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Luzin-type Holomorphic Approximation
on Closed Subsets of Open Riemann
Surfaces
In loving memory: André Boivin, our student and respectively supervisor.

Paul M. Gauthier and Fatemeh Shariû

Abstract. It is known that if E is a closed subset of an open Riemann surface R and f is a holomor-
phic function on a neighbourhood of E, then it is “usually” not possible to approximate f uniformly
by functions holomorphic on all of R. We show, however, that for every open Riemann surface R
and every closed subset E ⊂ R, there is closed subset F ⊂ E that approximates E extremely well,
such that every function holomorphic on F can be approximated much better than uniformly by
functions holomorphic on R.

1 Introduction

Undergraduate students are o�en ûrst introduced to Riemann surfaces via so-called
concrete Riemann surfaces, meaning surfaces constructed with paper, scissors, and
paste. Abstract Riemann surfaces, deûned as manifolds, are usually encountered later
in their studies.
A remarkable theorem of Gunning and Narasimhan [6] essentially asserts that ev-

ery abstract non-compact Riemann surface can be represented as a concrete Riemann
surface having no branch points.

Precisely, it says the following. For every open Riemann surface R, there exists a
holomorphic mapping ρ of R into the complex plane that is a local homeomorphism;
the mapping ρ induces a complex structure on R that is the initial complex structure
R, since ρ is locally biholomorphic. We call ρ a spreading of R over C. We denote
Lebesgue measure in C = R2 by λ and the measure on R induced by ρ and λ by µ,
in the sense that if X = ⋃Xn is the disjoint union of Xn , n = 1, . . . and each Xn is
contained in a chart where ρ is injective, then µ(X) = ∑ λ(ρ(Xn)) . One could also
say that µ(X) is the Lebesgue measure of the projection ρ(X) “counting multiplici-
ties”. A subset E of a Riemann surface R is said to be bounded if the closure E in R is
compact.

If a function can be approximated uniformly by holomorphic functions on a set E ,
then that function must necessarily be in the class A(E) of continuous functions on
E that are holomorphic on the interior E0 . Let us say that a closed set E in an open
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Riemann surface R is a set of uniform approximation if, for every f ∈ A(E) and every
number є > 0, there is a function g holomorphic on R such that ∣ f (p)− g(p)∣ < є, for
all p ∈ E . Similarly, we say that E is a set of tangential approximation if, for every f ∈
A(E) and every continuous function є > 0, there is a function g holomorphic onR such
that ∣ f (p) − g(p)∣ < є(p), for all p ∈ E . A theorem of Carleman [3], which deserves
to be better known, asserts that the real line is a set of tangential approximation in
C. For this reason, sets of tangential approximation are o�en called sets of Carleman
approximation.
For the case where R is a planar domain G , Arakelian [1] gave a complete topolog-

ical characterization of closed subsets E ⊂ G for which E is a set of uniform approxi-
mation by functions holomorphic on G . Let us denote by R∗ = R∪{∗} the one-point
compactiûcation of an open Riemann surface R. Arakelian’s theorem states that E is
a set of uniform approximation in G if and only if G∗ ∖ E is connected and locally
connected.

Gauthier and Hengartner [5] showed that the topological conditions of Arakelian
are still necessary in order for a closed set E in an open Riemann surface R to be a set
of uniform approximation. _at is, R∗ ∖ E must be connected and locally connected.
In the same paper an example was given to show that these topological conditions
of Arakelian, although necessary, are not suõcient to guarantee that E be a set of
uniform approximation in R. _us, in passing from planar domains to open Riemann
surfaces, Arakelian’s topological conditions no longer give a characterization of closed
sets of uniform approximation. In fact, Scheinberg [8], showed that no topological
conditions whatsoever could characterize sets of uniform approximation on Riemann
surfaces.

If a closed set E in an open Riemann surface R is a set of tangential approximation,
then of course it must a fortiori be a set of uniform approximation, and so R∗ ∖ E
must be connected and locally connected. A further condition, now called the long
island condition, was introduced by the ûrst author [4]. A closed subset E ⊂ R is
said to satisfy the long island condition if for every compact set K ⊂ R, there exists
a compact set Q ⊂ R such that every component of the interior of E that meets K
is contained in Q. If E is a closed set of uniform approximation in C, then it was
shown in [4] that the long island condition is necessary in order for E to be a set
of tangential approximation. Nersessian [7] showed, that, in fact a closed set E of
uniform approximation in a plane domain G is a set of tangential approximation in
G if and only if the long island condition is satisûed. A closed strip in C of strictly
positive width is a set of uniform approximation but not of tangential approximation.
If the width becomes zero, then a straight line is a set of tangential approximation (and
a fortiori of uniform approximation). At the end of this paper, the authors construct
a Riemann Surface R where the real line is a set of tangential approximation (and a
fortiori of uniform approximation) but a “strip” around it in R is not even a set of
uniform approximation. See Example 3.3.

