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On the Maximal Operator Ideal Associated
with a Tensor Norm Defined by
Interpolation Spaces

M. E. Puerta and G. Loaiza

Abstract. The classical approach to studying operator ideals using tensor norms mainly focuses on

those tensor norms and operator ideals defined by means of ℓp spaces. In a previous paper, an inter-

polation space, defined via the real method and using ℓp spaces, was used to define a tensor norm, and

the associated minimal operator ideals were characterized. In this paper, the next natural step is taken,

that is, the corresponding maximal operator ideals are characterized. As an application, necessary and

sufficient conditions for the coincidence of the maximal and minimal ideals are given. Finally, the

previous results are used in order to find some new metric properties of the mentioned tensor norm.

1 Introduction

In [17, 18] Matter introduced the notion of (p, σ)-absolutely continuous operators

(1 ≤ p < ∞, 0 < σ < 1) between Banach spaces. For each choice of p and σ,

these operators form an ideal. One of the most significant features of these ideals

is their close relationship with typical calculation procedures in interpolation space

theory. This is the case in [17], where interpolation spaces are defined by the real

method and are used as essential tools in the characterization of some of the oper-

ators Matter introduced. Even though the ideals treated by Matter are all maximal,

there is no attempt in [17, 18] to exploit the important relation between these ideals

and tensor norms. This relation was used in [16] for the case 1 < p < ∞, where the

ideals of nuclear and integral operators corresponding to a tensor norm were charac-

terized by means of factorizations through interpolation spaces. The case p = 1 was

studied in [2]. These works put in evidence the role interpolation spaces may play in

defining tensor norms that are more general than the classical ones. Each new tensor

norm poses the problem of characterizing the associated (in the sense of [7]) nuclear

and integral operator ideals. In [19], the authors introduced a tensor norm gc
ξ by

means of an interpolation space ξ and characterized the associated minimal opera-

tor ideals. The aim of the present paper is to give a characterization of the maximal

operator ideal associated to this tensor norm, apply this and the characterization ob-

tained in [19] to the study of the coincidence between components of the maximal

and minimal operator ideals, and use these coincidence results to prove some metric

properties of gc
ξ and its dual.
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Notation is standard. We will always consider Banach spaces over the real field,

since we shall use results in the theory of Banach lattices. The canonical inclusion

map from Banach space E into the bidual E ′ ′ will be denoted by JE. In general, if

E is a subspace of F, the inclusion of E into F is denoted by IE,F . The set of finite

dimensional subspaces of a normed space E will be denoted by FIN(E).
We recall the more relevant aspects on Banach lattices (we refer the reader to [1]).

A Banach lattice E is order complete or Dedekind complete if every order bounded set

in E has a least upper bound in E, and it is order continuous if every order convergent

filter is norm convergent. Every dual Banach sequence lattice E ′ is order complete

and all reflexive spaces are even order continuous. A linear map T between Banach

lattices E and F is said to be positive if T(x) ≥ 0 in F for every x ∈ E, x ≥ 0. T is

called order bounded if T(A) is order bounded in F for every order bounded set A

in E.
Let ω be the vector space of all scalar sequences and ϕ its subspace of the sequences

with finitely many nonzero coordinates. A sequence space ξ is a linear subspace of

ω containing ϕ provided with a topology finer than the topology of coordinatewise

convergence. A Banach sequence space will be a sequence space ξ provided with a

norm that makes it a Banach lattice and an ideal in ω, i.e., such that if |x| ≤ |y| with

x ∈ ω and y ∈ ξ, then x ∈ ξ and ‖x‖ξ ≤ ‖y‖ξ . A sectional subspace Sk(ξ), k ∈ N,
is the topological subspace of ξ of those sequences (αi) such that αi = 0 for every

i ≥ k. Clearly Sk(ξ) is 1-complemented in ξ. A Banach sequence space ξ will be

called regular whenever the sequence {ei}
∞
i=1, where ei := (δi j) j (Kronecker’s delta)

is a Schauder base in ξ.

Following [19], we establish some notation. Given a Banach space E and the

compatible couple λ = (ℓp0
, ℓp1

) with 1 < p0 ≤ p1 < ∞ and its dual couple

λ ′
= (ℓp ′

0
, ℓp ′

1
), we will denote by λq,J, λq,K the interpolation spaces obtained using

methods J and K, respectively, from the couple λ (see [3]). Analogously, we denote

by λ ′
q,J, λ ′

q,K the interpolation spaces obtained from the couple λ ′. With this no-

tation, if 1 ≤ q < ∞ and 0 < θ < 1, dual spaces (λq,J) ′ = ((ℓp0
, ℓp1

)θ,q,J) ′ =

(ℓp ′

0
, ℓp ′

1
)θ,q ′,K = λ ′

q ′,K. We can see that (λq,J) ′ 6= λ ′
q,J. Recalling the duality for

method K, since λq,J is reflexive for 1 ≤ q < ∞, we get the isometry

(λ ′
q ′,K) ′ = λq,J.

We say that a sequence (xn)∞n=1 ∈ EN is strongly λq,J-summing if (‖xn‖) ∈ λq,J,

and we write πλq,J
((xi)) := ‖(‖xi‖)∞i=1‖λq,J

. It is said to be weakly λq,J-summing if

ελq,J
((xi)) := sup‖x ′‖≤1 ‖(|〈xn, x ′〉|)‖λq,J

. We denote by λq,J[E] (resp. λq,J(E)) the

space of all strongly (resp. weakly) λq,J-summing in E with the norm πλq,J
( · ) (resp.

ελq,J
( · )).

Let (Ω,Σ, µ) be a measure space. We denote by L0(µ) the space of equivalence

classes, modulo equality µ-almost everywhere, of µ-measurable real-valued func-

tions, endowed with the topology of local convergence in measure, and the space of

all equivalence classes of µ-measurable X-valued functions is denoted by L0(µ, X).

