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ABSTRACT. Over the last 5 years, considerable progress has been made in our
ability to construct self-gravitating stellar equilibria. One of these new methods
is essentially a variant of Eddington’s (1916) method. Two other key approaches
are logical extensions of Schwarzschild’s Linear Programming method, and can be
applied to nonspherical models as well. These methods are reviewed below.

The application of these methods to galaxies has yielded a few very interesting
results within the last year or two. The methods described below unambiguously
establish M/L’s for M87 and M32 within about 30 arc seconds. They strongly
support Tonry’s contention that the nucleus of M32 contains a large invisible mass,
possibly a 10° Mg black hole. They also suggest that observational recovery of the
projected velociy distribution might permit the observer to distinguish between a
massive halo and an increasingly tangential velocity disjribution function.

1. METHODS

We begin with Jeans’s theorem, which states that the phase space distribution
function f(r,v) is a function only of the isolating integrals. For truly spherical
symmetry these are the energy (E) and the square angular momentum (J? ). Any
dependence on the individual components of J other than through J2 would create
a prefered dynamical direction. In a sense, Jeans’s theorem solves the problem
of constructing spherical systems: we simply choose a form of the phase space
distributioin function f(E, J), integrate over all velocities to find the density p, and
then solve the Poisson Equation for the potential ®, which is contained implicitly
in f and p.

This approach in fact describes the first class of methods — which we term
King type methods (see Michie and Bodenheimer 1963 and King 1965). It has
been recently applied to the dynamics of clusters of galaxies by Kent and Gunn
(1982). The method requires a reasonably simple choice of the functional form of
f, so that the integral for the density can be performed in terms of the potential.
Its major limitation is that there is no guarantee that the assumed distribution
function approximates the system under study.

Moreover, under normal circumstances we have a density profile p(r) and wish
to recover the distribution function which gives rise to that spatial density. This
problem is underdetermined, since we are deriving a function of two variables (E and
J ) from a function of one variable. Eddington (1916) provided one possible solution
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by showing that if f = f(E) it can be recovered from p(r). A distribution function
which is only a function of energy is isotropic and contains no free parameters.
Merritt (1985) has shown that the distribution function can also be recovered from
the density if it is a function of Q4+ = E & J%/r2. This choice of functions has
two advantages over Eddington’s: it permits the modelling of velocity anisotropy
and it contains an adjustable parameter. For many choices of p(r), it will yield
physically reasonable (nonnegative) distribution functions. Even so, its virtue is also
its fault: the explicit restriction to a particular combination of the two integrals
sharply restricts the solutions which can be found. It also will happily produce
distribution functions which are negative in some regions of phase space, although
it is immediately obvious when this occurs.

A third useful approach to this problem was invented by Binney and Mamon
(1982, see also Tonry 1983), in their study of M87. Binney and Mamon used
the density profile, observed velocity dispersion profile, and the equation of stellar
hydrodynamics to recover the internal radial and tangential velocity dispersions.
Unfortunately, this method does not work well when the observed dispersion is
available over a small range in radius. It also has the important limitation that
the dispersions constructed by this method need not correspond to a nonnegative
distribution function, and it may in fact not be easy to discover that. For example,
it is possible to use this technique to construct a de Vaucouleurs law model with
purely radial orbits by setting the tangential dispersions everywhere equal to zero;
such a system does not have a nonnegative distribution function everywhere (see
Richstone and Tremaine 1984).

A fourth kind of approach to this problem was pioneered by Schwarzschild
(1979). He noted that each time averaged orbit in any specific potential is a solution
of the collisionless Boltzmann equation, and that these orbits can be summed to
find a solution of the Poisson equation for that potential. He chose to use linear
programming to perform the sums, since it guarantees a set of orbit occupation
numbers with nonnegative weights. The formal validity of this approach has been
demonstrated by Vandervoort (19842. In the spherical case, this approach can be
described as writing the distribution function as a sum of products of delta functions
of the isolating integrals: f(E,J2) = Y ;[6(E — E:)6(J? — J?)] . It is immediately
clear that one can in fact express f as any sum of functions of isolating integrals.
In this regard Merritt’s functions may be particularly useful, since any weighted
sum of his functions (say, with different r,’s) will remain a valid solution for that
particular p(r).