_us, for planar domains, we have a characterization of closed subsets of uniform
approximation and also a characterization of closed subsets of tangential approxima-
tion. _e problem of characterizing closed sets of uniform approximation on open
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Riemann surfaces is open; however, Boivin extended Nersessian’s result to open Rie-
mann surfaces, thus giving a characterization of closed sets of tangential approxima-
tion in open Riemann surfaces. Here is Boivin’s theorem.

_eorem 1.1 ([2]) Let E be a proper closed subset of an open Riemann surface R; then
the following are equivalent:
(i) E is a set of tangential approximation;
(ii) R∗∖E is connected and locally connected and E satisûes the long island condition;
(iii) E is a set of uniform approximation that satisûes the long island condition.

Our principal result is the following Luzin-type theorem, which, loosely speaking,
asserts that for an arbitrary open Riemann surface R, an arbitrary (proper) closed
set E in R, an arbitrary function f ∈ A(E), and an arbitrary є > 0, although there
is practically no chance that there exists a function g holomorphic on R such that
∣ f − g∣ < є, nevertheless, we can always ûnd a closed subset F of E which is most of E
(in the sense that E∖F is small and becomes smaller at arbitrary speed as we approach
the ideal boundary point ∗) and on F such approximations are possible, in fact, with
arbitrary speed. _at is, є(p) can decrease to zero with arbitrary speed as p tends to
the ideal boundary. _e precise statement is the following theorem.

_eorem 1.2 Let R be an arbitrary open Riemann surface and ρ be a spreading of R
over C. Let E be a closed subset of R. For every positive sequence δn , and every regular
smooth exhaustion {Kn} of R, there exists a closed subset F of E such that F is a set of
tangential approximation in R and

µ((E ∖ F) ∖ Kn) < δn , n = 1, 2, . . . .

Paraphrasing the “100%” conjecture for the Riemann Hypothesis and denoting a
proposition regarding a point p by P(p), we say that the proposition P(p) is true for
100% of the points in a set E ⊂ R if, for every smooth exhaustion {Kn} of R, we have

lim
n→∞

µ{p ∈ E ∩ Kn ∶ P(p)}
µ(E ∩ Kn)

= 1.

If E is bounded, this notion is equivalent to saying that the property holds almost
everywhere on E .

_e following corollary is an easy consequence of _eorem 1.2.

Corollary 1.3 If µ(E) = ∞, then for every f ∈ A(E) and for every positive є ∈ C(E),
there exists g ∈ H(R) such that, for 100% of the points p in E , we have ∣ f (p) − g(p)∣ <
є(p).

_e preceding corollary does not hold for arbitrary closed sets E .
First of all, we note that, in case E is bounded, to say that ∣ f (p)−g(p)∣ < є(p) holds

for 100% of the values of E is equivalent to saying that ∣ f (p)− g(p)∣ < є(p) a.e. on E .
Since f , g, and є are continuous, this implies that ∣ f (p) − g(p)∣ ≤ є(p) everywhere
on E0 . Now let R = C and let E be the closed annulus (1 ≤ ∣z∣ ≤ 2). Suppose, to obtain
a contradiction, that for every f ∈ A(E) and every є > 0, there is an entire function
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(equivalently a polynomial g) such that ∣ f (z)− g(z)∣ < є, for 100% of the points of E .
We have seen that this implies that ∣ f (z) − g(z)∣ ≤ є for every point of E0 = E . We
have shown that every function in A(E) is the uniform limit of polynomials. But this
is well known to be false. _is contradiction conûrms our claim that the hypothesis
that E be unbounded cannot be dropped.
A sequence gn of almost everywhere ûnite measureable functions on a measure-

able set E is said to converge in measure to an almost everywhere ûnite measureable
function f , if for each є > 0,

µ{ p ∈ E∶ ∣gn(p) − f (p)∣ > є} Ð→ 0, as n →∞.