By a Köthe function space K(µ) on (Ω,Σ, µ), we shall mean an order dense ideal

of L0(µ), which is equipped with a norm ‖ · ‖K(µ) that makes it a Banach lattice (if

f ∈ L0(µ) and g ∈ K(µ) | f | ≤ |g|, then f ∈ K(µ) with ‖ f ‖K(µ) ≤ ‖g‖K(µ)).
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Similarily, K(µ, X) = { f ∈ L0(µ, X) : ‖ f ( · )‖X ∈ K(µ)}, endowed with the norm

‖ f ‖K(µ,X) = ‖‖ f ( · )‖X‖K(µ).

For the theory of operator ideals and tensor norms, we refer to the books [21] and

[7] of Pietsch and Defant and Floret respectively.

If E and F are Banach spaces and α is a tensor norm, then E ⊗α F represents the

space E ⊗ F endowed with the α-normed topology. The completion of E ⊗α F is

denoted by E⊗̂αF, and the norm of z in E⊗̂αF by α(z; E ⊗ F). If there is no risk of

confusion, we write α(z) instead of α(z; E ⊗ F).

2 The Tensor Norm gλq,J
and Associated λq,J-Nuclear Operators

The more natural approach to defining a tensor norm analogous to Saphar’s tensor

norm is as follows. Let E and F be Banach spaces and z ∈ E ⊗ F, we define

gλq,J
(z; E ⊗ F) := inf πλq,J

((xn))ελ ′

q ′ ,K
((yn))

taking the infimum over all representations of z as
∑m

n=1 xn⊗yn. We will write gλq,J
(z)

instead of gλq,J
(z; E ⊗ F) if there is no possibility of confusion.

It is possible that for some interpolation space λq,J, the functional gλq,J
does not

satisfy the triangle inequality, but it is always a reasonable quasi norm on E⊗F, see [6,

9]. We denote by E⊗gλq,J
F the quasi normed space and by E⊗̂gλq,J

F the corresponding

quasi Banach space.

To obtain a tensor norm gc
λq,J

in [19], we took the Minkowski functional, denoted

gc
λq,J

(z; E ⊗ F), of the absolutely convex hull of the unit closed ball Bgλq,J
:= {z ∈

E ⊗ F/gλq,J
(z) ≤ 1} of the quasi norm gλq,J

in E ⊗ F, such that

gc
λq,J

(z; E ⊗ F) := inf
n∑

i=1

πλq,J
((xi j))ελ ′

q ′ ,K
((yi j)),

taking the infimum over all representations of z as
∑n

i=1

∑m
j=1 xi j ⊗ yi j . Again, we

will write gλq,J
instead of gλq,J

(z; E ⊗ F) if there is no possibility of confusion.

It is easy to see that gc
λq,J

is a tensor norm on the class of all Banach spaces, using

[7, Criterion 12.2] and bearing in mind that if 1 ≤ q ≤ ∞, then

∥∥ (ei)
∥∥

λq,J
= ̟−1

q y
∥∥ (ei)

∥∥
λq,K

= ̟q,

where

̟q =

(∫ ∞

0

( min{1, t}

tθ

) q dt

t

) 1
q

for every i ∈ N, in relation to method K and that for all z ∈ E ⊗ F, gc
λq,J

(z; E ⊗ F) ≤

gλq,J
(z; E ⊗ F). We denote by E⊗̂gc

λq,J
F the corresponding Banach space.

Proceeding as in [6, 23], it is easy to see that if z ∈ E⊗̂gλq,J
F, there are (xi)

∞
i=1 ∈

λq,J[E] and (yi)
∞
i=1 ∈ λ ′

q ′,K(F) such that πλq,J
((xi))ελ ′

q ′ ,K
((yi)) < ∞ and z =

https://doi.org/10.4153/CMB-2010-075-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2010-075-6


Maximal Operator Ideal Associated with a Tensor Norm Defined by Interpolation Spaces 693

∑∞
i=1 xi ⊗ yi . Moreover, the quasi norm of z in E⊗̂gλq,J

F (again denoted by gλq,J
(z))

is given by

gλq,J
(z) = inf πλq,J

((xi))ελ ′

q ′ ,K
((yi))

taking the infimum over all such representations of z as
∑m

n=1 xn ⊗ yn. Similarly, if

z ∈ E⊗̂gc
λq,J

F then z can be represented as z =
∑∞

i=1

∑∞
j=1 xi j ⊗ yi j , where (xi j)

∞
i=1 ∈

λq,J[E] for each j ∈ N, (yi j)
∞
i=1 ∈ λ ′

q ′,K(F) for each j ∈ N and

∞∑
j=1

πλq,J
((xi j))ελ ′

q ′ ,K
((yi j)) < ∞.

Moreover, the norm of z in E⊗̂gc
λq,J

F is

gc
λq,J

(z) = inf
∞∑
j=1

πλq,J
((xi j))ελ ′

q ′ ,K
((yi j)),

taking the infimum over all representations of z as
∑∞

i=1

∑∞
j=1 xi j ⊗ yi j .

The topology defined by the quasi norm gλq,J
on E ⊗ F is normable with norm

equivalent to gc
λq,J

. In fact, being λq,J a reflexive interpolation space for 1 ≤ q < ∞

and following the arguments of [6, Proposition 16], we consider the bilinear onto

map R : λq,J[E] × λ ′
q ′,K(F) → E⊗̂gλq,J

F, such that R((xi), (yi)) =
∑∞

i=1 xi ⊗ yi . R

is continuous with quasi norm less than or equal to one. Then there exists a unique

linear and continuous map λq,J[E] ⊗π λ ′
q ′,K(F) → E⊗̂gλq,J

F, see [25]. This map can

be extended to a continuous linear and onto map λq,J[E]⊗̂πλ
′
q ′ ,K(F) → E⊗̂gλq,J

F

which is open by the open mapping theorem. Then E⊗̂gλq,J
F is isomorphic to a quo-

tient of a Banach space and so it is a Banach space itself. In this way, there is a norm

wλq,J
( · ; E ⊗ F) equivalent to the quasi norm gλq,J

( · ; E ⊗ F); furthermore, it is easy

to see that wλq,J
( · ; E ⊗ F), gλq,J

( · ; E ⊗ F) and gc
λq,J

( · ; E ⊗ F) are equivalent with

gc
λq,J

( · ; E ⊗ F) ≤ wλq,J
( · ; E ⊗ F). Given the last equivalence, gλq,J

seems appropriate

for our purposes, but we need gc
λq,J

for our main results.

