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Abstract. We report the results from our ongoing pilot investigation of the use of deep learning
techniques for forecasting the state of turbulent flows onto black holes. Deep neural networks
seem to learn well black hole accretion physics and evolve the accretion flow orders of magnitude
faster than traditional numerical solvers, while maintaining a reasonable accuracy for a long time.
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1. Introduction

My presentation was supposed to be about the new constraints on the spin of the
supermassive black hole (SMBH) in M87. Here is the bottom line from that work: we
have constrained the spin parameter to be |a∗|> 0.4 (Nemmen 2019). The spin is the
second fundamental parameter of black hole (BH) spacetimes. This constraint should set
expectations for future estimates of the M87* spin with the Event Horizon Telescope and
other observatories.

Instead, I will present some early exciting results from our pilot investigation of artifi-
cial intelligence (AI) methods as tools to accelerate numerical simulations of BH accretion
flows. Here, we address two inter-related questions: Can we make the models faster
while maintaining an accuracy comparable to explicit solvers of the fluid conservation
equations? Can deep neural networks learn fluid dynamics?

2. Deep learning

Let me begin with the fundamental problem of BH astrophysics: to figure out the
function

AGN(t) = f(M, a∗, Ṁ) (2.1)

which quantifies the complete time-evolution of “weather” around SMBHs, where M
and Ṁ are the BH mass and mass accretion rate, respectively. The challenge is that
BH weather is a complex process, requiring the solution of nonlinear, multidimensional
partial differential equations which are very time-consuming (e.g. Porth et al. 2019).
Ideally, we want those simulations to have a duration much shorter than a typical PhD
thesis timescale, so we need to make them as fast as possible.

Here, we are investigating the use of deep learning (DL) techniques for that purpose.
DL consists of using deep neural networks inspired by the way the brain works, with
a large number of layers and parameters (“neurons”) (Goodfellow, Bengio & Courville
2016). Deep neural networks are good approximators for empirical functions which are
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too complex to be have an analytical form (e.g. Cybenko 1989). It is not an exaggera-
tion to say that a considerable fraction of AI work today consists of applications—and
improvements upon—DL.

In practice, DL algorithms “learn from experience”: instead of explicitly coding the
instructions in the code, one trains the machine by showing a lot of examples and com-
paring the output of trained algorithm to a test dataset. Then, by tweaking the network
architecture and its hyperparameters, one arrives at a trained deep net (LeCun 2015). DL
is leading to several breakthroughs in many fields (e.g. Mnih et al. 2015; Silver et al. 2016;
Krizhevsky, Sutskever & Hinton 2017), including astronomy (e.g. Hausen & Robertson
2020; Zhang et al. 2019). The downsides of DL is that it is data-hungry (needs a lot of
data to be effective) and computationally expensive to train. Once trained, however, the
algorithm deploys answers very quickly.

Here, we devise the prediction challenge as a computer vision problem and infer the
evolution of the system from the sequence of input data cubes that comprise previous
states of an accreting BH. This is a data-driven, equation-free approach in which a model
learns to approximate the relevant physics from the training examples alone and not by
incorporating a priori knowledge about the equations underlying the processes. This is
similar to the work of Jaeger & Haas (2004); Tompson et al. (2016).

3. Teaching a machine about BH accretion

The training data set consists of the hydrodynamical BH accretion simulations per-
formed by Almeida & Nemmen (2020). This is a set of long-duration (durations
>105 GM/c3), 2D models designed to explore the winds produced by low-luminosity
active galactic nuclei, where a Schwarzschild BH is fed by a hot, geometrically thick
accretion flow. The specific model we chose is PNSS3, which has one of the longest
durations among the models computed by Almeida & Nemmen (2020). The numerical
simulation computes the spacetime distribution of gas densities around the BH which we
feed to the DL model.

For the learning algorithm, we use the well-known U-Net convolutional neural network
(ConvNet) architecture, which is commonly used to extract information from datasets
which involve spatial and temporal coherence (e.g. Karpathy et al. 2014). For the training,
we divide the time series data into 67.5% training, 12.5% cross-validation and 20% testing
phases. How well does the trained DL model predict the future state of the density field
around the BH?

4. Preliminary results

We quantify the performance of the DL approach by comparing a number of indicators
with those obtained from the explicit solution to the conservation equations (Duarte,
Nemmen & Navarro, in preparation). Here, we present some early, preliminary results.