For the next corollary, we do not need to assume that the measure of E is inûnite.

Corollary 1.4 For everymeasureable subset E ⊂ R and for every complexmeasureable
function f on E , there exists a sequence gn ∈ H(R) such that gn → f in measure.

_ese results are new, even for the case where R is the complex planeC. We could
state similar results for approximation by meromorphic functions on Riemann sur-
faces, but that is a topic for another paper. _is note is concerned only with approxi-
mation by holomorphic functions.

In the following section we prove _eorem 1.2, and in the last section we brie�y
consider some so-called Myrberg surfaces, which are the most important source of
examples where approximation fails. See Example 3.3.

2 Proof of Theorem 1.2

Proof Fix a regular smooth exhaustion {Kn} of R, with K0 = ∅, and let {δn} be a
sequence of positive numbers, which we may assume decreases strictly to zero. Since
{Kn} is a regular exhaustion, for each n = 1, 2, . . . , the open set An = (K0

n+1 ∖ Kn−1)

has only ûnitely many components Un , j , j = 1, 2, . . . , jn .

Claim 1. For each component Un , j of each An , we can assume that Ec ∩ Un , j is
nonempty. To see this, we forma closed subset E1 of E as follows. For each n = 1, 2, . . . ,
and each j = 1, 2, . . . , jn , we construct an open subset Vn , j of Un , j so small that
µ(Vn , j) < δn+1/ jn2n+2 . Now, set

E1 = E ∖
∞
⋃
n=1

jn
⋃
j=1

Vn , j .

If we can show that E1 satisûes the conclusion of the theorem, then it follows that
E also satisûes the conclusion of the theorem. _us, we assume that Ec meets each
component Un , j of each An .

Claim 2. For each component Un , j of each An , we can assume that Ec ∩Un , j is con-
nected. To see this, we note that the open set Ec ∩ U j has at most countably many
components, and so there is a countable collection Jn , j of compact smooth Jordan
arcs in Un , j that connect all the components of Ec ∩ Un , j . For each such arc α, we
have µ(α) = 0, since α is smooth. We can surround α by a closed Jordan domain Gα
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contained in Un , j so small that, setting

Hn , j = ⋃{Gα ∶ α ∈ Jn , j}, Hn =
jn
⋃
j=1

Hn , j ,

we have

µ(Hn , j) <
δn+1

jn2n+2 , µ(Hn) <
δn+1

2n+2 .

Now replace E by the closed subset E2 = E ∖ ⋃∞n=1 Hn . If E2 satisûes the conclusion
of the theorem, so does E, and for each component Un , j of each An , we have that
Ec2 ∩Un , j is connected. We therefore assume that E itself has this property.
For each n = 1, 2, . . . , and each j = 1, 2, . . . jn , choose a point pn , j in Ec ∩ Un , j .

For each j = 1, 2, . . . , jn and each k = 1, 2, . . . , kn+1 , we say that (n, j) < (n, k) if pn , j
and pn+1,k are in the same component of R∖Kn−1 . For each (n, j) < (n, k), let β j,k
be a smooth arc in An ∪ An+1 from pn , j to pn+1,k . Since there are ûnitely many such
arcs, for ûxed n, and each arc has µ-measure zero, we can surround each such arc by
a Jordan domain Gn , j,k in An ∪ An+1 , such that, for ûxed n, setting

Gn = ⋃{Gn , j,k ∶ (n, j) < (n, k)},

we have

µ(Gn) <
δn+1

2n+2 .

Now set E3 = E ∖ ⋃n Gn . It is enough to show that E3 satisûes the conclusion of the
theorem.

We claim that R∗ ∖ E3 is locally connected at ∗. It is suõcient to show that for
each n the set (R∗ ∖ E3) ∖ Kn−1 is connected. It is suõcient to show that for each
p ∈ (R∖E3)∖Kn−1 , the component Cp of (R∖E3)∖Kn−1 containing p is unbounded.
_e point p is contained in some Un , j , and since p /∈ E3 , it is in Ec ∩ Un , j or in Gn .
But Gn connects Ec ∩ Un , j to some Ec ∩ Un+1,k . In any case, Cp will contain some
Ec ∩Un+1,k . Since Ec ∩Un+1,k is connected to some Ec ∩Un+2,ℓ by Gn+1 , it follows by
induction that the componentCp is unbounded. _us, (R∗∖E3)∖Kn−1 is a connected
neighbourhood of ∗. As n varies, these form a neighbourhood basis of ∗ in R∗ ∖ E3 ,
so R∗ ∖ E3 is locally connected at ∗. Since R∗ ∖ E3 is clearly locally connected at each
point of R ∖ E3 , it is locally connected. We have shown in passing that each point of
R ∖ E3 is connected to ∗, so R∗ ∖ E3 is not only locally connected but also connected.