To introduce λq,J-nuclear operators, bearing in mind that every representation of

z ∈ E ′⊗̂gc
λq,J

F as
∑∞

i=1

∑∞
j=1 xi j ⊗ yi j , defines a map Tz ∈ L(E, F) such that for

x ∈ E,

Tz(x) :=
∞∑
i=1

∞∑
j=1

〈x ′
i j , x〉yi j .

Furthermore, Tz is well defined and independent of the chosen representation for z.

Let ΦEF : E ′⊗̂gc
λq,J

F → L(E, F) be defined by ΦEF(z) := Tz.

Definition 2.1 An operator between Banach spaces T : E → F is said to be λq,J-nu-

clear if T = ΦEF(z) for some z ∈ E ′⊗̂gc
λq,J

F.

Given any pair of Banach spaces E and F, the space of the λq,J-nuclear operators

T : E → F endowed with the topology of the norm

Nc
λq,J

(T) := inf{gc
λq,J

(z)/ΦEF(z) = T},
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or with the equivalent quasi-norm Nλq,J
(T) := inf{gλq,J

(z)/ΦEF(z) = T}, is denoted

by Nλq,J
(E, F). Also (Nλq,J

(E, F), Nc
λq,J

) denotes a component of the minimal Banach

operator ideal (Nλq,J
, Nc

λq,J
) associated to the tensor norm gc

λq,J
. As in [19], we obtain

the following result.

Theorem 2.2 Let E, F be any pair of Banach spaces and an operator T ∈ L(E, F).

Then the following are equivalent:

(i) T is λq,J-nuclear.

(ii) T factors continuously in the following way:

ℓ∞

E

A
?

-
B

λq,J

6
F

C

-
T

where B is a diagonal multiplication operator defined by a positive sequence

(bi) ∈ λq,J.
Furthermore, Nλq,J

(T) = inf{‖C‖‖B‖‖A‖}, infimum taken over all such factors.

(iii) T factors continuously in the following way:

ℓ∞[ℓ∞]

E

A
?

-
B

ℓ1[λq,J]

6
F

C

-
T

where B is a diagonal multiplication operator defined by a positive sequence

(bi) ∈ ℓ1[λq,J].

Furthermore. Nc
λq,J

(T) = inf{‖C‖‖B‖‖A‖}, infimum taken over all such factors.

There are other important operator ideals associated with gλq,J
and gc

λq,J
.

Definition 2.3 Let T ∈ L(E, F). We say that T is λq,J-absolutely summing if a real

number C > 0 exists such that for all sequences (xi) in E, with ελq,J
((xi)) < ∞, the

following is satisfied:

(2.1) ‖(T(xi))‖λq,J
≤ Cελq,J

((xi)).

For Pλq,J
(E, F), we denote the Banach ideal of the λq,J-absolutely summing oper-

ators T : E → F endowed with the topology of the norm Pλq,J
(T) := inf C , taking the

infimum over all C that satisfies (2.1).

Theorem 2.4 Let E and F be Banach spaces. Then (E ⊗gc
λq,J

F) ′ = Pλ ′

q ′ ,K
(F, E ′)

isometrically.
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3 λq,J-Integral Operators

In this paper, we give a characterization of the maximal operator ideal by consider-

ing the structure of finite dimensional subspaces of the interpolation spaces involved.

The behavior of the interpolation sequences spaces under ultraproducts is also cru-

cial, see [14, 15].

For ultraproducts of Banach spaces, we refer the reader to [11]. We only set the

notation we will use. Let D be a nonempty index set and U a non-trivial ultrafilter in

D. Given a family {Xd, d ∈ D} of Banach spaces, (Xd)U denotes the corresponding

ultraproduct Banach space. If every Xd, d ∈ D, coincides with a fixed Banach space X,

the corresponding ultraproduct is called an ultrapower of X and is denoted by (X)U.
Recall that if every Xd, d ∈ D is a Banach lattice, (Xd)U has a canonical order that

makes it a Banach lattice. If we have another family of Banach spaces {Yd, d ∈ D}
and a family of operators {Td ∈ L(Xd,Yd), d ∈ D} such that supd∈D ‖Td‖ < ∞,

then (Td)U ∈ L((Xd)U, (Yd)U) denotes the canonical ultraproduct operator.

We now give a local definition that was inspired by Gordon and Lewis’ definition

of local unconditional structure.

Definition 3.1 Given a sequence space ξ, we say that a Banach space X has an

Sk(ξ)-local unconditional structure if there exists a real constant c > 0 such that

for every finite dimensional subspace F of X, there is a section Sn(ξ) of ξ and linear

operators u : F → Sn(ξ) and v : Sn(ξ) → X such that ‖u‖‖v‖ ≤ c and vu = IF,X .

The constant c that appears in above definition is called a Sk(ξ)-local uncondi-

tional structure constant of X, and in this case we say that X has c-Sk(ξ)-local uncon-

ditional structure. If a Banach space X has c-Sk(ξ)-local unconditional structure for

every c > C , we say that it has C+-Sk(ξ)-local unconditional structure.

The following definition was introduced by Pelczyǹski and Rosenthal in 1975 [20].

Definition 3.2 A Banach space X has the uniform projection property if there is a

b > 0 such that, for each natural number n, there is a natural number m(n) such

that, for every n-dimensional subspace M ⊂ X, there exists a k-dimensional and

b-complemented subspace Z of X containing M with k ≤ m(n).

The constant b of the above definition is called a uniform projection property

constant of X, and in this case we say that X has the b-uniform projection property.

If X has the b-uniform projection property for every b > B, we say that X has the

B+-uniform projection property.

