exists a > 0 such that (10) holds for the solution Rz of (7), (8)
with initial conditions

R0 = 1, Ri = a. (34)
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Figure 5. The case cos α = −1/2

Proof. Almost literally that for the case α = π/2 [1]. Due to the following Lemma
it is sufficient to prove (10) only for 0 < γ < 1.

LEMMA 4. If Rz is a solution of (7), (8) for γ then 1/Rz is a solution of (7, 8) for
γ̃ = 2 − γ .

The lemma is proved by straightforward computation.
Let 0 < γ < 1 and let (PN,M, QN,M) correspond to the solution of (7), (8) with

initial conditions (34). Define a real function F(P) on R+ implicitly by F2 − P +
F(1 − P) cos α = 0 for 0 ≤ P ≤ 1 and by F(P) ≡ 1 for 1 ≤ P.

Designate

Du := {(P, Q) : P > 0, Q > F(P)}, Dd := {(P, Q) : Q < 0},
D0 := {(P, Q) : P > 0, 0 ≤ Q ≤ F(P)}, Df := {(P, Q) : P ≤ 0, Q ≥ 0}

as in Fig. 5. Now define the infinite sequences {qn}, {pn}, n ∈ N as follows:

{qn(a)} := {Q0,1, Q0,2, Q1,2, Q0,3, Q1,3, Q2,3, . . . , Q0,M, Q1,M, . . . , QM−1,M, . . .},
{pn(a)} := {P0,1, P0,2, P1,2, P0,3, P1,3, P2,3, . . . , P0,M, P1,M, . . . , PM−1,M, . . .}.

and the sets

Au(n) := {a ∈ R+ : (pn(a), qn(a)) ∈ Du, (pk(a), qk(a)) ∈ D0 ∀ 0 < k < n},
Ad(n) := {a ∈ R+ : (pn(a), qn(a)) ∈ Dd, (pk(a), qk(a)) ∈ D0 ∀ 0 < k < n}.

Au(n) and Ad(n) are open sets since the denominators of (31), (32) do not vanish in D0.
Moreover, direct computation shows that Au(1) 
= ∅ and Ad(2) 
= ∅, therefore the sets

Au := ∪Au(k), Ad := ∪Ad(k)
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are not empty. Finally, define

A0 := {a ∈ R+ : (pn(a), qn(a)) ∈ D0, ∀ n ∈ N}.

Note that A0, Au, Ad are mutually disjoint and the sequences {pn}, {qn} is so constructed
that

R+ = A0 ∪ Au ∪ Ad . (35)

Indeed (PN,M, QN,M) cannot jump from D0 into Df in one step M → M + 1 since
PN,M+1 is positive for positive PN,M, QN,M, QN,M+1. Relation (35) would be impossible
for A0 = ∅, since the connected set R+ cannot be covered by two open disjoint
nonempty subsets Au and Ad . Therefore A0 
= ∅. �

THEOREM 4. The discrete map Zγ, 0 < γ < 2, is embedded.

Proof. Theorems 3 and 1 ensure that there is an embedded Zγ for each
a ∈ A0. Theorem 2 implies that the set A0 consists of only one element, namely,
A0 = {sin γα

2 /sin (2 − γ )α
2 }. �

REMARK 1. For N = 0 the system (31), (32) for QN,M, PN,M reduces to the special
case of the discrete Painlevé equation (compare with [1]):

(n + 1)
(
x2

n − 1
) (

xn+1 + xn/ε

ε + xnxn+1

)
− n

(
1 − x2

n/ε
2) (

xn−1 + εxn

ε + xn−1xn

)
= γ xn

ε2 − 1
2ε2

, (36)

where ε = eiα. This equation allows us to represent xn+1 as a function of n, xn−1 and
xn: xn+1 = 	(n, xn−1, xn). 	(n, u, v) maps the torus T2 = S1 × S1 = {(u, v) ∈ C : |u| =
|v| = 1} into S1 and has the following properties:

� ∀n ∈ N it is a continuous map on AI × AI where AI = {eiβ : β ∈ [0, α]}.
� For (u, v) ∈ AI × AI 	(n, u, v) ∈ AI ∪ AII ∪ AIV holds true, where AII = {eiβ :

β ∈ (α, π ]} and AIV = {eiβ : β ∈ [α − π, 0)}, i.e. x cannot jump in one step from AI into
AIII = {eiβ : β ∈ (−π, α − π )}.
These properties guarantee that there exists a unitary solution xn = eiαn of this equation
with x0 = eiγα/2 in the sector 0 < αn < α. This solution corresponds to an embedded
Zγ . Equation (36) is a special case of a more general reduction of the cross-ratio
equation (see [16], [2] for details).

REMARK 2. Discrete maps Z2 and Log are defined for α 
= π/2 with the aid of limit
renormalization of Zγ as γ → 2 − 0 and as dual to Z2 respectively as in [2], where the
reader can find details for the case α = π/2.

THEOREM 5. The discrete maps Z2 and Log are embedded.

The proof for α = π/2 is given in [1]. It does not change for the generalization
discussed.