_ere remains to performone lastmodiûcation to obtain the long island condition.
For each n, let Qn , j be a regular exhaustion of K0

n and choose j so large that, setting
Wn = K0

n ∖ Qn , j , we have

µ(K0
n ∖ Qn , j) <

δn+1

2n+2 .

Finally, set F = E3 ∖ ⋃
∞
n=1 Wn . _en R∗ ∖ F continues to be connected and locally

connected, and, moreover, since Kn is smoothly bounded,

µ((E3 ∖ F) ∖ Kn) = µ((E3 ∖ F) ∖ K0
n) < δn , n = 1, 2, . . . .

By _eorem 1.1, F is a set of tangential approximation.
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Proof of Corollary 1.3 Fix f ∈ A(E) and є(p) a positive continuous function on E ,
which we may assume goes to zero as p → ∗. Let Km be a regular exhaustion of R
such that K1 ∩ E /= ∅, and choose a sequence {δm} of positive numbers.
By_eorem 1.2, there exists a closed subset F of E such that F is a set of tangential

approximation and

µ((E ∖ F) ∖ Km) < δm ,

so in particular, µ(E ∖ F) < ∞.
Let g ∈ H(R) such that ∣ f (p) − g(p)∣ < є(p) for p ∈ F and denote by P(p) the

proposition that ∣ f (p) − g(p)∣ < є(p) . _en we have

lim
n→∞

µ(E ∩ Kn ∶ P(p))
µ(E ∩ Kn)

= lim
n→∞

µ(E ∩ Kn) − µ{p ∈ E ∩ Kn ∶ ∼ P(p)}
µ(E ∩ Kn)

≥ 1 − lim
n→∞

µ(E ∖ F)
µ(E ∩ Kn)

= 1.

Proof of Corollary 1.4 Let Gk ↗ R be a a regular exhaustion by smoothly bounded
open sets and put Ak = E∩(Gk ∖Gk−1). For ûxed (k, n) ∈ N×N, by Luzin’s _eorem,
there exists a compact set Kk ,n ⊂ Ak , with µ(Ak ∖ Kk ,n) < 1/(2kn), such that f
restricted to Kk ,n is continuous.

We claim that we can assume K0
k ,n = ∅. First of all, there is a ûnite union

Lk ,n = ⋃{Lk ,n , j ∶ j = 1, . . . , J(k, n)}

of disjoint closed squares Lk ,n , j ⊂ K0
k ,n , such that µ(Lk ,n) approximates µ(K0

k ,n) as
well as we please. Here, when we say that Lk ,n , j is a closed square on the Riemann
surfaceR, wemean that ρmaps Lk ,n , j homeomorphically onto a square I×I ⊂ R2 = C,
where I is a closed interval in R. We can construct a Cantor-type set B ⊂ I, whose 1-
dimensional measure approximates the length of I as well as we please. _en B × B, is
a “Cantor-square” whose measure approximates that of ρ(Lk ,n , j) as well as we please.
_us, Qk ,n , j = ρ−1(B × B) is a compact nowhere dense subset of Lk ,n , j such that
µ(Qk ,n , j) approximates µ(Lk ,n , j) as well as we please. Consequently, the union

Qk ,n = ⋃{Qk ,n , j ∶ j = 1, . . . , J(k, n)}

is a compact nowhere dense subset of K0
k ,n whose measure approximates the measure

of K0
k ,n as well as we please. Now set Mk ,n = Qk ,n ∪ ∂Kk ,n . Since µ(Qk ,n) is a good

approximation of µ(K0
k ,n), µ(Mk ,n) is an equally good approximation of µ(Kk ,n).