Now, the uniform projection property is satisfied by Lp spaces for 1 < p < ∞
[20], and since λq,J is an interpolation space defined by means of ℓp1

and ℓp0
, with

1 < p0 ≤ p1 < ∞, with continuous inclusions ℓp0
⊂ λq,J ⊂ ℓp1

, the uniform

projection property is satisfied by λq,J

Furthermore, if 1 ≤ p ≤ ∞, then the Bochner space Lp(µ, E) and ℓp(E) has the

b-uniform projection property if E does, see [11]. We highlight that the uniform pro-

jection property is stable under ultrapowers, see [11]. Moreover, from [22], since λq,J

is reflexive, then every ultrapower of ℓ1[λq,J] ( of λq,J) has 1+-Sr(ℓ1)[Sk(λq,J)]-local

unconditional structure (resp. 1+-Sk(λq,J)-local unconditional structure).
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According to the general theory of tensor norms and operator ideals, the normed

ideal of λq,J-integral operators (Iλq,J
, Iλq,J

) is the maximal operator ideal associated

with the tensor norm gc
λq,J

in the sense of Defant and Floret [7], or in an equiva-

lent way, the maximal normed operator ideal associated with the normed ideal of

λq,J-nuclear operators in the sense of Pietsch [21]. From [7], for every pair of Ba-

nach spaces E and F, an operator T : E → F is λq,J-integral if and only if JFT ∈
(E⊗(gc

λq,J
) ′F ′) ′.

For every pair of Banach spaces E, F we define the finitely generated tensor norm

g ′
λq,J

such that if M ∈ FIN(E) and N ∈ FIN(F), for every z ∈ M ⊗ N,

g ′
λq,J

(z; M ⊗ N) := sup
{
|〈z, w〉|/gλq,J

(w; M ′ ⊗ N ′) ≤ 1
}

.

Clearly, g ′
λq,J

= (gc
λq,J

) ′, since the unit ball in M ′⊗gc
λq,J

N ′ is the convex hull of the

unit ball of M ′⊗gλq,J
N ′. But we remark that E ′⊗gc

λq,J
F ′ (and no E ′⊗gλq,J

F ′ ) is an

isometric subspace of (E⊗g ′

λq,J
F) ′ because gc

λq,J
is finitely generated, see [7, 15.3].

In this case, we define Iλq,J
(T) to be the norm of JFT considered as an element of

the topological dual of the Banach space E ⊗g ′

λ
F ′. Remark that Iλq,J

(T) = Iλq,J
( JFT)

as a consequence of F ′ being canonically complemented in F ′ ′ ′.
First we give a non trivial example of λq,J-integral operators.

Theorem 3.3 Let (Ω,Σ, µ) be a measure space and let λq,J be an interpolation space.

Then every order bounded operator S : L∞(µ) → λq,J and every order bounded operator

S : L∞(µ) → ℓ1[λq,J] are λq,J-integral with Iλq,J
(S) = ‖S‖.

Proof We will only give the proof if S : L∞(µ) → λq,J is an order bounded operator,

since the proof in the other case is similar.

The predual space of λq,J is λ ′
q ′,K, which is a regular space for 1 ≤ q < ∞,

because λ ′
q ′,K is an interpolation space between regular spaces ℓp ′

0
and ℓp ′

1
with 1 <

p0 ≤ p1 < ∞, where ℓp ′

1
is dense in λ ′

q ′,K and λ ′
q ′,K is dense in ℓp ′

0
. Then, the linear

span T of the set {ei , i ∈ N} is dense in λ ′
q ′,K and by the representation theorem of

maximal operator ideals (see [7, 17.5]) and the density lemma ([7, Theorem 13.4])

we only have to see that S ∈ (L∞(µ) ⊗g ′

λq,J
T) ′.

Given z ∈ L∞(µ)⊗g ′

λq,J
T and ε > 0, let X and Y be finite dimensional subspaces

of L∞(µ) and T respectively such that z ∈ X ⊗ Y and

g ′
λq,J

(z; X ⊗ Y ) ≤ g ′
λq,J

(z; L∞(µ) ⊗ T) + ε.

Let {gs}
m
s=1 be a basis for Y and let k ∈ N be such that ∀1 ≤ s ≤ mgs =

∑k
i=1 csiei .

Then ∀ f ∈ X,∀1 ≤ s ≤ m

〈S, f ⊗ gs〉 = 〈 f , S ′(gs)〉 =

〈
f ,

( k∑
i=1

csi

)
S ′(ei)

〉
=

〈
f ⊗

k∑
j=1

cs je j ,
k∑

i=1

S ′(ei) ⊗ ei

〉
.

Then if U denotes the tensor U :=
∑k

i=1 S ′(ei)⊗ei ∈ L∞(µ) ′⊗λq,J, by bilinearity

we get ∀z ∈ X ⊗ Y 〈z, S〉 = 〈U , z〉.
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Given ν > 0, for every 1 ≤ i ≤ k there is fi ∈ L∞(µ) such that ‖ fi‖ ≤ 1 and

‖S ′(ei)‖ ≤ |〈S ′(ei), fi〉| + ν. Then f := sup1≤i≤k fi lies in the closed unit ball of

L∞(µ). On the other hand, λq,J is a dual lattice and hence it is order complete. By

the Riesz–Kantorovich theorem (see [1, Theorem 1.13], for instance), the modulus

|S| of the operator S exists in L(L∞(µ), λq,J). By the lattice properties of λq,J, we

have

πλq,J
((S ′(ei)) = πλq,J

( k∑
i=1

‖S ′(ei)‖ei

)

≤ πλq,J

( k∑
i=1

|〈S ′(ei), fi〉|ei

)
+ νπλq,J

( k∑
i=1

ei

)

≤ πλq,J

( k∑
i=1

|〈S( fi), ei〉|ei

)
+ νπλq,J

( k∑
i=1

ei

)

≤ πλq,J

( k∑
i=1

〈|S( fi)|, ei〉
)

+ νπλq,J

( k∑
i=1

ei

)

≤ πλq,J

( k∑
i=1

〈|S|(| fi |), ei〉ei

)
+ νπλq,J

( k∑
i=1

ei

)

≤ πλq,J

( k∑
i=1

〈|S|(| f |), ei〉ei

)
+ νπλq,J

( k∑
i=1

ei

)

= πλq,J
(|S|(| f |)) + νπλq,J

( k∑
i=1

ei

)
≤ ‖|S|‖ + νπλq,J

( k∑
i=1

ei

)
.