Although linear programming has been used extensively for modelling spheri-
cal galaxies (Richstone and Tremaine 1984, 1985), there are at three other methods
which can be used to combine orbits (or families of phase space distribution func-
tions) to produce models. Each of these methods must solve (or approximate) a
set of equations of the form

M; =) mijwj, (1)
i

which states that the sum of the products of the mass distributions of the orbits
(mi;) with their occupation numbers (w;) is equal to the mass distribution (M) of
the galaxy under consideration. One such method is advocated by Pfenniger (1984)
and described in detail in Lawson and Hanson (1974). It uses a pivoting method
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(like linear programming) to minimize the sum of squared residuals from eqn (1)
above.

A second method is the application of Lucy’s (1974) method due to Newton
and Binney (1984). Lucy’s method solves equation 1 by starting with some guess
for w; with no zero or negative components, and iterating as follows:

(9)
Qij = @y (2)
S mijuf?
w,(-gH) = ZMiQij° (3)

Lucy’s method is motivated by Bayes’s theorem on conditional probabilities. This
method turns out to work extremely well for good first guesses. Its great virtue
relative to linear programming is that it tends to produce smooth distribution
functions. It is also fairly easy to code.

Another method which has been used to construct galaxy models is a maxi-
mum entropy method using Lagrange multipliers to stay on the constraints (Rich-
stone and Tremaine 1986). Any entropy of the form Zj Sj(w;) can be maximized
subject to those constraints by solving

S;- - Z Aimg; = 0. (4)

subject to equation 1, where SJ'- = 38S5;/0wj. This can be accomplished by guessing
w; , and expanding eq (4) as a Taylor series to get

¥ Aimgj — S}
fuy = ZA T ®)
J

for Aw; and multiplying by m; and summing to get

.. . S

miimg

S>> _J§"__J) = pmis + AMg, 6)
i j J Jj 7

for A;. Eqn 6 is solved first for the A; and eqn 5 is then solved for the Aw; . This

method converges very rapidly, but requires the solution of a set of linear equations

(for the ;) at each step.

Statler (unpublished) has shown that the Binney-Newton-Lucy method leads
to a variety of different solutions in the solution space. We have compared the
operation of this method and the maximum entropy method for a toy problem and
found that the maximum entropy method usually finds a solution in about 1/5 the
number of iterations of the BNL method, but then spends more time finding the
particular solution with maximum entropy. The virtue of the maximum entropy
method is that it produces a solution to the problem which is well defined in terms
of some principle.

It does not seem appropriate to regard the classical entropy f In(f) as having
any particular significance for galaxies. They are, after all, only violently relaxed
(see Tremaine, Henon, and Lynden-Bell 1986). Their further diffusion in phase
space occurs on a timescale much longer than the age of the Universe. In this view,
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the entropy serves as a device to avoid negative occupation numbers and produce
a smooth distribution function. For this purpose, other choices of an ‘entropy’
function would suffice, and we have explored other choices. All models displayed
below were constructed using the classical definition.

2. MODELS

Various authors have employed these methods to construct spherical galaxy models
during the last few years. Here I first want to display two maximum entropy models
(using the classical entropy) with mass distributions of a Plummer Model and of
an r1/4 law. Both models were rescaled in mass to have the same observed velocity
dispersion. Note that in each case the dispersion profile slightly favors tangential
anisotropy at large radii. In these cases, the maximum entropy method described
above converges to a solution in less than 4 iterations, and finds a maximum to
reasonable precision in 10 iterations.
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Figure 1. — Dynamical properties of a maximum entropy Plummer model. Left box
shows the observed dispersion for a nonrotating model (solid line), and the maxi-
mum rotation rate as described in the text (dotted line) as a function of projected
radius. The right box show the o,, o; for a nonrotating model and the maximum
rotation rate as a function of radius.

One important use of these methods is to improve our understanding of galac-
tic nuclei. Since the most popular theory of quasars uses supermassive black holes
for energy production, the demonstration that they are present in galactic nuclei
would provide strong support for that view. Starting with Young et. al. (1978) and
Sargent et. al. (1978) various investigators have addressed these issues. Tremaine
and I (1985) have recently reviewed the history of work on M87. For that particular
galaxy, only one additional footnote seems appropriate here. Not only (as Duncan
and Wheeler(1980) and Binney and Mamon pointed out) is it possible to construct
constant M/L models for the galaxy. It is even (especially if Dressler’s(1980) results
for the dispersion near the center are correct) easy to make a variety of constant
M/L models consistent with the observations, including models with only mildly
anisotropic velocity dispersions. Such a model is displayed below.
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Figure 2. — Same as Figure 1 for a deVaucouleurs law mass distribution.
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Figure 3. — A dynamical model for M87. The double horizontal lines in the left box
are the 1o upper and lower error bars from observations. Otherwise the quantities
plotted are the same as in Figures 1 and 2. The units are km/sec and arcseconds.