Since the compact set Mk ,n has empty interior, this proves our claim. _us, we assume
that Kk ,n has empty interior. Let En = ⋃k Kk ,n and let fn be the restriction of f to
En . Since fn ∈ C(En), and E0

n = ∅, we have fn ∈ A(En). By _eorem 1.2, there is a
closed subset Fn ⊂ En with µ(En ∖ Fn) < 1/n and a function gn ∈ H(R) such that
∣ fn − gn ∣ < 1/n on Fn . Since f = fn on En and µ(E ∖ En) < 1/n, this completes the
proof.
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3 A Myrberg Surface where Approximation Fails

We use the expression Myrberg surface loosely to refer to a Riemann surface obtained
by taking two copies of the complex plane having identical slits and joining these two
slit planes along the slits in the usual way.

Deûnition 3.1 A sequence of points {zn} inside the unit disc is said to satisfy the
Blaschke condition when Σn(1 − ∣zn ∣) < ∞. _e sequence {zn} is called a Blaschke
sequence.

For λ ≥ 0, we denote Sλ = {x + iy ∶ ∣y∣ ≤ λ}. _e function θ(z) = w , where

θ(z) = e
z − 1
ez + 1

, θ−1
(w) = ln(

1 +w
1 −w

) , ln 1 = 0,

maps the strip Sπ/2 conformally onto the unit disc. In general, if the sequence {xn}

is increasing to∞, then

∞
∑
n=1
(1 − ∣θ(xn)∣) < +∞ ⇐⇒

∞
∑
n=1

1
exn

< +∞.

In particular, if the sequence X grows linearly, more precisely, if xn ≥ a + nx0 , for
some x0 ≥ 0 and a > 0, then un = θ(xn), n = 1, 2, . . . , is a Blaschke sequence. Indeed,

∞
∑
n=1
(1 − ∣un ∣) =

∞
∑
n=1

2
exn + 1

≤ 2
∞
∑
n=1

1
ena

< ∞.

It follows that if lim inf(xn+1 − xn) > 0, then {θ(xn)} is a Blaschke sequence. _e
converse does not hold. Indeed, let un = 1 − 1/n2; then ∑(1 − ∣un ∣) = ∑ 1/n2 < +∞,
which is the Blaschke condition, while

xn+1 − xn = θ−1
( 1 −

1
(n + 1)2

) − θ−1
( 1 −

1
n2 ) = ln(

2n2 + 4n + 1
2n2 − 1

) Ð→ 0.

To recapitulate, if lim inf(xn+1 − xn) > 0, then {θ(xn)} is a Blaschke sequence,
but we can have lim(xn+1 − xn) = 0 for a Blaschke sequence {θ(xn)}. Equivalently,
if {θ(xn)} is not a Blaschke sequence (and hence Sπ/2 is not a set of approximation),
then lim(xn+1 − xn) = 0, but it is possible to also have lim(xn+1 − xn) = 0, with
{θ(xn)} a Blaschke sequence.
Consider xn = δ ln n. _en

∑
1
exn

= ∑
1
nδ
,

so {un} is a Blaschke sequence if and only if δ > 1. For δ ≤ 1 and xn = δ ln n, Eπ/2
is not a set of approximation. Notice that for every δ > 0, the sequence {δ ln n} is
“tight” in both senses xn+1 − xn → 0 and xn+1/xn → 1.

_e following lemma due to Scheinberg [9] gives us a Blaschke condition for a
strip.

Lemma 3.2 Let xn be a sequence of distinct real numbers such that ∣xn ∣ → ∞ and
0 ≤ λ < ∞ and let θ be a conformal map that sends Sλ = {x + iy, ∣y∣ ≤ λ} to the unit
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disc, i.e., un = θ−1(xn). _en
∞
∑
n=1
(1 − ∣un ∣) = ∞

if and only if
∞
∑
n=1
a−∣xn ∣ < ∞, where a = exp( π

2λ
) .

_is lemma allows us to construct the following example, where approximation
fails.

Example 3.3 _ere exists a Riemann surface R of inûnite genus, formed by joining
two copies of the complex plane with slits on the real axis, such that all closed “strips
over” the real axis are not sets of holomorphic approximation, while the set “over” the
real axis itself is a set of tangential approximation.