The left panel of Figure 1 displays the density difference between the numerical simu-
lations (i.e. the target) and the trained ConvNet (the prediction) as a function of time.
What we mean by error here is defined in the lower left corner of Figure 1. We see that
the error gradually builds up over time, as if the predictions drifted from the ground truth
solutions of the conservation equations. The middle panel shows the target density map,
which results from solving the fluid conservation equations. The right panel corresponds
to the inferred deep learning model—the neural network’s imagination.

Figure 2 summarizes the main result of this presentation. Each panel displays the
density marginalized over the polar angle. Think of this as the average density in spher-
ical shells of increasing radii. On a first inspection, we can see that the DL forecast
and the data are virtually identical. Only after analyzing the residuals we realize that
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Figure 1. Comparison between the deep neural network’s “imagination” (indicated as predic-
tion) and the actual numerical solutions from the fluid conservation laws (the target), for a black
hole surrounded by a hot accretion flow. Left panel: time evolution of the difference between the
prediction and target (i.e. the error of the trained model). The lengths are expressed in terms
of the Schwarzschild radius. Time in gravitational units.

Figure 2. Prediction of deep learning model compared with the data from the numerical
simulations of BH accretion. The colors map the logarithm of the gas density. The density is
averaged over the polar angle. The residuals are the difference between the logarithms. The
vertical white line indicates the time at which the deep nets begin to drift away from the ground
truth.
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there are differences between the two. We see that the neural network imagines the
future well for a duration of about 5× 104GM/c3 ≈ 33tdyn, where tdyn is the dynami-
cal time at 100 Schwarzschild radii. Relatively speaking, this is a long time considering
the timescales that regulate the system. Only after 33tdyn the neural network begins
displaying symptoms of an “artificial Alzheimer’s disease”.

These results indicate that DL techniques are promising for forecasting the state of
multidimensional chaotic systems. While the trained model is performing well—i.e. repro-
ducing the target data accurately—it does so much faster than the original simulation:
about 600 times faster. The DL training was done using two NVIDIA GPUs (≈40 TFlops,
FP32); the hydrodynamic simulation was performed on a CPU cluster using 200 cores in
parallel (∼3 TFlops, FP64). Even taking into account the different performances of the
processors used, the DL model is still vastly faster than the original modeling approach
used to generate the training data.

5. Summary

This work is a pilot study of the performance of deep learning in forecasting the state
of large spatiotemporally chaotic systems comprised by turbulent flows onto black holes.
So far, we have obtained promising preliminary results. Not only deep neural networks
seem to learn well black hole accretion physics: they evolve the accretion flow ∼1000
times faster than traditional numerical solvers. The future seems bright for black hole
numerical investigations, in which science will be less restricted by hardware limitations.

This contribution is a brief teaser of the full results, which will be reported in Duarte,
Nemmen & Navarro (in preparation). We gratefully acknowledge support by FAPESP
(Fundação de Amparo à Pesquisa do Estado de São Paulo) under grant 2017/01461-2,
CAPES, and the support of NVIDIA Corporation with the donation of the Quadro P6000
GPU used for this research.
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Discussion

Weinberger: From the movie you showed us, it seems that the accretion flow is almost
stationary. I do not see much turbulence going on.

Nemmen: We have chosen for the training data a model from Almeida & Nemmen
(2020) that shows little variability, because this was the longest model we had (more
data improves the performance of the training). We are also investigating and generating
data with much more variability and comparable durations.
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Sanchez: I heard that there are also some GPU codes that solve fluid dynamics and are
faster than CPU solvers. Did you compare the speedups of your deep learning approach
with those GPU solvers?

Nemmen: I only know of one GPU solver for black hole accretion simulations, H-AMR
developed by Liska et al. In my understanding, H-AMR is obtaining speedups of about
10x when comparing GPUs and multicore CPUs. Our early results indicate a speedup
of about 1000x using a good GPU of the kind that gamers use. So it seems that a DL
approach would offer a great cost-benefit. But much remains to be investigated yet.

Wylezalek: Can you trust the predictions of an algorithm that does not solve the
physical laws? In other words, can you really do physics without doing physics? You
don’t know what the AI algorithm is really doing, how it arrives at a given answer.

Nemmen: This is a big issue in AI nowadays: the issue of explainability—explaining how
the neural networks arrive at a given output. I do not have an answer for that. But I do
know that there is progress in this front by some AI research groups. Using AI for the
purpose described in this presentation involves a shift in the underlying philosophy of
the numerical simulations. What if it does indeed work well for forecasting while being
much faster than current simulations? I think this is a very interesting question.
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