The situation is much more interesting in the case of M32, which has been
studied by Tonry (1984) and Dressler (1984) and now by Kormendy (this meeting).
M32 displays a sharp jump in velocity dispersion, which may be unresolved rapid
rotation. Tonry remarked that the rotation curve of M32, which reaches about 40
km/sec at about 3 arcseconds (12 pc) from the center, must be lowered by seeing.
Seeing has a particularly significant effect on rotation curves, since it carries light
from the wrong side of the minor axis into the slit. Tonry modeled the rotation
curve with various profiles, concluding that the true rotation at about 3 arcseconds
was about 70 km/sec and that it must rise still further at smaller radii. He stated
that this established a higher M/L inside 2 arcseconds than outside 2 arcseconds.

I have attempted to verify this statement by using the maximum entropy
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method to construct M32 models consistent with the observed velocity dispersions
with the maximum amount of rotation at the center consistent with a spherical
model. The maximum rotation rate for a given orbit at a given point can be shown
to be 2/7(J2/r?)'/? . The M32 model with maximum rotation near 1 arcsecond is
shown below. Note that the projected rotation velocity near 1-3 arcseconds is only
60 km/sec . I felt that this discrepancy of 60 vs 70 km/sec was too small to justify
Tonry’s claims for this object, but now that Kormendy has demonstrated that the
rotation velocity of the galaxy must continue to rise inside 2 arcseconds it is clear
that the M/L must rise above the 2.4 & 0.1 (red) that characterizes larger radii
in this galaxy. This makes M32 a prime candidate for a black hole in the 107 Mg

range.
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Figure 4. — Same as Figure 3 for M32.

In retrospect, M31 and M32 should have been studied all along, since the
maximum radius at which such an object can make its influence felt is defined by

r = aGMy [v?, (7

where M}, is the mass of the black hole, v characterizes the velocities of the stars
near the center of the galaxy, and « is of order unity. So, in order to ‘see’ the black
hole in a galaxy, it must have a minimum mass of order
o2Dg

where D is the distance to the galaxy, 6 is the observational spatial resolution and
o is the system’s velocity dispersion. M32, with its dispersion of 60 km/sec and its
distance of 700 kpc, presents a minimum detectable black hole mass near 10 Mg,
while M87, at 15Mpc and o = 300 km/sec has 2 minimum mass near 1.5 x 10°Mg,
£for 6 = 1 arcsec) so a 108 Mg object in M87 will never be dynamically detectable
rom the ground.

An interesting sidelight of the careful work on M87 and M32 is that the
systemic M/L ratios for these systems are now quite well constrained, from about
2 arcseconds to about 30 arcseconds, assuming that the mass follows the light over
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that range in radius. In that case, M/L for M87 is 10 & 2 (in B), while for M32
it is 2.4 £ 0.1 in Gunn red. This real difference in M/L is not an artifact of using
different bandpasses. It cannot be wriggled out of via anisotropy. It must reflect a
real difference in the stellar populations of these galaxies or of the ratio of stellar
to dark matter in them. It seems to me to support Kormendy’s sthis meeting)
statement about a trend in M /L with luminosity, although it is clearly desirable to
carry out a rather more detailed analysis of more than two systems.

One other interesting recent development in spherical galaxies has been De-
Jonghe’s calculation of the distribution of projected velocities in a Plummer model.
DeJonghe showed that the profile is bimodal if the dispersion tensor is very tan-
gentially elongated. Below we illustrate this effect for power law light distributions
in a logarithmic potential with the circular velocity everywhere unity. An isotropic
distribution function would have a Gaussian f(v,) at all radii, with dispersion given
by 02 = v2/K, where K = —dIn¢/dInr . The observed profiles are decidedly not
Gaussian. Further investigation is required to see if this effect can be observed after
convolution with a stellar template. If so, it offers a possible approach to breaking
the degeneracy between velocity dispersion and anisotropy in these models.