Moreover, ελ ′

q ′ ,K
((ei)

k
i=1) ≤ 1. Hence, denoting by IX and IY the corresponding

inclusion maps into L∞(µ) and λq,J respectively, we have

|〈S, z〉| = |〈U , z〉| = |〈U , ((IX) ′ ⊗ (IY ) ′)(z)〉|

≤ gc
λq,J

(U ; X ⊗ Y )g ′
λq,J

(((IX) ′ ⊗ (IY ) ′)(z); X ′ ⊗ Y ′)

≤ gλq,J
(U ; X ⊗ Y )g ′

λq,J
(((IX) ′ ⊗ (IY ) ′)(z); X ′ ⊗ Y ′)

≤ (gλq,J
(U ; L∞ ⊗ (λq,J)) + ε)g ′

λq,J
(z; L∞(µ) ⊗ λ ′

q ′,K)

≤ g ′
λq,J

(z; L∞(µ) ⊗ λ ′
q ′,K)(πλq,J

((S ′(ei))ελ ′

q ′ ,K
((ei)) + ε)

≤ g ′
λq,J

(z; L∞(µ) ⊗ λ ′
q ′,K)

(
‖|S|‖ + νπλq,J

( k∑
i=1

ei

)
+ ε

)
,

and, ν being arbitrary, |〈S, z〉| ≤ g ′
λq,J

(z; L∞(µ)⊗λ ′
q ′,K)(‖|S|‖+ ε). Finally, since ε is

arbitrary, we get |〈S, z〉| ≤ g ′
λq,J

(z; L∞(µ) ⊗ λ ′
q ′,K‖|S|‖. But from [1, Theorem 1.10],

|S|(χΩ) = sup{|S( f )|, | f | ≤ χΩ} and as λq,J is order continuous,

‖|S|‖ = ‖|S|(χΩ)‖ = sup{‖|S( f )|‖, ‖ f ‖ ≤ 1} = ‖S‖.

https://doi.org/10.4153/CMB-2010-075-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2010-075-6


698 M. E. Puerta and G. Loaiza

Then S is λq,J−integral with Iλq,J
(S) ≤ ‖S‖. But as (Iλq,J

, Iλq,J
) is a Banach operators

ideal, ‖S‖ ≤ Iλq,J
(S), hence Iλq,J

(S) = ‖S‖.

Corollary 3.4 Let (Ω,Σ, µ) be a measure space and n, k ∈ N. Then every opera-

tor T : L∞(µ) → Sk(λq,J) and every operator T : L∞(µ) → Sn(ℓ1)[Sk(λq,J)] satisfy

Iλq,J
(T) = ‖T‖.

Proof The result follows easily from Theorem 3.3, since every operator T : L∞(µ) →
Sk(λq,J) (T : L∞(µ) → Sn(ℓ1)[Sk(λq,J)] in the other case) is order bounded and

Sk(λq,J) (resp. Sn(ℓ1)[Sk(λq,J)]) is reflexive, hence order continuous.

For our next theorem we need a very deep technical result of Lindenstrauss and

Tzafriri [13] that gives us a kind of “uniform approximation” of finite dimensional

subspaces by finite dimensional sublattices in Banach lattices.

Lemma 3.5 ([13]) Let ε > 0 and n ∈ N be fixed. There is a natural number h(n, ε)

such that for every Banach lattice X and every subspace F ⊂ X of dimension dim(F) =

n, there are h(n, ε) disjoints elements {zi , 1 ≤ i ≤ h(n, ε)} and an operator A from F

into the linear span G of {zi , 1 ≤ i ≤ h(n, ε)} such that

∀x ∈ F‖A(x) − x‖ ≤ ε‖x‖.

Theorem 3.6 Let λq,J be a interpolation space, regular for 1 ≤ q < ∞, G an abstract

M-space, and X a Banach space with c-Sk(λq,J) or c-Sk(ℓ1)[Sn(λq,J)]-local uniform

structure . Then every operator T : G −→ X is λq,J-integral and Iλq,J
(T) ≤ c‖T‖.

Proof We will prove the case where X has c-Sk(λq,J)-local unconditional structure

since the other case is similar. By the representation theorem of maximal operator

ideals (see [7, 17.5]), we only need to show that JXT ∈ (G ⊗g ′

λq,J
X ′) ′.

Given z ∈ G ⊗ X ′ and ε > 0, let P ⊂ G and Q ⊂ X ′ be finite dimensional

subspaces and let z =
∑n

i=1 fi ⊗ x ′
i be a fixed representation of z with fi ∈ P and

x ′
i ∈ Q, i = 1, 2, . . . , n such that

g ′
λq,J

(z; G ⊗ X ′) ≤ g ′
λq,J

(z; P ⊗ Q) ≤ g ′
λq,J

(z; G ⊗ X ′) + ε.

From Lemma 3.5, we have a finite dimensional sublattice P1 of G and an operator

A : P → P1 so that ∀ f ∈ P, ‖A( f ) − f ‖ ≤ ε‖ f ‖. Then, if idG denotes the identity

map on G, we have

|〈 JXT, z〉| =

∣∣∣
n∑

i=1

〈T( fi), x ′
i 〉

∣∣∣ ≤
∣∣∣

n∑
i=1

〈T(idG − A)( fi), x ′
i 〉

∣∣∣ +
∣∣∣

n∑
i=1

〈TA( fi), x ′
i 〉

∣∣∣

≤ ε‖T‖
n∑

i=1

‖ fi‖‖x ′
i ‖ +

∣∣∣
n∑

i=1

〈TA( fi), x ′
i 〉

∣∣∣ .