Proof For λ ≥ 0, we denote Sλ = {x + iy ∶ ∣y∣ ≤ λ}, and for n = 1, 2, . . . , let θn be
the conformal map of S1/n onto the unit disc, which maps −∞, 0,+∞ to −1, 0,+1, re-
spectively Let {x j} be an increasing sequence of positive numbers tending to inûnity
such that for each n, the sequence {θn(x j)} is not a Blaschke sequence. To obtain
such a sequence, for each n let {xn , j} be a sequence of distinct real numbers tending
to +∞with xn , j ≥ n, such that {θn(xn , j)} is not a Blaschke sequence. We can assume
that these sequences are disjoint from each other. Now we let {x j} be any sequence
formed by combining all of the sequences {xn , j} into a single sequence.

We take two copies of the complex plane, remove the intervals (x2 j−1 , x2 j) and join
the slit planes together in the usual way to form a Riemann surface R = RX , where X
signiûes the dependence on the sequence X = {x j} j . Let π be the projectionmap from
R toC and put E = Eλ ∶= π−1(Sλ). Let us show that R∗∖E is connected. R∖E has four
connected components; each one is an open complex half-plane. None of these com-
ponents is contained in any compact subset of R. Since every open neighbourhood of
∗ in R∗ contains the complement of some compact subset of R, every neighbourhood
of ∗ in R∗ intersects each component of R∖E. Suppose R∗ ∖E is disconnected. _en
it is the union of non-empty disjoint sets A and B, open in R∗ ∖ E , whose union is
R∗ ∖ E. We may suppose that A contains ∗. Since A is an open neighbourhood of ∗
in R∗ ∖ E , it is of the form A = U ∩ (R∗ ∖ E), where U is an open neighbourhood of
∗ in R∗ . We can assume that U = R∗ ∖ K , where K is a compact subset of R. _us,
A = R∗ ∖ (K ∪ E). Suppose some component H of R ∖ E does not intersect A. _en
H ⊂ (K ∪ E), which is precluded. _erefore, A intersects each component of R ∖ E.
But B ∪ (R ∖ E) is non-empty so some component H of R ∖ E also intersects B. _is
shows that the half-plane H is the union of two non-empty disjoint open sets: A∩H,
and B ∩H. So H is disconnected, a contradiction. _erefore, R∗ ∖ E is connected.

Now let us show that R∗∖E is locally connected. Obviously, it is locally connected
at points of R ∖ E . To show it is locally connected at inûnity, let H1 ,H2 ,H3 ,H4 be the
half-planes composing R ∖ E . For n = 1, 2, . . . , set

Un = {z ∶ ∣z∣ > n}, H j,n = π−1
(Un) ∩H j , and Vn =

4
⋃
j=1

H j,n ∪ {∗}.
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_en {Vn}n is a neighbourhood basis of ∗, all of whose members are connected, so
R∗ ∖ E is locally connected at inûnity. _us, R∗ ∖ E is locally connected.

_e set E0 has empty interior, so by_eorem 1.1 it is a set of holomorphic tangential
approximation.
Fix λ > 0, let α be a point that is not in Sλ , and consider π−1(α) = {p1 , p2}. Let f

be a meromorphic function on R which has a pole at p1 and only at p1 .
Suppose, to obtain a contradiction, that there exists a holomorphic function F on

R such that ∣F− f ∣ ≤ ε on Eλ . _e function g ∶= F− f is meromorphic on R, has a pole
at p1 , is holomorphic elsewhere, and is bounded on Eλ . Denote by X the set of values
of the sequence {x j}. _en X̃ = π−1(X) is the set of branch points of R. Let ρ∶R∖ X̃ →
R ∖ X̃ be the involution, mapping each point of R ∖ X̃ to the corresponding point on
the other sheet having the same projection on C. Set g1(p) = (g(p) − g(ρ(p)))2 , for
p ∈ R∖ X̃ . _enG = g1○π−1 is a well-deûned holomorphic function onC∖(X∪{α}),
which is bounded on Sλ ∖ X . Riemann’s theorem on removable singularities implies
thatG extends holomorphically onC∖{α} and vanishes at each point of the sequence
{x j}. Now by using the Blaschke condition, G is identically zero on Sλ , i.e., g(p) =
g(ρ(p)), for p ∈ Eλ ∖ X̃ . By the uniqueness of meromorphic continuation, we obtain
that g(p) = g(ρ(p)), for p ∈ R ∖ X̃ . In particular, g, and hence, f has a pole at p1 ,
which is a contradiction. _us, Eλ is not a set of approximation.

_e referee has remarked that the proof of the above example can be simpliûed,
but that the proof we furnish yields interesting quantitative information (Lemma 3.3)
.
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