5. Concluding remarks. Further generalizations of discrete Zγ and Log are
possible.

I. One can relax the unitary condition for cross-ratios and consider solutions to

q( fn,m, fn+1,m, fn+1,m+1, fn,m+1) = κ2e−2iα (37)
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Figure 6. Discrete Z1/2, κ = 2, α = π/2

subject to the same constraint (2) with the initial data

f1,0 = 1, f0,1 = eiγα

κ
. (38)

This solution is a discrete analog of Zγ defined on the vertices of regular parallelogram
lattice (see Fig. 6). However, the mappings thus obtained are deprived of geometrical
flavor as they do not define circle patterns.

II. Another possibility is to deregularize prescribed combinatorics as follows.
Consider Zn

+ ⊂ Rn. For each coordinate vector ei = (e1
i , . . . , en

i ) where ej
i = δ

j
i define a

unit vector ξi in C = R2 so that for any pair of indexes i, j the vectors ξi, ξj form a basis
in R2. Let 
 ∈ Rn be some 2-dimensional simply connected cell complex with vertices
in Zn

+. Suppose 0 ∈ 
. (We denote by the same symbol 
 the set of complex vertices.)
Define the map P : 
 → C by the following conditions:

1) P(0) = 0,
2) if x, y are vertices of 
 and y = x + ei then P(y) = P(x) + ξi.

It is easy to see that P is correctly defined and unique.
We call 
 a projectable cell complex iff its image ω = P(
) is embedded, i.e.

intersections of images of different cells of 
 do not have interiors.
It is natural to define a discrete conformal map on ω as a discrete complex

immersion function f on vertices of ω preserving the cross-ratios of ω-cells. The
argument of f can be labelled by the vertices x of 
. Hence for any cell of 
, the
function f constructed on ek, ej satisfies the following equation for cross-ratios:

q( fx, fx+ek , fx+ek+ej , fx+ej ) = e−2iαk,j , (39)

where αk,j is the angle between ξk and ξj, taken positive if (ξk, ξj) has positive orientation
and taken negative otherwise. Now suppose that f is a solution to (39) defined on the
whole of Zn

+. Equation (39) is compatible with the constraint

γfx =
n∑

s=1

2xs
( fx+es − fx)( fx − fx−es )

fx+es − fx−es

. (40)
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This constraint could be derived from some discrete isomonodromy problem (for n = 3
see [7]) which ensures the compatibility. Now we can define a discrete Zγ : ω → C for
projectable 
 as a solution to (39), (40) restricted to 
. Initial conditions for this
solution are of the form (3) so that the restrictions of f on each two-dimensional
coordinate lattice is an immersion defining a circle pattern with prescribed intersection
angles.

This definition naturally generalizes the definition of discrete Zγ given in [7] for

 = {(k, l, m) : k + l + m = 0,±1}.

Conjecture. Discrete Zγ : ω → C is embedded.

Schramm [19] showed that there are square grid circle patterns mimicking Erf(
√

iz)
but that an analogue of Erf(z) does not exist. The obstacle is purely combinatorial.
There is a hope that the combinatorics of projectable cells may give more examples of
discrete analogues of classical functions.
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Res. Notices 4 (2000), 165–193.

3. A. F. Beardon, T. Dubejko and K. Stephenson, Spiral hexagonal circle packings in the
plane, Geom. Dedicata 49 (1994), 39–70.

4. A. F. Beardon and K. Stephenson, The uniformization theorem for circle packings,
Indiana Univ. Math. J. 39, No. 4 (1990), 1383–1425.

5. A. I. Bobenko and T. Hoffman, Conformally symmetric circle packings. A
generalization of Doyle spirals, Experimental Math. 10, No. 1 (2001), 141–150.

6. A. I. Bobenko, T. Hoffman and Yu. B. Suris, Hexagonal circle patterns and integrable
systems. Patterns with the multi-ratio property and Lax equations on the regular triangular
lattice, Internat. Math. Res. Notices 3 (2002), 111–164.

7. A. I. Bobenko and T. Hoffman, Hexagonal circle patterns and integrable systems.
Patterns with constant angles, Duke Math. J. 116 (2003), 525–566.

8. A. Bobenko and U. Pinkall, Discrete isothermic surfaces, J. Reine Angew. Math. 475
(1996), 187–208.

9. G. Boole, Calculus of finite differences (Chelsea Publishing Company, 1872).
10. K. Callahan and B. Rodin, Circle packing immersions form regularly exhaustible

surfaces, Complex Variables 21 (1993), 171–177.
11. T. Dubejko and K. Stephenson, Circle packings: Experiments in discrete analytic

function theory, Experimental Math. 4, No. 4 (1995), 307–348.
12. Z. -X. He and O. Schramm, The C∞ convergence of hexagonal disc packings to Riemann

map, Acta. Math. 180 (1998), 219–245.
13. Z. -X. He, Rigidity of infinite disk patterns, Annals of Mathematics 149 (1999), 1–

33.
14. T. Hoffman, Discrete CMC surfaces and discrete holomorphic maps, in Discrete

Integrable Geometry and Physics (Eds.: A. I. Bobenko and R. Seiler), (Oxford University Press,
1999), 97–112.

15. A. Marden and B. Rodin, On Thurston’s formulation and proof of Andreev’s theorem,
in Computational methods and function theory (Valparaı́so, 1989), Lecture Notes in Math.
No. 1435 (Springer-Verlag, 1990),103–115.

https://doi.org/10.1017/S0017089505002247 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089505002247


16 S. I. AGAFONOV

16. F. W. Nijhoff, A. Ramani, B. Grammaticos and Y. Ohta, On discrete Painlevé equations
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