Let X1 := T(P1). As X has Sk(λq,J)-local unconditional structure, there are k ∈ N,

u : X1 → Sk(λq,J) and v : Sk(λq,J) → X such that IX1,X = vu and ‖u‖‖v‖ ≤ c.
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Let X2 := vu(X1), which is a finite dimensional subspace of X containing X1 and

IX1,X2
= vu. Put K2 : X ′ ′ ′ −→ X ′

2 = X ′ ′ ′/X◦
2 be the canonical quotient map. Then

n∑
i=1

〈T(A( fi)), x ′
i 〉 =

n∑
i=1

〈IX1,X2
T(A( fi)), K2(x ′

i )〉 =

n∑
i=1

〈vuT(A( fi)), K2(x ′
i )〉

=

n∑
i=1

〈uT(A( fi)), v ′K2(x ′
i )〉 = 〈uT,

n∑
i=1

A( fi) ⊗ v ′K2(x ′
i )〉

with
∑n

i=1 A( fi) ⊗ v ′K2(x ′
i ) ∈ P1 ⊗ (Sk(λq,J)) ′ and uT : P1 → Sk(λq,J). Since P1 is

a reflexive abstract M-space, it is lattice isometric to some L∞(µ) space, hence, by

Corollary 3.4, this map is λq,J-integral with Iλq,J
(uT) ≤ ‖u‖‖T‖. Then

∣∣∣
n∑

i=1

〈T(A( fi)), x ′
i 〉

∣∣∣ =

∣∣∣
〈

uT,
n∑

i=1

A( fi) ⊗ v ′K2(x ′
i )

〉∣∣∣

≤ Iλq,J
(uT)g ′

λq,J

( n∑
i=1

A( fi) ⊗ v ′K2(x ′
i

)
; P1 ⊗ Sk(λq,J))

≤ ‖u‖‖T‖g ′
λq,J

((A ⊗ v ′K2)(z); P1 ⊗ Sk(λq,J))

≤ ‖u‖‖T‖‖A‖‖v ′‖‖K2‖g ′
λq,J

(z; P ⊗ Q)

≤ (1 + ε)c‖T‖g ′
λq,J

(z; P ⊗ Q)

≤ (1 + ε)c‖T‖(g ′
λq,J

(z; G ⊗ X ′) + ε),

and since ε is arbitrary, we obtain |〈 JXT, z〉| ≤ c ‖T‖g ′
λq,J

(z; G ⊗ X ′).

Concerning the characterization theorem of λq,J-integral operators, we have the

following.

Theorem 3.7 Let λq,J be a regular interpolation space for 1 ≤ q < ∞ and let E and

F be Banach spaces. The following statements are equivalent:

(i) T ∈ Iλq,J
(E, F).

(ii) JFT factors continuously in the following way:

L∞(µ)

E

A
?

-
B

X

6
F ′ ′

C

-
JFT

where X is an ultrapower of ℓ1[λq,J] and B is a lattice homomorphism. Furthermore,

Iλq,J
(T) is equivalent to inf{‖D‖‖B‖‖A‖}, taking it over all such factors.
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Proof (i) =⇒ (ii) Let D := {(P, Q) : P ∈ FIN(E), Q ∈ FIN(F ′)}, where FIN(Y ) is

the set of finite dimensional subspace of a Banach space Y , endowed with the natural

inclusion order

(P1, Q1) ≤ (P2, Q2) ⇐⇒ P1 ⊂ P2, Q1 ⊂ Q2.

For every (P0, Q0) ∈ D, R(P0, Q0) := {(P, Q) ∈ D : (P0, Q0) ⊂ (P, Q)} and R =

{R(P, Q), (P, Q) ∈ D}. R is filter basis in D, and according to Zorn’s lemma, let D be

an ultrafilter on D containing R. If d ∈ D, Pd and Qd denote the finite dimensional

subspaces of E and F ′ respectively so that d = (Pd, Qd). For every d ∈ D, if

z ∈ Pd ⊗ Qd, JFT|Pd⊗Qd
∈ (Pd ⊗g ′

λq,J
Qd) ′ = P ′

d ⊗gλq,J
Q ′

d = Nλq,J
(Pd, Q ′

d).

Then from Theorem 2.2 of characterization of λq,J-nuclear operators, JFT|Pd⊗Qd
fac-

tors as

ℓ∞[ℓ∞]

Pd

Ad

?
-

Bd
ℓ1[λq,J]

6
Q ′

d

Cd

-
JFT|Pd⊗Qd

where Bd is a positive diagonal operator and

‖Ad‖‖Bd‖‖Cd‖ ≤ Nc
λq,J

(T|Pd⊗Qd
) + ε = Iλq,J

(T|Pd⊗Qd
) + ε.

Then

‖Ad‖‖Bd‖‖Cd‖ ≤ Iλq,J
(T|Pd⊗Qd

) + ε ≤ Iλq,J
(T) + ε

Without loss of generality, we can suppose that ‖Ad‖ = ‖Cd‖ = 1. We define

WE : E → (Pd)D such that WE(x) = (xd)D, so that xd = x if x ∈ Pd, and xd = 0 if

x /∈ Pd. In the same way, we define WF ′ : F ′ → (Qd)D such that WF ′(a) = (ad)D, so

that ad = a if a ∈ Qd, and ad = 0 if a /∈ Qd. Then we have the following commutative

diagram:

(Pd)D

E

WE

?
-

( JFT|Pd⊗Qd
)D

((Qd)D) ′(Q ′
d)D

-
I

6
F ′′

W ′
F ′

-
JFT

(ℓ∞[ℓ∞])D (ℓ1[λq,J])D

(Ad)D (Cd)D

(Bd)D

?

6

-

where I is the canonical inclusion map. As in [13] ((ℓ1[λq,J])D) ′ ′ is a 1-comple-

mented subspace of some ultrapower ((ℓ1[λq,J])D)U, which, from [24], is another
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ultrapower (ℓ1[λq,J])U1
with projection Q. The result follows with A = (Ad)D, B =

((Bd)D) ′ ′, which is a lattice homomorphism, C = PF ′ ′ ′ ′(W ′
F ′ I(Cd)D) ′ ′Q, where

PF ′ ′ ′ ′ is the projection of F ′ ′ ′ ′ in F ′′, and X = (ℓ1[λ])U1
, having in mind that as

(ℓ∞[ℓ∞])D is an abstract M-space, there is a measure space such that L∞(µ) =

((ℓ∞[ℓ∞])D) ′ ′, where equality means that the spaces are lattice isometric.

(ii) =⇒ (i) As (Iλq,J
, Iλq,J

) is an operator ideal, it follows easily from Theorem

3.6 and considering that every ultrapower of ℓ1[λq,J] has 1+-Sr(ℓ1)[Sk(λq,J)]-local

unconditional structure.

The following new formulation of the preceding characterization theorem is

needed in our context.