1(v)

1(v)

f(v)

-1

f(v)

Figure 5. — Observed velocity distributions for power law models described in text.
All models have v, = 1. Values of K were as follows: A: 2, B: 3, C: 4, D: 5.
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DISCUSSION

Jaffe: Is looking for non-gaussian velocity profiles a useful way to resolve the am-
biguities in solving for the distribution function?

Richstone: Dressler and I tried to do that for the center of M32 with a very ex-
treme distribution function. After convolution with a standard star the observed
line profile is nearly indistinguishable from a Gaussian convolved with a star. We
were discouraged and did not proceed further. Dejonghe’s work suggests that it is
worthwhile to pursue this question at large radii.

Lupton: In view of the short relaxation time in the core of M32 (~ %Ho_ 1), does
a one—component, constant M/L model make any sense?

Richstone: At ~ 1" the relaxation time is about 1Hy'. The traditional logic in
searching for black holes or dark matter is to see first whether they are mandated by
a failure to produce a constant M/L model. In this case, it seems to be impossible
to fit the observed velocities with a constant M /L model.
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Kormendy: The core radius of M32 is << 1”. At r. = 1.3 pc, the best limit I can
get from my observations, the relaxation time is ~ % Hubble time. The relaxation

time becomes equal to a Hubble time at about 2-3" radius.
Burstein: Over what range of radii do your M/L-estimates for M32 and M87 apply?

Richstone: About 3" to about 20” in M32. 0” to about 60" in M87. In both cases
M /L was assumed to be constant over those ranges.

King: The M/L that is derived is not global. It will apply to the region where the
velocities are observed.

Binney: A short sermon on entropy. E. T. Jaynes (e.g. Papers on probability, statis-
tics and statistical physics, ed. R. D. Rosenkrantz, Reidel 1983; also Dejonghe, H.,
1987, Astroph. J., in press) argues eloquently that the Gibbs-Boltzmann entropy
S = — 3, piInp; enjoys a special place amongst the many convex functionals that
can be used for rating probability distributions p;. Jaynes contends that S is a
purely subjective quantity that enables us to decide which of two probability dis-
tributions, that are both compatible with the available data, is more plausible.
The structure of S is enforced by the laws of probability theory, and has nothing
whatever to do with physics. In particular, the additivity of information on which
Shannon’s uniqueness proof rests, is not connected with the kind of physical ad-
ditivity that arises in extensive thermodynamic systems. Shannon’s additivity is
to do with the variation with n of amount of information communicated by telling
someone how many stars are in each of a series of phase-space cells of size nT. We
obtain the most plausible probability distribution p; = f(w;)d®w (and the only
consistent interpretation of the distribution function is as a probability density—
attempts to interpret f as some kind of stellar density generate only confusion) by
maximizing S subject to all available constraints. As Jaynes emphasizes, attacks
on the maximum-entropy procedure generally consist in obtaining manifestly ab-
surd results by failing to include an important piece of prior information in the
constraints, and we should beware of falling into this trap.

We still do not know what are the essential constraints for stellar systems. Usually
people impose values of E and M, and sometimes a constraint derived from a
theory of galaxy formation, such as the maximum phase-space density. One can
think of many other constraints, e.g., the value of a tidal radius or some kinematic
data (see also Dejonghe, ibid.). The consistent application of the maximum entropy
procedure would involve repeatedly maximizing S subject to an ever-lengthening list
of constraints, until further constraints do not significantly improve the agreement
with observation.

Finally, let me remark that the following mathematical fact is an important source
of confusion. If f,, maximizes S subject to constraints Cy,...,C,, then the distribu-
tion f,4+1 that maximizes S subject to Cy,...,C, 1 is the same as the distribution
f that maximizes S’ = — [ dw f(w) In[f(w)/fn(w)] subject to the single constraint
Cn41. In other words, one can consolidate a long list of constraints into a “prior”
fn. Later, we tend to forget about the constraints Cy,...,C, and imagine that we
are simply maximizing a new entropy S’ subject to a single constraint. There is
no objection to this way of thinking when S’ has been properly founded at an ear-
lier stage, but we should not listen to people who pull “entropies”, or H-functions
(Tremaine et al. M.N.R.A.S. 219, 285), out of thin air, and claim that they enjoy
the same status as S.
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Part of the Dutch connection: Reynier Peletier (with his back to the
camera), Andrew Pickles, Peter Teuben, Marijn Franx & Myriam
Hunink.
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