Theorem 3.8 Let λq,J be an interpolation space. For every pair of Banach spaces E

and F, the following statements are equivalent:

(i) T ∈ Iλq,J
(E, F).

(ii) There exists a σ-finite measure space (O, S, ν) and a Köthe function space K(ν)

that is complemented in a space with Sk(ℓ1)[Sn(λq,J)]-local unconditional struc-

ture, such that JFT factors continuously in the following way:

L∞(ν)

E

A
?

-
B

K(ν)

6
F ′′

C

-
JFT

where B is a multiplication operator for a positive function of K(ν). Furthermore

Iλq,J
(T) = inf{‖C‖‖B‖‖A‖}, taking the infimum over all such factors.

Proof Starting from Theorem 3.7, as ℓ1[λq,J] has finite cotype, see [4, 5], and addi-

tionally, ℓ1[λq,J] is order continuous ([10, 4.6]), and for [12, Theorem 1.a.9] ℓ1[λq,J]

can be decomposed into an unconditional direct sum of a family of mutually disjoint

ideals {Xh, h ∈ H} having a positive weak unit, and then from [12, 1.b.14], as ev-

ery Xh is order isometric to a Köthe space of functions defined on a probability space

(Oh, Sh, νh), then (ℓ1[λq,J])U is order isometric to a Köthe function space K(ν1) over

a measure space (O1, S1, ν1), hence we can substitute (ℓ1[λq,J])U for K(ν1) in Theo-

rem 3.7. If we denote z := B(χΩ) with z =
∑∞

i=1 yhi
, with yhi

∈ Xhi
for every i ∈ N,

then B(L∞(µ)) is contained in the unconditional direct sum of {Xhi
, i ∈ N}, which

is order isometric to a space of Köthe function space K(ν) over a σ-finite measure

space (O, S, ν), which is 1-complemented in K(ν1).

Now, since K(ν) is order complete, there exists g := sup‖ f‖L∞(µ)
B( f ) in K(ν).

Then the operators B1 : L∞(µ) → L∞(ν) and B2 : L∞(ν) → K(ν), such that

B1( f )(ω) := B( f )(ω)/g(ω),

for all f ∈ L∞(µ), ω ∈ O with g(ω) 6= 0 and B1( f )(ω) = 0 otherwise, and

B2(h)(ω) := g(ω)h(ω) for all h ∈ L∞(ν), ω ∈ O, satisfy that B = B2B1 and B2

is a multiplication operator for a positive element g ∈ K(ν).
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4 On Equality Between λq,J-Nuclear and λq,J-Integral Operators

Finally, using the preceding characterization theorems, we give some properties of

λq,J-nuclear and λq,J-integral operators. Let us now establish a necessary condition

for equality between components of λq,J-nuclear and λq,J-integral operator ideals.

First, we introduce a new operator ideal, which is contained in the ideal of the λq,J-in-

tegral operators.

Definition 4.1 Given E and F Banach spaces, let λq,J be an interpolation space. We

say that T ∈ L(E, F) is strictly λq,J-integral if there exists a σ-finite measure space

(O, S, ν) and a Köthe function space K(ν) which is complemented in a space with

Sk(ℓ1)[Sn(λq,J)]-local unconditional structure, such that T factors continuously in

the following way:

L∞(ν)

E

A
?

-
B

K(ν)

6
F

C

-
T

where B is a multiplication operator for a positive function of K(ν), endowed with

the topology of the norm SIλq,J
(T) = Iλq,J

(T).

Obviously, if F is a dual space, or it is complemented in its bidual space, then

SIλq,J
(E, F) = Iλq,J

(E, F).

Theorem 4.2 Let ℓλq,J
be a interpolation space, and let E and F be Banach spaces,

such that E ′ satisfies the Radon–Nikodým property, then Nλq,J
(E, F) = SIλq,J

(E, F).

Proof Let T ∈ SIλc (E, F), where E ′ has the Radon–Nikodým property.

(a) First, we suppose that B is a multiplication operator for a function g ∈ K(ν)

with finite measure support D. We denote by νD the restriction of ν to D.

As (χDA) : E → L∞(νD), then (χDA) ′ : (L∞(νD)) ′ → E ′ and the restriction of

(χDA) ′ ↾L1(νD) : L1(νD) → E ′, thus, for every x ∈ E and f ∈ L1(νD),

〈x, (χDA) ′( f )〉 = 〈χDA(x), f 〉 =

∫

D

χDA(x) f d(νD).

As E ′ has the Radon–Nikodým property, by [8, III(5)], we have that (χDA) ′ has a

Riesz representation, therefore a function φ ∈ L∞(νD, E ′) exists such that for every

f ∈ L1(νD)

(χDA) ′( f ) =

∫

D

f φd(νD).

Then, for every x ∈ E, we have that χDA(x)(t) = 〈φ(t), x〉, νD-almost everywhere in

D, and then B(χDA)(x) =< gφ( · ), x >, νD-almost everywhere in D. Let gφ be this

last operator, and we can consider it as a K(νD, E ′) element. As the simple functions

are dense in K(νD, E ′), gφ can be approximated by a sequence of simple functions

((Sk)∞k=1).
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We suppose Sk =
∑mk

j=1 x ′
k jχAk j

, where {Aki : i = 1, . . . , m} is a family of ν-mea-

sure set of Ω pairwise disjoint. For each k ∈ N, we can interpret Sk as a map Sk : E →
K(ν) such that Sk(x) =

∑mk

j=1 < x ′
k j , x > χAk j

with norm less than or equal to the

norm of Sk in K(ν, E ′).

Clearly for all k ∈ N, Sk is λq,J-nuclear since it has finite range, but we need to

evaluate its λq,J-nuclear norm coinciding with its λq,J-integral norm. Let S1
k : E →

L∞(ν) be such that

S1
k(x) =

mk∑

j=1

〈x ′
k j , x〉

‖x ′
k j‖

χAk j
,

and let S2
k : L∞(ν) → K(ν) be such that S2

k( f ) =
∑mk

j=1 ‖x ′
k j‖ f χAk j

.

Then ‖S1
k‖ ≤ 1, ‖S2

k‖ ≤ ‖Sk‖K(ν,E ′) and Sk = S2
kS1

k. But as K(ν) is a comple-

mented subspace of space with Sk(ℓ1)(Sn(λq,J))-local unconditional structure, from

Theorem 3.6, there is K > 0 such that Iλq,J
(S2

k) ≤ K‖S2
k‖ ≤ K‖Sk‖K(ν,E ′), hence

Nc
λq,J

(S2
k) ≤ K‖S2

k‖ ≤ ‖Sk‖K(ν,E ′), hence Nc
λq,J

(Sk) ≤ K‖Sk‖K(ν,E ′).

Then, as (Sk)∞k=1 converges in the K(νD, E ′) space, it is a Cauchy sequence in

Nλq,J
(E,K(νD)), and since this is complete, (Sk)∞k=1 converges to gφ, that is to say,

gφ ∈ Nλq,J
(E,K(νD)). Therefore, gφ = BχDA is λq,J-nuclear and so T is also

λq,J-nuclear.

(b) Now, if g is any element of K(ν), it can be approximated in norm by means of

a sequence (tn)∞n=1 of simple functions with finite measure support, and therefore by

(a), the sequence Tn = CBtn
A is a Cauchy sequence in Nλq,J

(E, F) converging to T in

L(E, F), and then T ∈ Nλq,J
(E, F).

As consequence of the former result and of the factorization Theorems 3.8 and

2.2, we obtain the following metric properties of gc
λq,J

and (gc
λq,J

) ′.

Theorem 4.3 (gc
λq,J

) ′ is a totally accessible tensor norm.

Proof Since (gc
λq,J

) ′ is finitely generated, it is sufficient to prove that the map

F ⊗(gc
λq,J

) ′ E →֒ Pλ ′

q ′ ,K
(E ′, F ′′)

is isometric.

Let

z =

n∑
i=1

li∑
j=1

yi j ⊗ xi j ∈ F ⊗(gc
λq,J

) ′ E,

and let Hz ∈ Pλ ′

q ′ ,K
(E ′, F ′ ′) be the canonical map associated with z, that is to say,

Hz(x ′) =

n∑
i=1

li∑
j=1

〈xi j , x ′〉yi j

for all x ′ ∈ E ′, with Hz ∈ L(E ′, F) ⊂ L(E ′, F ′ ′).
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Applying [7, Theorem 15.5] for α = (gc
λq,J

) ′, the theorem 2.4, and the equality

(gc
λq,J

) ′ ′ = gc
λq,J

, since gc
λq,J

is finitely generated, we have that inclusion

F ⊗←−−−−
(gc

λq,J
) ′

E→֒(F ′ ⊗gc
λq,J

E ′) ′→Pλ ′

q ′ ,K
(E ′, F ′ ′)

is an isometry, and therefore by [7, Proposition 12.4], we obtain

Pλ ′

q ′ ,K
(Hz) =

←−−−−
(gc

λq,J
) ′(z; F ⊗ E) ≤ (gc

λq,J
) ′(z; F ⊗ E).

Now, given N, a finite dimensional subspace of F such that z ∈ N ⊗(gc
λq,J

) ′ E, there

exists

V ∈ (N ⊗(gc
λq,J

) ′ E) ′ = I(N, E ′)

such that Iλq,J
(V ) ≤ 1 and (gc

λq,J
) ′(z; N ⊗ E) = 〈z,V 〉. Clearly enough

V ∈ SIλq,J
(N, E ′) = Iλq,J

(N, E ′)

because E ′ is a dual space, and N ′, being finite dimensional, has the Radon–Nikodým

property. Therefore, by Theorem 4.2, V ∈ Nλq,J
(N, E ′) and by Theorem 2.2, given

ǫ > 0, there is a factorization V in the way

ℓ∞[ℓ∞]

N

A
?

-
B

ℓ1[λq,J]

6
E ′

C

-
T

such that ‖C‖‖B‖‖A‖ ≤ Nc
λq,J

(V ) + ǫ = Ic
λq,J

(V ) + ǫ ≤ 1 + ǫ.

As ℓ∞[ℓ∞] has the extension metric property, (see [21, Proposition 1, C.3.2]), A

can be extended to a continuous map A ∈ L(F, ℓ∞[ℓ∞]) such that
∥∥A

∥∥ = ‖A‖.

By Theorem 2.2 again, W := CBA is in Nλq,J
(F, E ′), so there is a representation

w =:
∑∞

i=1

∑∞
j=1 y ′

i j ⊗ x ′
i j ∈ F ′⊗̂gc

λq,J
E ′ of W verifying

∞∑
i=1

πλq,J
((y ′

i j))ελ ′

q ′ ,K
((x ′

i j)) ≤ Nc
λq,J

(W ) + ǫ ≤ ‖C‖ ‖B‖
∥∥A

∥∥ + ǫ ≤ 1 + 2ǫ.

Then, (gc
λq,J

) ′(z; F ⊗ E) ≤ (gc
λq,J

) ′(z; N ⊗ E) = 〈z,V 〉 = 〈z,W 〉. It follows that

(gc
λq,J

) ′(z; F ⊗ E) ≤ gc
λq,J

(w)Pλ ′

q ′ ,K
(Hz) ≤ (1 + 2ǫ)Pλ ′

q ′ ,K
(Hz),

whence (gc
λq,J

) ′(z; F ⊗ E) ≤ Pλ ′

q ′ ,K
(Hz), and the equality is obvious.

Finally, as a consequence of the former theorem and of [7, Proposition 15.6], we

have the following.

Corollary 4.4 gc
λq,J

is an accessible tensor norm.
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[20] A. Pelczyński and H. P. Rosenthal, Localization techniques in Lp spaces. Studia Math. 52(1974/75),
263–289.

[21] A. Pietsch, Operator ideals. North-Holland Mathematical Library, 20, North-Holland Publishing
Co., Amsterdam-New York, 1980.

[22] M. J. Rivera, On the classes of Lλ, quasi-LE and Lλ,g spaces. Proc. Amer. Math. Soc. 133(2005),
no. 7, 2035–2044. doi:10.1090/S0002-9939-05-07761-0

[23] P. Saphar, Produits tensoriels d’espaces de Banach et classes d’applications linéaires. Studia Math.
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